Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36.413
Filter
Add more filters

Publication year range
1.
Nature ; 630(8017): 654-659, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38839965

ABSTRACT

Emissions reduction and greenhouse gas removal from the atmosphere are both necessary to achieve net-zero emissions and limit climate change1. There is thus a need for improved sorbents for the capture of carbon dioxide from the atmosphere, a process known as direct air capture. In particular, low-cost materials that can be regenerated at low temperatures would overcome the limitations of current technologies. In this work, we introduce a new class of designer sorbent materials known as 'charged-sorbents'. These materials are prepared through a battery-like charging process that accumulates ions in the pores of low-cost activated carbons, with the inserted ions then serving as sites for carbon dioxide adsorption. We use our charging process to accumulate reactive hydroxide ions in the pores of a carbon electrode, and find that the resulting sorbent material can rapidly capture carbon dioxide from ambient air by means of (bi)carbonate formation. Unlike traditional bulk carbonates, charged-sorbent regeneration can be achieved at low temperatures (90-100 °C) and the sorbent's conductive nature permits direct Joule heating regeneration2,3 using renewable electricity. Given their highly tailorable pore environments and low cost, we anticipate that charged-sorbents will find numerous potential applications in chemical separations, catalysis and beyond.


Subject(s)
Carbon Dioxide , Carbon Dioxide/analysis , Carbon Dioxide/chemistry , Carbon Dioxide/isolation & purification , Adsorption , Electrodes , Hydroxides/chemistry , Atmosphere/chemistry , Carbonates/chemistry , Air , Temperature , Charcoal/chemistry , Porosity , Carbon/chemistry
2.
Nature ; 603(7901): 427-433, 2022 03.
Article in English | MEDLINE | ID: mdl-35296847

ABSTRACT

Plants cover a large fraction of the Earth's land mass despite most species having limited to no mobility. To transport their propagules, many plants have evolved mechanisms to disperse their seeds using the wind1-4. A dandelion seed, for example, has a bristly filament structure that decreases its terminal velocity and helps orient the seed as it wafts to the ground5. Inspired by this, we demonstrate wind dispersal of battery-free wireless sensing devices. Our millimetre-scale devices weigh 30 milligrams and are designed on a flexible substrate using programmable, off-the-shelf parts to enable scalability and flexibility for various sensing and computing applications. The system is powered using lightweight solar cells and an energy harvesting circuit that is robust to low and variable light conditions, and has a backscatter communication link that enables data transmission. To achieve the wide-area dispersal and upright landing that is necessary for solar power harvesting, we developed dandelion-inspired, thin-film porous structures that achieve a terminal velocity of 0.87 ± 0.02 metres per second and aerodynamic stability with a probability of upright landing of over 95%. Our results in outdoor environments demonstrate that these devices can travel 50-100 metres in gentle to moderate breeze. Finally, in natural systems, variance in individual seed morphology causes some seeds to fall closer and others to travel farther. We adopt a similar approach and show how we can modulate the porosity and diameter of the structures to achieve dispersal variation across devices.


Subject(s)
Taraxacum , Wind , Porosity , Seeds/anatomy & histology
3.
Nature ; 611(7937): 695-701, 2022 11.
Article in English | MEDLINE | ID: mdl-36289344

ABSTRACT

Although tremendous advances have been made in preparing porous crystals from molecular precursors1,2, there are no general ways of designing and making topologically diversified porous colloidal crystals over the 10-1,000 nm length scale. Control over porosity in this size range would enable the tailoring of molecular absorption and storage, separation, chemical sensing, catalytic and optical properties of such materials. Here, a universal approach for synthesizing metallic open-channel superlattices with pores of 10 to 1,000 nm from DNA-modified hollow colloidal nanoparticles (NPs) is reported. By tuning hollow NP geometry and DNA design, one can adjust crystal pore geometry (pore size and shape) and channel topology (the way in which pores are interconnected). The assembly of hollow NPs is driven by edge-to-edge rather than face-to-face DNA-DNA interactions. Two new design rules describing this assembly regime emerge from these studies and are then used to synthesize 12 open-channel superlattices with control over crystal symmetry, channel geometry and topology. The open channels can be selectively occupied by guests of the appropriate size and that are modified with complementary DNA (for example, Au NPs).


Subject(s)
Crystallization , DNA , Gold , Nanoparticles , DNA/chemistry , Gold/chemistry , Nanoparticles/chemistry , Particle Size , Porosity , Colloids/chemistry , Crystallization/methods
4.
Nature ; 595(7866): 255-260, 2021 07.
Article in English | MEDLINE | ID: mdl-34234336

ABSTRACT

The role of subducting topography on the mode of fault slip-particularly whether it hinders or facilitates large megathrust earthquakes-remains a controversial topic in subduction dynamics1-5. Models have illustrated the potential for subducting topography to severely alter the structure, stress state and mechanics of subduction zones4,6; however, direct geophysical imaging of the complex fracture networks proposed and the hydrology of both the subducting topography and the associated upper plate damage zones remains elusive. Here we use passive and controlled-source seafloor electromagnetic data collected at the northern Hikurangi Margin, New Zealand, to constrain electrical resistivity in a region of active seamount subduction. We show that a seamount on the incoming plate contains a thin, low-porosity basaltic cap that traps a conductive matrix of porous volcaniclastics and altered material over a resistive core, which allows 3.2 to 4.7 times more water to subduct, compared with normal, unfaulted oceanic lithosphere. In the forearc, we image a sediment-starved plate interface above a subducting seamount with similar electrical structure to the incoming plate seamount. A sharp resistive peak within the subducting seamount lies directly beneath a prominent upper plate conductive anomaly. The coincidence of this upper plate anomaly with the location of burst-type repeating earthquakes and seismicity associated with a recent slow slip event7 directly links subducting topography to the creation of fluid-rich damage zones in the forearc that alter the effective normal stress at the plate interface by modulating the fluid overpressure. In addition to severely modifying the structure and physical conditions of the upper plate, subducting seamounts represent an underappreciated mechanism for transporting a considerable flux of water to the forearc and deeper mantle.


Subject(s)
Geologic Sediments , Oceans and Seas , Porosity , Water Movements , Earthquakes , Electromagnetic Fields , New Zealand , Volcanic Eruptions
5.
Nature ; 590(7844): 47-56, 2021 02.
Article in English | MEDLINE | ID: mdl-33536649

ABSTRACT

Cellulose is the most abundant biopolymer on Earth, found in trees, waste from agricultural crops and other biomass. The fibres that comprise cellulose can be broken down into building blocks, known as fibrillated cellulose, of varying, controllable dimensions that extend to the nanoscale. Fibrillated cellulose is harvested from renewable resources, so its sustainability potential combined with its other functional properties (mechanical, optical, thermal and fluidic, for example) gives this nanomaterial unique technological appeal. Here we explore the use of fibrillated cellulose in the fabrication of materials ranging from composites and macrofibres, to thin films, porous membranes and gels. We discuss research directions for the practical exploitation of these structures and the remaining challenges to overcome before fibrillated cellulose materials can reach their full potential. Finally, we highlight some key issues towards successful manufacturing scale-up of this family of materials.


Subject(s)
Biotechnology/methods , Biotechnology/trends , Cellulose/chemistry , Nanostructures/chemistry , Sustainable Development/trends , Biocompatible Materials/chemistry , Gels/chemistry , Humans , Porosity
6.
Proc Natl Acad Sci U S A ; 121(28): e2404210121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38954541

ABSTRACT

Mesenchymal stem cells (MSCs) are essential in regenerative medicine. However, conventional expansion and harvesting methods often fail to maintain the essential extracellular matrix (ECM) components, which are crucial for their functionality and efficacy in therapeutic applications. Here, we introduce a bone marrow-inspired macroporous hydrogel designed for the large-scale production of MSC-ECM spheroids. Through a soft-templating approach leveraging liquid-liquid phase separation, we engineer macroporous hydrogels with customizable features, including pore size, stiffness, bioactive ligand distribution, and enzyme-responsive degradability. These tailored environments are conducive to optimal MSC proliferation and ease of harvesting. We find that soft hydrogels enhance mechanotransduction in MSCs, establishing a standard for hydrogel-based 3D cell culture. Within these hydrogels, MSCs exist as both cohesive spheroids, preserving their innate vitality, and as migrating entities that actively secrete functional ECM proteins. Additionally, we also introduce a gentle, enzymatic harvesting method that breaks down the hydrogels, allowing MSCs and secreted ECM to naturally form MSC-ECM spheroids. These spheroids display heightened stemness and differentiation capacity, mirroring the benefits of a native ECM milieu. Our research underscores the significance of sophisticated materials design in nurturing distinct MSC subpopulations, facilitating the generation of MSC-ECM spheroids with enhanced therapeutic potential.


Subject(s)
Extracellular Matrix , Hydrogels , Mesenchymal Stem Cells , Spheroids, Cellular , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Hydrogels/chemistry , Extracellular Matrix/metabolism , Spheroids, Cellular/cytology , Spheroids, Cellular/metabolism , Humans , Cell Differentiation , Cell Culture Techniques/methods , Cell Proliferation , Porosity , Mechanotransduction, Cellular/physiology , Cells, Cultured
7.
Chem Rev ; 124(4): 1535-1648, 2024 02 28.
Article in English | MEDLINE | ID: mdl-38373392

ABSTRACT

Over the years, researchers have made significant strides in the development of novel flexible/stretchable and conductive materials, enabling the creation of cutting-edge electronic devices for wearable applications. Among these, porous conductive textiles (PCTs) have emerged as an ideal material platform for wearable electronics, owing to their light weight, flexibility, permeability, and wearing comfort. This Review aims to present a comprehensive overview of the progress and state of the art of utilizing PCTs for the design and fabrication of a wide variety of wearable electronic devices and their integrated wearable systems. To begin with, we elucidate how PCTs revolutionize the form factors of wearable electronics. We then discuss the preparation strategies of PCTs, in terms of the raw materials, fabrication processes, and key properties. Afterward, we provide detailed illustrations of how PCTs are used as basic building blocks to design and fabricate a wide variety of intrinsically flexible or stretchable devices, including sensors, actuators, therapeutic devices, energy-harvesting and storage devices, and displays. We further describe the techniques and strategies for wearable electronic systems either by hybridizing conventional off-the-shelf rigid electronic components with PCTs or by integrating multiple fibrous devices made of PCTs. Subsequently, we highlight some important wearable application scenarios in healthcare, sports and training, converging technologies, and professional specialists. At the end of the Review, we discuss the challenges and perspectives on future research directions and give overall conclusions. As the demand for more personalized and interconnected devices continues to grow, PCT-based wearables hold immense potential to redefine the landscape of wearable technology and reshape the way we live, work, and play.


Subject(s)
Electronics , Wearable Electronic Devices , Porosity , Textiles , Electric Conductivity
8.
Proc Natl Acad Sci U S A ; 120(4): e2211509120, 2023 01 24.
Article in English | MEDLINE | ID: mdl-36649434

ABSTRACT

Gas vesicles used as contrast agents for noninvasive ultrasound imaging must be formulated to be stable, and their mechanical properties must be assessed. We report here the formation of perfluoro-n-butane microbubbles coated with surface-active proteins that are produced by filamentous fungi (hydrophobin HFBI from Trichoderma reesei). Using pendant drop and pipette aspiration techniques, we show that these giant gas vesicles behave like glassy polymersomes, and we discover novel gas extraction regimes. We develop a model to analyze the micropipette aspiration of these compressible gas vesicles and compare them to incompressible liquid-filled vesicles. We introduce a sealing parameter to characterize the leakage of gas under aspiration through the pores of the protein coating. Utilizing this model, we can determine the elastic dilatation modulus, surface viscosity, and porosity of the membrane. These results demonstrate the engineering potential of protein-coated bubbles for echogenic and therapeutic applications and extend the use of the pipette aspiration technique to compressible and porous systems.


Subject(s)
Porosity
9.
Chem Rev ; 123(9): 5347-5420, 2023 05 10.
Article in English | MEDLINE | ID: mdl-37043332

ABSTRACT

Enzymatic catalysis has fueled considerable interest from chemists due to its high efficiency and selectivity. However, the structural complexity and vulnerability hamper the application potentials of enzymes. Driven by the practical demand for chemical conversion, there is a long-sought quest for bioinspired catalysts reproducing and even surpassing the functions of natural enzymes. As nanoporous materials with high surface areas and crystallinity, metal-organic frameworks (MOFs) represent an exquisite case of how natural enzymes and their active sites are integrated into porous solids, affording bioinspired heterogeneous catalysts with superior stability and customizable structures. In this review, we comprehensively summarize the advances of bioinspired MOFs for catalysis, discuss the design principle of various MOF-based catalysts, such as MOF-enzyme composites and MOFs embedded with active sites, and explore the utility of these catalysts in different reactions. The advantages of MOFs as enzyme mimetics are also highlighted, including confinement, templating effects, and functionality, in comparison with homogeneous supramolecular catalysts. A perspective is provided to discuss potential solutions addressing current challenges in MOF catalysis.


Subject(s)
Biomimetics , Metal-Organic Frameworks , Metal-Organic Frameworks/chemistry , Catalysis , Porosity , Catalytic Domain
10.
Nature ; 568(7753): 546-550, 2019 04.
Article in English | MEDLINE | ID: mdl-30944468

ABSTRACT

During metazoan development, immune surveillance and cancer dissemination, cells migrate in complex three-dimensional microenvironments1-3. These spaces are crowded by cells and extracellular matrix, generating mazes with differently sized gaps that are typically smaller than the diameter of the migrating cell4,5. Most mesenchymal and epithelial cells and some-but not all-cancer cells actively generate their migratory path using pericellular tissue proteolysis6. By contrast, amoeboid cells such as leukocytes use non-destructive strategies of locomotion7, raising the question how these extremely fast cells navigate through dense tissues. Here we reveal that leukocytes sample their immediate vicinity for large pore sizes, and are thereby able to choose the path of least resistance. This allows them to circumnavigate local obstacles while effectively following global directional cues such as chemotactic gradients. Pore-size discrimination is facilitated by frontward positioning of the nucleus, which enables the cells to use their bulkiest compartment as a mechanical gauge. Once the nucleus and the closely associated microtubule organizing centre pass the largest pore, cytoplasmic protrusions still lingering in smaller pores are retracted. These retractions are coordinated by dynamic microtubules; when microtubules are disrupted, migrating cells lose coherence and frequently fragment into migratory cytoplasmic pieces. As nuclear positioning in front of the microtubule organizing centre is a typical feature of amoeboid migration, our findings link the fundamental organization of cellular polarity to the strategy of locomotion.


Subject(s)
Cell Movement/physiology , Cell Nucleus/metabolism , Cell Polarity/physiology , Animals , Cell Line , Cells, Cultured , Chemotaxis/physiology , Female , Humans , Male , Mice, Inbred C57BL , Microtubule-Organizing Center/metabolism , Microtubules/metabolism , Porosity
11.
Nature ; 569(7755): 236-240, 2019 05.
Article in English | MEDLINE | ID: mdl-31043745

ABSTRACT

The perpetuation of inflammation is an important pathophysiological contributor to the global medical burden. Chronic inflammation is promoted by non-programmed cell death1,2; however, how inflammation is instigated, its cellular and molecular mediators, and its therapeutic value are poorly defined. Here we use mouse models of atherosclerosis-a major underlying cause of mortality worldwide-to demonstrate that extracellular histone H4-mediated membrane lysis of smooth muscle cells (SMCs) triggers arterial tissue damage and inflammation. We show that activated lesional SMCs attract neutrophils, triggering the ejection of neutrophil extracellular traps that contain nuclear proteins. Among them, histone H4 binds to and lyses SMCs, leading to the destabilization of plaques; conversely, the neutralization of histone H4 prevents cell death of SMCs and stabilizes atherosclerotic lesions. Our data identify a form of cell death found at the core of chronic vascular disease that is instigated by leukocytes and can be targeted therapeutically.


Subject(s)
Atherosclerosis/pathology , Cell Death , Cell Membrane/metabolism , Histones/metabolism , Inflammation/metabolism , Inflammation/pathology , Porosity , Animals , Arteries/pathology , Cell Membrane/drug effects , Disease Models, Animal , Female , Histones/antagonists & inhibitors , Mice , Mice, Inbred C57BL , Myocytes, Smooth Muscle/pathology , Neutrophils/cytology , Protein Binding/drug effects
12.
Proc Natl Acad Sci U S A ; 119(36): e2209662119, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36037348

ABSTRACT

Water harvesting from air is desired for decentralized water supply wherever water is needed. When water vapor is condensed as droplets on a surface the unremoved droplets act as thermal barriers. A surface that can provide continual droplet-free areas for nucleation is favorable for condensation water harvesting. Here, we report a flow-separation condensation mode on a hydrophilic reentrant slippery liquid-infused porous surface (SLIPS) that rapidly removes droplets with diameters above 50 µm. The slippery reentrant channels lock the liquid columns inside and transport them to the end of each channel. We demonstrate that the liquid columns can harvest the droplets on top of the hydrophilic reentrant SLIPS at a high droplet removal frequency of 130 Hz/mm2. The sustainable flow separation without flooding increases the water harvesting rate by 110% compared to the state-of-the-art hydrophilic flat SLIPS. Such a flow-separation condensation approach paves a way for water harvesting.


Subject(s)
Surface Properties , Water Resources , Hydrophobic and Hydrophilic Interactions , Porosity , Water Movements
13.
Proc Natl Acad Sci U S A ; 119(49): e2207630119, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36442131

ABSTRACT

Metamaterials are artificial materials that can achieve unusual properties through unique structures. In particular, their "invisibility" property has attracted enormous attention due to its little or negligible disturbance to the background field that avoids detection. This invisibility feature is not only useful for the optical field, but it is also important for any field manipulation that requires minimum disturbance to the background, such as the flow field manipulation inside the human body. There are several conventional invisible metamaterial designs: a cloak can isolate the influence between the internal and external fields, a concentrator can concentrate the external field to form an intensified internal field, and a rotator can rotate the internal field by a specific angle with respect to the external field. However, a multifunctional invisible device that can continuously tune across all these functions has never been realized due to its challenging requirements on material properties. Inside a porous medium flow, however, we overcome these challenges and realize such a multifunctional metamaterial. Our hydrodynamic device can manipulate both the magnitude and the direction of the internal flow and, at the same time, make negligible disturbance to the external flow. Thus, we integrate the functions of the cloak, concentrator, and rotator within one single hydrodynamic metamaterial, and such metamaterials may find potential applications in biomedical areas such as tissue engineering and drug release.


Subject(s)
Hydrodynamics , Tissue Engineering , Humans , Porosity , Physical Phenomena , Drug Liberation
14.
Proc Natl Acad Sci U S A ; 119(31): e2201014119, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35905319

ABSTRACT

Diatoms are single-celled organisms with a cell wall made of silica, called the frustule. Even though their elaborate patterns have fascinated scientists for years, little is known about the biological and physical mechanisms underlying their organization. In this work, we take a top-down approach and examine the micrometer-scale organization of diatoms from the Coscinodiscus family. We find two competing tendencies of organization, which appear to be controlled by distinct biological pathways. On one hand, micrometer-scale pores organize locally on a triangular lattice. On the other hand, lattice vectors tend to point globally toward a center of symmetry. This competition results in a frustrated triangular lattice, populated with geometrically necessary defects whose density increases near the center.


Subject(s)
Cell Wall , Diatoms , Silicon Dioxide , Cell Wall/chemistry , Diatoms/chemistry , Nanostructures , Porosity
15.
Proc Natl Acad Sci U S A ; 119(30): e2122202119, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35858419

ABSTRACT

Bacteria in porous media, such as soils, aquifers, and filters, often form surface-attached communities known as biofilms. Biofilms are affected by fluid flow through the porous medium, for example, for nutrient supply, and they, in turn, affect the flow. A striking example of this interplay is the strong intermittency in flow that can occur when biofilms nearly clog the porous medium. Intermittency manifests itself as the rapid opening and slow closing of individual preferential flow paths (PFPs) through the biofilm-porous medium structure, leading to continual spatiotemporal rearrangement. The drastic changes to the flow and mass transport induced by intermittency can affect the functioning and efficiency of natural and industrial systems. Yet, the mechanistic origin of intermittency remains unexplained. Here, we show that the mechanism driving PFP intermittency is the competition between microbial growth and shear stress. We combined microfluidic experiments quantifying Bacillus subtilis biofilm formation and behavior in synthetic porous media for different pore sizes and flow rates with a mathematical model accounting for flow through the biofilm and biofilm poroelasticity to reveal the underlying mechanisms. We show that the closing of PFPs is driven by microbial growth, controlled by nutrient mass flow. Opposing this, we find that the opening of PFPs is driven by flow-induced shear stress, which increases as a PFP becomes narrower due to microbial growth, causing biofilm compression and rupture. Our results demonstrate that microbial growth and its competition with shear stresses can lead to strong temporal variability in flow and transport conditions in bioclogged porous media.


Subject(s)
Bacillus subtilis , Biofilms , Stress, Mechanical , Bacillus subtilis/growth & development , Culture Media , Models, Theoretical , Porosity
16.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Article in English | MEDLINE | ID: mdl-35058361

ABSTRACT

Bioelectrochemistry employs an array of high-surface-area meso- and macroporous electrode architectures to increase protein loading and the electrochemical current response. While the local chemical environment has been studied in small-molecule and heterogenous electrocatalysis, conditions in enzyme electrochemistry are still commonly established based on bulk solution assays, without appropriate consideration of the nonequilibrium conditions of the confined electrode space. Here, we apply electrochemical and computational techniques to explore the local environment of fuel-producing oxidoreductases within porous electrode architectures. This improved understanding of the local environment enabled simple manipulation of the electrolyte solution by adjusting the bulk pH and buffer pKa to achieve an optimum local pH for maximal activity of the immobilized enzyme. When applied to macroporous inverse opal electrodes, the benefits of higher loading and increased mass transport were employed, and, consequently, the electrolyte adjusted to reach -8.0 mA ⋅ cm-2 for the H2 evolution reaction and -3.6 mA ⋅ cm-2 for the CO2 reduction reaction (CO2RR), demonstrating an 18-fold improvement on previously reported enzymatic CO2RR systems. This research emphasizes the critical importance of understanding the confined enzymatic chemical environment, thus expanding the known capabilities of enzyme bioelectrocatalysis. These considerations and insights can be directly applied to both bio(photo)electrochemical fuel and chemical synthesis, as well as enzymatic fuel cells, to significantly improve the fundamental understanding of the enzyme-electrode interface as well as device performance.


Subject(s)
Electrochemical Techniques , Electrochemistry , Enzymes/chemistry , Algorithms , Buffers , Electrodes , Electrolytes/chemistry , Microelectrodes , Molecular Structure , Porosity , Structure-Activity Relationship
17.
Proc Natl Acad Sci U S A ; 119(41): e2206684119, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36191194

ABSTRACT

Leaf photosynthesis, coral mineralization, and trabecular bone growth depend on triply periodic minimal surfaces (TPMSs) with hyperboloidal structure on every surface point with varying Gaussian curvatures. However, translation of this structure into tissue-engineered bone grafts is challenging. This article reports the design and fabrication of high-resolution three-dimensional TPMS scaffolds embodying biomimicking hyperboloidal topography with different Gaussian curvatures, composed of body inherent ß-tricalcium phosphate, by stereolithography-based three-dimensional printing and sintering. The TPMS bone scaffolds show high porosity and interconnectivity. Notably, compared with conventional scaffolds, they can reduce stress concentration, leading to increased mechanical strength. They are also found to support the attachment, proliferation, osteogenic differentiation, and angiogenic paracrine function of human mesenchymal stem cells (hMSCs). Through transcriptomic analysis, we theorize that the hyperboloid structure induces cytoskeleton reorganization of hMSCs, expressing elongated morphology on the convex direction and strengthening the cytoskeletal contraction. The clinical therapeutic efficacy of the TPMS scaffolds assessed by rabbit femur defect and mouse subcutaneous implantation models demonstrate that the TPMS scaffolds augment new bone formation and neovascularization. In comparison with conventional scaffolds, our TPMS scaffolds successfully guide the cell fate toward osteogenesis through cell-level directional curvatures and demonstrate drastic yet quantifiable improvements in bone regeneration.


Subject(s)
Osteogenesis , Tissue Scaffolds , Animals , Bone Regeneration , Cell Differentiation , Humans , Mice , Porosity , Printing, Three-Dimensional , Rabbits , Tissue Engineering/methods , Tissue Scaffolds/chemistry
18.
Proc Natl Acad Sci U S A ; 119(24): e2200830119, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35679344

ABSTRACT

The functional support and advancement of our body while preserving inherent naturalness is one of the ultimate goals of bioengineering. Skin protection against infectious pathogens is an application that requires common and long-term wear without discomfort or distortion of the skin functions. However, no antimicrobial method has been introduced to prevent cross-infection while preserving intrinsic skin conditions. Here, we propose an antimicrobial skin protection platform copper nanomesh, which prevents cross-infectionmorphology, temperature change rate, and skin humidity. Copper nanomesh exhibited an inactivation rate of 99.99% for Escherichia coli bacteria and influenza virus A within 1 and 10 min, respectively. The thin and porous nanomesh allows for conformal coating on the fingertips, without significant interference with the rate of skin temperature change and humidity. Efficient cross-infection prevention and thermal transfer of copper nanomesh were demonstrated using direct on-hand experiments.


Subject(s)
Anti-Infective Agents , Copper , Cross Infection , Metal Nanoparticles , Skin , Anti-Infective Agents/pharmacology , Copper/pharmacology , Cross Infection/prevention & control , Escherichia coli/drug effects , Fingers , Humans , Influenza A virus/drug effects , Porosity , Skin/microbiology
19.
Chem Soc Rev ; 53(8): 3640-3655, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38450536

ABSTRACT

Hydrogen-bonded porous frameworks (HPFs) are versatile porous crystalline frameworks with diverse applications. However, designing chiral assemblies or biocompatible materials poses significant challenges. Peptide-based hydrogen-bonded porous frameworks (P-HPFs) are an exciting alternative to conventional HPFs due to their intrinsic chirality, tunability, biocompatibility, and structural diversity. Flexible, ultra-short peptide-based P-HPFs (composed of 3 or fewer amino acids) exhibit adaptable porous topologies that can accommodate a variety of guest molecules and capture hazardous greenhouse gases. Longer, folded peptides present challenges and opportunities in designing P-HPFs. This review highlights recent developments in P-HPFs using ultra-short peptides, folded peptides, and foldamers, showcasing their utility for gas storage, chiral recognition, chiral separation, and medical applications. It also addresses design challenges and future directions in the field.


Subject(s)
Hydrogen Bonding , Peptides , Peptides/chemistry , Porosity
20.
Nano Lett ; 24(10): 3273-3281, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38427598

ABSTRACT

As intelligent technology surges forward, wearable electronics have emerged as versatile tools for monitoring health and sensing our surroundings. Among these advancements, porous triboelectric materials have garnered significant attention for their lightness. However, these materials face the challenge of improving structural stability to further enhance the sensing accuracy of triboelectric sensors. In this study, a lightweight and strong porous cellulosic triboelectric material is designed by cell wall nanoengineering. By tailoring of the cell wall structure, the material shows a high mechanical strength of 51.8 MPa. The self-powered sensor constructed by this material has a high sensitivity of 33.61 kPa-1, a fast response time of 36 ms, and excellent pressure detection durability. Notably, the sensor still enables a high sensing performance after the porous cellulosic triboelectric material exposure to 200 °C and achieves real-time feedback of human motion, thereby demonstrating great potential in the field of wearable electronic devices.


Subject(s)
Cell Wall , Wearable Electronic Devices , Humans , Electronics , Motion , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL