Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
J Nat Prod ; 87(4): 861-868, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38438305

ABSTRACT

PC-A (1), a bromo nor-eremophilane, showed selective antiproliferative activity against a triple-negative breast cancer (TNBC) cell line. This unique activity prompted us to establish a total synthesis to facilitate a structure-activity relationship (SAR) study and selectivity optimization. An enantioselective first total synthesis of 1 was achieved starting from (R)-carvone through a side chain extension with a Mukaiyama aldol reaction and decalin construction. The synthesized decalin derivatives and debromo PC-A (2) were evaluated for antiproliferative activity against five human tumor cell lines, including TNBC, to assess preliminary SAR correlations.


Subject(s)
Drug Screening Assays, Antitumor , Triple Negative Breast Neoplasms , Humans , Structure-Activity Relationship , Molecular Structure , Triple Negative Breast Neoplasms/drug therapy , Stereoisomerism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cyclohexane Monoterpenes/pharmacology , Cyclohexane Monoterpenes/chemistry , Monoterpenes/pharmacology , Monoterpenes/chemistry , Monoterpenes/chemical synthesis , Sesquiterpenes/pharmacology , Sesquiterpenes/chemical synthesis , Sesquiterpenes/chemistry , Female , Cell Line, Tumor , Polycyclic Sesquiterpenes/pharmacology , Polycyclic Sesquiterpenes/chemistry , Polycyclic Sesquiterpenes/chemical synthesis
2.
Chem Biodivers ; 21(5): e202400355, 2024 May.
Article in English | MEDLINE | ID: mdl-38453645

ABSTRACT

In an attempt to search for new natural products-based antifungal agents, fifty-three nootkatone derivatives were designed, synthesized, and evaluated for their antifungal activity against Phytophthora parasitica var nicotianae, Fusarium oxysporum, Fusarium graminearum and Phomopsis sp. by the mycelium growth rate method. Nootkatone derivatives N17 exhibited good inhibitory activity against Phomopsis. sp. with EC50 values of 2.02 µM. The control effect of N17 against Phomopsis. sp. on kiwifruit showed that N17 exhibited a good curative effect in reducing kiwifruit rot at the concentration of 202 µM(100×EC50 ), with the curative effect of 41.11 %, which was better than commercial control of pyrimethanil at the concentration of 13437 µM(100×EC50 ) with the curative effect of 38.65 %. Phomopsis. sp. mycelium treated with N17 showed irregular surface collapse and shrinkage, and the cell membrane crinkled irregularly, vacuoles expanded significantly, mitochondria contracted, and organelles partially swollen by the SEM and TEM detected. Preliminary pharmacological experiments show that N17 exerted antifungal effects by altering release of cellular contents, and altering cell membrane permeability and integrity. The cytotoxicity test demonstrated that N17 showed almost no toxicity to K562 cells. The presented results implied that N17 may be as a potential antifungal agents for developing more efficient fungicides to control Phomopsis sp.


Subject(s)
Antifungal Agents , Drug Design , Fusarium , Microbial Sensitivity Tests , Oximes , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Fusarium/drug effects , Oximes/chemistry , Oximes/pharmacology , Oximes/chemical synthesis , Structure-Activity Relationship , Hydrazones/pharmacology , Hydrazones/chemistry , Hydrazones/chemical synthesis , Phytophthora/drug effects , Molecular Structure , Polycyclic Sesquiterpenes/pharmacology , Polycyclic Sesquiterpenes/chemistry , Polycyclic Sesquiterpenes/chemical synthesis , Dose-Response Relationship, Drug , Ascomycota/drug effects
3.
J Asian Nat Prod Res ; 26(10): 1160-1165, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38945153

ABSTRACT

A collection of ring distorted analogue of Nootkatone including 6 CTD (Complex to Diversity) compounds and 9 SAR (Structure Activity Relationship) compounds were synthesized utilizing the carbonyl group as a starting reaction point.


Subject(s)
Polycyclic Sesquiterpenes , Sesquiterpenes , Molecular Structure , Polycyclic Sesquiterpenes/chemistry , Polycyclic Sesquiterpenes/chemical synthesis , Polycyclic Sesquiterpenes/pharmacology , Structure-Activity Relationship , Sesquiterpenes/chemistry , Sesquiterpenes/chemical synthesis
4.
Nat Prod Rep ; 37(2): 224-245, 2020 02 26.
Article in English | MEDLINE | ID: mdl-31140489

ABSTRACT

Covering: 1978 to 2019 The synthetically challenging [3.3.3]propellane core has caught a lot of attention over the last 50 years. This comprehensive review details all synthetic strategies reported in the period 1978-2019 to facilitate the synthesis of carbocyclic [3.3.3]propellanes. The described strategies span from acid-catalyzed rearrangements and photo-mediated cycloadditions of ketones, heteropropellanes and dispiroundecanes to thermal rearrangements of acetylenes and alkenes. Other approaches, such as radical reactions with halogenated alkenes, domino cyclizations, the smart use of epoxide-carbonyl rearrangements and intramolecular palladium-catalyzed ring contractions are discussed as well. A special section is dedicated to triptindanes, a subclass of [3.3.3]propellanes which are of interest to material sciences.


Subject(s)
Biological Products/chemistry , Bridged-Ring Compounds/chemistry , Photochemistry/methods , Alkynes , Biological Products/chemical synthesis , Bridged-Ring Compounds/chemical synthesis , Bridged-Ring Compounds/metabolism , Catalysis , Cyclization , Cycloaddition Reaction , Epoxy Compounds/chemistry , Ketones/chemistry , Molecular Structure , Palladium , Polycyclic Sesquiterpenes/chemical synthesis , Polycyclic Sesquiterpenes/chemistry , Polycyclic Sesquiterpenes/metabolism
5.
J Nat Prod ; 81(9): 2111-2114, 2018 09 28.
Article in English | MEDLINE | ID: mdl-30001125

ABSTRACT

The total synthesis of the phenolic sesquiterpene onitin using dimethylated indanone as the key intermediate is reported. Key to the success of this synthesis route is the Suzuki-Miyaura cross-coupling reaction of aryl bromide to introduce the vinyl side chain followed by formyl selective Wacker oxidation to generate the aldehyde. The target aldehyde was also obtained in high overall yield via an acid-catalyzed pinacol-pinacolone-type rearrangement of the epoxide. The epoxide was generated from oxidation of a styrene derivative by oxone. Demethylation of the aldehyde followed by chemoselective reduction furnished onitin.


Subject(s)
Indenes/chemical synthesis , Polycyclic Sesquiterpenes/chemical synthesis
6.
Org Lett ; 26(38): 8074-8078, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39283305

ABSTRACT

The first synthesis of chlorine-containing hemiketals, rumphellatins A-C (1-3), previously inaccessible by means of total synthesis, was achieved starting from commercially available (-)-ß-caryophyllene oxide (7). Structures of rumphellatins A (1) and C (3) were revised, while structures of rumphellatin B (2) and intermediate rumphellolide C (19) were confirmed. The study expands availability of exotic norsesquiterpenoids for profiling their biological activity as well as facilitates the elucidation of biosynthetic pathways of their formation.


Subject(s)
Sesquiterpenes , Sesquiterpenes/chemistry , Sesquiterpenes/chemical synthesis , Molecular Structure , Polycyclic Sesquiterpenes/chemistry , Polycyclic Sesquiterpenes/chemical synthesis , Halogenation , Stereoisomerism
7.
Org Lett ; 23(15): 5593-5598, 2021 08 06.
Article in English | MEDLINE | ID: mdl-33900782

ABSTRACT

A new access to artemisinin is reported based on a selective photochemical hydrothiolation of amorphadiene, a waste product of the industrial semisynthetic route. This study highlights the discovery of two distinctive activation pathways under solvent-free conditions or using a photocatalyst promoting H-abstraction. Subsequently, a chemoselective oxidation of the resulting photochemically generated thioether, followed by a Pummerer rearrangement, affords dihydroartemisinic aldehyde, a key intermediate in the synthesis of artemisinin.


Subject(s)
Artemisinins/chemical synthesis , Polycyclic Sesquiterpenes/chemical synthesis , Artemisinins/chemistry , Biochemical Phenomena , Molecular Structure , Polycyclic Sesquiterpenes/chemistry
8.
ChemMedChem ; 16(11): 1788-1797, 2021 06 07.
Article in English | MEDLINE | ID: mdl-33665938

ABSTRACT

Drimane sesquiterpenoid dialdehydes are natural compounds with antiproliferative properties. Nevertheless, their mode of action has not yet been discovered. Herein, we demonstrate that various drimanes are potent inhibitors of MCL-1 and BCL-xL, two proteins of the BCL-2 family that are overexpressed in various cancers, including lymphoid malignancies. Subtle changes in their structure significantly modified their activity on the target proteins. The two most active compounds are MCL-1 selective and bind in the BH3 binding groove of the protein. Complementary studies by NMR spectroscopy and mass spectrometry analyses, but also synthesis, showed that they covalently inhibit MCL-1 though the formation of a pyrrole adduct. In addition, cytotoxic assays revealed that these two compounds show a cytotoxic selectivity for BL2, a MCL-1/BCL-xL-dependent cell line and induce apoptosis.


Subject(s)
Antineoplastic Agents/pharmacology , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Polycyclic Sesquiterpenes/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Polycyclic Sesquiterpenes/chemical synthesis , Polycyclic Sesquiterpenes/chemistry , Protein Domains/drug effects , Structure-Activity Relationship , bcl-2-Associated X Protein/antagonists & inhibitors , bcl-2-Associated X Protein/metabolism
9.
PLoS Negl Trop Dis ; 14(2): e0008073, 2020 02.
Article in English | MEDLINE | ID: mdl-32101555

ABSTRACT

The Aedes aegypti mosquito serves as a major vector for viral diseases, such as dengue, chikungunya, and Zika, which are spreading across the globe and threatening public health. In addition to increased vector transmission, the prevalence of insecticide-resistant mosquitoes is also on the rise, thus solidifying the need for new, safe and effective insecticides to control mosquito populations. We recently discovered that cinnamodial, a unique drimane sesquiterpene dialdehyde of the Malagasy medicinal plant Cinnamosma fragrans, exhibited significant larval and adult toxicity to Ae. aegypti and was more efficacious than DEET-the gold standard for insect repellents-at repelling adult female Ae. aegypti from blood feeding. In this study several semi-synthetic analogues of cinnamodial were prepared to probe the structure-activity relationship (SAR) for larvicidal, adulticidal and antifeedant activity against Ae. aegypti. Initial efforts were focused on modification of the dialdehyde functionality to produce more stable active analogues and to understand the importance of the 1,4-dialdehyde and the α,ß-unsaturated carbonyl in the observed bioactivity of cinnamodial against mosquitoes. This study represents the first investigation into the SAR of cinnamodial as an insecticide and antifeedant against the medically important Ae. aegypti mosquito.


Subject(s)
Aedes/drug effects , Feeding Behavior/drug effects , Insecticides/pharmacology , Polycyclic Sesquiterpenes/pharmacology , Animals , Female , Insecticides/chemical synthesis , Insecticides/chemistry , Larva/drug effects , Models, Molecular , Molecular Structure , Mosquito Control , Polycyclic Sesquiterpenes/chemical synthesis , Polycyclic Sesquiterpenes/chemistry , Protein Conformation , TRPA1 Cation Channel/chemistry , TRPA1 Cation Channel/metabolism
10.
Biomolecules ; 10(8)2020 07 24.
Article in English | MEDLINE | ID: mdl-32722158

ABSTRACT

Candida species cause an opportunistic yeast infection called Candidiasis, which is responsible for more than 50,000 deaths every year around the world. Effective treatments against candidiasis caused by non-albicans Candida species such as C. glabrata, C. parapsilosis, C. aureus, and C.krusei are limited due to severe resistance to conventional antifungal drugs. Natural drimane sesquiterpenoids have shown promising antifungal properties against Candida yeast and have emerged as valuable candidates for developing new candidiasis therapies. In this work, we isolated isodrimeninol (C1) from barks of Drimys winteri and used it as starting material for the hemi-synthesis of four sesquiterpenoids by oxidation with pyridinium chlorochromate (PCC). The structure of the products (C2, C3, C4, and C5) was elucidated by 1D and 2D NMR spectroscopy resulting in C4 being a novel compound. Antifungal activity assays against C. albicans, C. glabrata, and C. krusei revealed that C4 exhibited an increased activity (IC50 of 75 µg/mL) compared to C1 (IC50 of 125 µg/mL) in all yeast strains. The antifungal activity of C1 and C4 was rationalized in terms of their capability to inhibit lanosterol 14-alpha demethylase using molecular docking, molecular dynamics simulations, and MM/GBSA binding free energy calculations. In silico analysis revealed that C1 and C4 bind to the outermost region of the catalytic site of 14-alpha demethylase and block the entrance of lanosterol (LAN) to the catalytic pocket. Binding free energy estimates suggested that C4 forms a more stable complex with the enzyme than C1, in agreement with the experimental evidence. Based on this new approach it is possible to design new drimane-type sesquiterpenoids for the control of Candida species as inhibitors of 14-alpha demethylase.


Subject(s)
14-alpha Demethylase Inhibitors/chemistry , Candida/growth & development , Polycyclic Sesquiterpenes/chemistry , Pyridinium Compounds/chemistry , Sesquiterpenes/chemistry , Sterol 14-Demethylase/chemistry , 14-alpha Demethylase Inhibitors/chemical synthesis , 14-alpha Demethylase Inhibitors/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Candida/classification , Candida/drug effects , Catalytic Domain , Humans , Magnetic Resonance Spectroscopy , Molecular Docking Simulation , Molecular Structure , Oxidation-Reduction , Polycyclic Sesquiterpenes/chemical synthesis , Polycyclic Sesquiterpenes/pharmacology , Protein Domains , Pyridinium Compounds/metabolism , Sesquiterpenes/chemical synthesis , Sesquiterpenes/pharmacology , Sterol 14-Demethylase/metabolism
11.
Biomolecules ; 9(11)2019 11 16.
Article in English | MEDLINE | ID: mdl-31744055

ABSTRACT

Naturally occurring nootkatone, with reported insecticidal and acaricidal properties, has been used as a lead to generate molecular diversity and, consequently, new insect antifeedant and ixodicidal compounds. A total of 22 derivatives were generated by subjecting this molecule to several reactions including dehydrogenation with the iodine/DMSO system, oxidation with SeO2, epoxidation with mCPBA, oxidation or carbon homologations of the α-carbonyl position with TMSOTf (trimethylsilyl trifluoromethanesulfonate) followed by Rubottom and Dess Martin periodane oxidations, condensation with formaldehyde using Yb(OTf)3 as catalyst and dehydroxilation using the Grieco protocol. The insect antifeedant (against Myzus persicae and Ropaloshysum padi) and ixodicidal (against the tick Hyalomma lusitanicum) activities of these compounds were tested. Compound 20 was the most active substance against M. persicae and R. padi, and twice more efficient than nootkatone in the antitick test.


Subject(s)
Aphids/growth & development , Insecticides , Ixodes/growth & development , Polycyclic Sesquiterpenes , Animals , Insecticides/chemical synthesis , Insecticides/chemistry , Insecticides/pharmacology , Polycyclic Sesquiterpenes/chemical synthesis , Polycyclic Sesquiterpenes/chemistry , Polycyclic Sesquiterpenes/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL