Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 903
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 119(29): e2203994119, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35858319

ABSTRACT

The development of more effective tumor therapy remains challenging and has received widespread attention. In the past decade, there has been growing interest in synergistic tumor therapy based on supramolecular coordination complexes. Herein, we describe two triangular metallacycles (1 and 2) constructed by the formation of pyridyl boron dipyrromethene (BODIPY)-platinum coordination. Metallacycle 2 had considerable tumor penetration, as evidenced by the phenylthiol-BODIPY ligand imparting red fluorescent emission at ∼660 nm, enabling bioimaging, and transport visualization within the tumor. Based on the therapeutic efficacy of the platinum(II) acceptor and high singlet oxygen (1O2) generation ability of BODIPY, 2 was successfully incorporated into nanoparticles and applied in chemo-photodynamic tumor therapy against malignant human glioma U87 cells, showing excellent synergistic therapeutic efficacy. A half-maximal inhibitory concentration of 0.35 µM was measured for 2 against U87 cancer cells in vitro. In vivo experiments indicated that 2 displayed precise tumor targeting ability and good biocompatibility, along with strong antitumor effects. This work provides a promising approach for treating solid tumors by synergistic chemo-photodynamic therapy of supramolecular coordination complexes.


Subject(s)
Boron Compounds , Neoplasms , Photochemotherapy , Boron Compounds/therapeutic use , Cell Line, Tumor , Coordination Complexes/therapeutic use , Drug Synergism , Humans , Neoplasms/drug therapy , Platinum/therapeutic use , Porphobilinogen/analogs & derivatives
2.
Gastroenterology ; 164(3): 484-491, 2023 03.
Article in English | MEDLINE | ID: mdl-36642627

ABSTRACT

DESCRIPTION: The acute hepatic porphyrias (AHP) are rare, inborn errors of heme-metabolism and include acute intermittent porphyria, hereditary coproporphyria, variegate porphyria, and porphyria due to severe deficiency of 5-aminolevulinic acid dehydratase. Acute intermittent porphyria is the most common type of AHP, with an estimated prevalence of patients with symptoms of approximately 1 in 100,000. The major clinical presentation involves attacks of severe pain, usually abdominal and generalized, without peritoneal signs or abnormalities on cross-sectional imaging. Acute attacks occur mainly in women in their childbearing years. AHP should be considered in the evaluation of all patients, and especially women aged 15-50 years with recurrent severe abdominal pain not ascribable to common causes. The screening tests of choice include random urine porphobilinogen and δ-aminolevulinic acid corrected to creatinine. All patients with elevations in urinary porphobilinogen and/or δ-aminolevulinic acid should initially be presumed to have AHP. The cornerstones of management include discontinuation of porphyrinogenic drugs and chemicals, administration of oral or intravenous dextrose and intravenous hemin, and use of analgesics and antiemetics. Diagnosis of AHP type can be confirmed after initial treatment by genetic testing for pathogenic variants in HMBS, CPOX, PPOX, and ALAD genes. AHP is also associated with chronic symptoms and long-term risk of systemic arterial hypertension, chronic renal and liver disease, and hepatocellular carcinoma. Patients who have recurrent acute attacks (4 or more per year) should be considered for prophylactic therapy with intravenous hemin or subcutaneous givosiran. Liver transplantation is curative and reserved for patients with intractable symptoms who have failed other treatment options. METHODS: This expert review was commissioned and approved by the American Gastroenterological Association (AGA) Institute Clinical Practice Updates Committee (CPUC) and the AGA Governing Board to provide timely guidance on a topic of high clinical importance to the AGA membership, and underwent internal peer review by the CPUC and external peer review through standard procedures of Gastroenterology. These Best Practice Advice (BPA) statements were drawn from a review of the published literature and from expert opinion. Because systematic reviews were not performed, these BPA statements do not carry formal ratings of the quality of evidence or strength of the presented considerations. Best Practice Advice Statements BEST PRACTICE ADVICE 1: Women aged 15-50 years with unexplained, recurrent severe abdominal pain without a clear etiology after an initial workup should be considered for screening for an AHP. BEST PRACTICE ADVICE 2: Initial diagnosis of AHP should be made by biochemical testing measuring δ-aminolevulinic acid, porphobilinogen, and creatinine on a random urine sample. BEST PRACTICE ADVICE 3: Genetic testing should be used to confirm the diagnosis of AHP in patients with positive biochemical testing. BEST PRACTICE ADVICE 4: Acute attacks of AHP that are severe enough to require hospital admission should be treated with intravenous hemin, given daily, preferably into a high-flow central vein. BEST PRACTICE ADVICE 5: In addition to intravenous hemin, management of acute attacks of AHP should include pain control, antiemetics, management of systemic arterial hypertension, tachycardia, and hyponatremia, and hypomagnesemia, if present. BEST PRACTICE ADVICE 6: Patients should be counseled to avoid identifiable triggers that may precipitate acute attacks, such as alcohol and porphyrinogenic medications. BEST PRACTICE ADVICE 7: Prophylactic heme therapy or givosiran, administered in an outpatient setting, should be considered in patients with recurrent attacks (4 or more per year). BEST PRACTICE ADVICE 8: Liver transplantation for AHP should be limited to patients with intractable symptoms and significantly decreased quality of life who are refractory to pharmacotherapy. BEST PRACTICE ADVICE 9: Patients with AHP should be monitored annually for liver disease. BEST PRACTICE ADVICE 10: Patients with AHP, regardless of the severity of symptoms, should undergo surveillance for hepatocellular carcinoma, beginning at age 50 years, with liver ultrasound every 6 months. BEST PRACTICE ADVICE 11: Patients with AHP on treatment should undergo surveillance for chronic kidney disease annually with serum creatinine and estimated glomerular filtration rate. BEST PRACTICE ADVICE 12: Patients should be counseled on the chronic and long-term complications of AHP, including neuropathy, chronic kidney disease, hypertension, and hepatocellular carcinoma, and need for long-term monitoring.


Subject(s)
Antiemetics , Carcinoma, Hepatocellular , Hypertension , Liver Neoplasms , Porphyria, Acute Intermittent , Porphyrias, Hepatic , Renal Insufficiency, Chronic , Humans , Female , United States , Middle Aged , Porphyria, Acute Intermittent/diagnosis , Porphyria, Acute Intermittent/genetics , Porphobilinogen Synthase , Porphobilinogen/urine , Hemin , Aminolevulinic Acid/urine , Creatinine , Quality of Life , Heme , Abdominal Pain
3.
Inorg Chem ; 63(15): 6822-6835, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38560761

ABSTRACT

Boron-dipyrromethene (BODIPY) dyes are promising photosensitizers for cellular imaging and photodynamic therapy (PDT) owing to their excellent photophysical properties and the synthetically tunable core. Metalation provides a convenient way to overcome the drawbacks arising from their low aqueous solubility. New photo-/redox-responsive Co(III) prodrug chaperones are developed as anticancer PDT agents for efficient cellular delivery of red-light-active BODIPY dyes. The photobiological activity of heteroleptic Co(III) complexes derived from tris(2-pyridylmethyl)amine (TPA) and acetylacetone-conjugated PEGylated distyryl BODIPY (HL1) or its dibromo analogue (HL2), [CoIII(TPA)(L1/L2)](ClO4)2 (1 and 2), are investigated. The Co(III)/Co(II) redox potential is tuned using the Co(III)-TPA scaffold. Complex 1 displays the in vitro release of BODIPY on red light irradiation. Complex 2, having good singlet oxygen quantum yield (ΦΔ âˆ¼ 0.28 in DMSO), demonstrates submicromolar photocytotoxicity to HeLa cancer cells (IC50 ≈ 0.23 µM) while being less toxic to HPL1D normal cells in red light. Cellular imaging using the emissive complex 1 shows mitochondrial localization and significant penetration into the HeLa tumor spheroids. Complex 2 shows supercoiled DNA photocleavage activity and apoptotic cell death through phototriggered generation of reactive oxygen species. The Co(III)-BODIPY prodrug conjugates exemplify new type of phototherapeutic agents with better efficacy than the organic dyes alone in the phototherapeutic window.


Subject(s)
Antineoplastic Agents , Photochemotherapy , Porphobilinogen/analogs & derivatives , Prodrugs , Humans , Boron/pharmacology , Red Light , Coloring Agents , Prodrugs/pharmacology , Cobalt/pharmacology , Photosensitizing Agents/radiation effects , Antineoplastic Agents/radiation effects , Boron Compounds/pharmacology , Boron Compounds/radiation effects , Singlet Oxygen/metabolism , Light
4.
Inorg Chem ; 63(37): 17249-17262, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39235210

ABSTRACT

Using the principle of "Magic Bullet", a cisplatin-derived platinum(IV) prodrug heterobimetallic Pt(IV)-Ru(II) complex, cis,cis,trans-[Pt(NH3)2Cl2{Ru(tpy-BODIPY)(tpy-COO)}(biotin)]Cl2 (Pt-Ru-B, 2), having two axial ligands, namely, biotin as water-soluble B-vitamin for enhanced cellular uptake and a BODIPY-ruthenium(II) (Ru-B, 1) photosensitizer having N,N,N-donor tpy (4'-phenyl-2,2':6',2″-terpyridine) bonded to boron-dipyrromethene (BODIPY), is developed as a "Platin Bullet" for targeted photodynamic therapy (PDT). Pt-Ru-B exhibited intense absorption near 500 nm and emission near 513 nm (λex = 488 nm) in a 10% dimethyl sulfoxide-Dulbecco's phosphate-buffered saline medium (pH 7.2). The BODIPY complex on light activation generates singlet oxygen as the reactive oxygen species (ROS) giving a quantum yield (ΦΔ) of ∼0.64 from 1,3-diphenylisobenzofuran experiments. Pt-Ru-B exhibited preferential cellular uptake in cancer cells over noncancerous cells. The dichlorodihydrofluorescein diacetate assay confirmed the generation of cellular ROS. Confocal images revealed its mitochondrial internalization. Pt-Ru-B showed submicromolar photocytotoxicity in visible light (400-700 nm) in A549 and multidrug-resistant MDA-MB-231 cancer cells. It remained nontoxic in the dark and less toxic in nontumorigenic cells. Cellular apoptosis and alteration of the mitochondrial membrane potential were evidenced from the respective Annexin V-FITC/propidium iodide assay and JC-1 dye assay. A wound healing assay using A549 cells and Pt-Ru-B revealed inhibition of cancer cell migration, highlighting its potential as an antimetastatic agent.


Subject(s)
Antineoplastic Agents , Biotin , Photochemotherapy , Photosensitizing Agents , Prodrugs , Ruthenium , Humans , Prodrugs/pharmacology , Prodrugs/chemistry , Prodrugs/chemical synthesis , Ruthenium/chemistry , Ruthenium/pharmacology , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Biotin/chemistry , Biotin/pharmacology , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Boron Compounds/chemistry , Boron Compounds/pharmacology , Boron Compounds/chemical synthesis , Porphobilinogen/analogs & derivatives , Porphobilinogen/chemistry , Porphobilinogen/pharmacology , Cell Line, Tumor , Drug Screening Assays, Antitumor , Platinum/chemistry , Platinum/pharmacology , Molecular Structure , Cell Survival/drug effects , Reactive Oxygen Species/metabolism , Apoptosis/drug effects , Cisplatin/pharmacology , Cisplatin/chemistry
5.
Int J Mol Sci ; 25(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38928126

ABSTRACT

Photodynamic Therapy (PDT) is recognized for its exceptional effectiveness as a promising cancer treatment method. However, it is noted that overexposure to the dosage and sunlight in traditional PDT can result in damage to healthy tissues, due to the low tumor selectivity of currently available photosensitizers (PSs). To address this challenge, we introduce herein a new strategy where the small molecule-targeted agent, erlotinib, is integrated into a boron dipyrromethene (BODIPY)-based PS to form conjugate 6 to enhance the precision of PDT. This conjugate demonstrates optical absorption, fluorescence emission, and singlet oxygen generation efficiency comparable to the reference compound 7, which lacks erlotinib. In vitro studies reveal that, after internalization, conjugate 6 predominantly accumulates in the lysosomes of HepG2 cells, exhibiting significant photocytotoxicity with an IC50 value of 3.01 µM. A distinct preference for HepG2 cells over HELF cells is observed with conjugate 6 but not with compound 7. In vivo experiments further confirm that conjugate 6 has a specific affinity for tumor tissues, and the combination treatment of conjugate 6 with laser illumination can effectively eradicate H22 tumors in mice with outstanding biosafety. This study presents a novel and potential PS for achieving precise PDT against cancer.


Subject(s)
Erlotinib Hydrochloride , Liver Neoplasms , Photochemotherapy , Photosensitizing Agents , Porphobilinogen , Humans , Photochemotherapy/methods , Animals , Mice , Porphobilinogen/analogs & derivatives , Porphobilinogen/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemistry , Hep G2 Cells , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Erlotinib Hydrochloride/pharmacology , Erlotinib Hydrochloride/chemistry , Boron Compounds/chemistry , Boron Compounds/pharmacology
6.
N Engl J Med ; 382(24): 2289-2301, 2020 06 11.
Article in English | MEDLINE | ID: mdl-32521132

ABSTRACT

BACKGROUND: Up-regulation of hepatic delta-aminolevulinic acid synthase 1 (ALAS1), with resultant accumulation of delta-aminolevulinic acid (ALA) and porphobilinogen, is central to the pathogenesis of acute attacks and chronic symptoms in acute hepatic porphyria. Givosiran, an RNA interference therapy, inhibits ALAS1 expression. METHODS: In this double-blind, placebo-controlled, phase 3 trial, we randomly assigned symptomatic patients with acute hepatic porphyria to receive either subcutaneous givosiran (2.5 mg per kilogram of body weight) or placebo monthly for 6 months. The primary end point was the annualized rate of composite porphyria attacks among patients with acute intermittent porphyria, the most common subtype of acute hepatic porphyria. (Composite porphyria attacks resulted in hospitalization, an urgent health care visit, or intravenous administration of hemin at home.) Key secondary end points were levels of ALA and porphobilinogen and the annualized attack rate among patients with acute hepatic porphyria, along with hemin use and daily worst pain scores in patients with acute intermittent porphyria. RESULTS: A total of 94 patients underwent randomization (48 in the givosiran group and 46 in the placebo group). Among the 89 patients with acute intermittent porphyria, the mean annualized attack rate was 3.2 in the givosiran group and 12.5 in the placebo group, representing a 74% lower rate in the givosiran group (P<0.001); the results were similar among the 94 patients with acute hepatic porphyria. Among the patients with acute intermittent porphyria, givosiran led to lower levels of urinary ALA and porphobilinogen, fewer days of hemin use, and better daily scores for pain than placebo. Key adverse events that were observed more frequently in the givosiran group were elevations in serum aminotransferase levels, changes in serum creatinine levels and the estimated glomerular filtration rate, and injection-site reactions. CONCLUSIONS: Among patients with acute intermittent porphyria, those who received givosiran had a significantly lower rate of porphyria attacks and better results for multiple other disease manifestations than those who received placebo. The increased efficacy was accompanied by a higher frequency of hepatic and renal adverse events. (Funded by Alnylam Pharmaceuticals; ENVISION ClinicalTrials.gov number, NCT03338816.).


Subject(s)
Acetylgalactosamine/analogs & derivatives , Aminolevulinic Acid/urine , Porphobilinogen/urine , Porphyria, Acute Intermittent/drug therapy , Pyrrolidines/therapeutic use , RNAi Therapeutics , Acetylgalactosamine/adverse effects , Acetylgalactosamine/therapeutic use , Adult , Double-Blind Method , Fatigue/etiology , Female , Humans , Injections, Subcutaneous , Least-Squares Analysis , Liver/drug effects , Male , Nausea/etiology , Pain/etiology , Patient Outcome Assessment , Porphyria, Acute Intermittent/complications , Porphyria, Acute Intermittent/urine , Pyrrolidines/adverse effects , Renal Insufficiency, Chronic/chemically induced , Transaminases/blood
7.
Clin Chem ; 69(10): 1186-1196, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37608428

ABSTRACT

BACKGROUND: The quantification of delta-aminolevulinic acid (ALA) and porphobilinogen (PBG) in urine are the first-line tests for diagnosis and monitoring of acute hepatic porphyrias (AHP). Ion-exchange chromatography (IEC), which is time- and staff-consuming and limited to urine, is still the preferred method in many specialized laboratories, despite the development of mass spectrometry-based methods. METHODS: We describe a new LC-MS method that allows for rapid and simple quantification of ALA and PBG in urine and plasma with an affordable instrument that was used to analyze 2260 urine samples and 309 blood samples collected in 2 years of routine activity. The results were compared to those obtained with IEC, and urine reference ranges and concentrations in asymptomatic carriers were determined. Plasma concentrations were measured in healthy subjects and subgroups of symptomatic and asymptomatic AHP carriers. RESULTS: In urine, the clinical decision limits were not impacted by the change of method despite discrepancies in low absolute concentrations, leading to lower normal values. Two-thirds of asymptomatic AHP carriers (with the exception of coproporphyria carriers) showed an increased urine PBG concentration. Urine and plasma levels showed a good correlation except in patients with kidney disease in whom the urine/plasma ratio was relatively low. CONCLUSION: We described an LC-MS based method for the routine diagnosis and monitoring of AHP that allows for the detection of more asymptomatic carriers than the historical method. Blood analysis appears to be particularly relevant for patients with kidney disease, where urine measurement underestimates the increase in ALA and PBG levels.


Subject(s)
Porphyrias, Hepatic , Porphyrias , Porphyrins , Renal Insufficiency , Humans , Chromatography, Liquid/methods , Aminolevulinic Acid/urine , Tandem Mass Spectrometry/methods , Porphobilinogen/urine , Porphyrias/diagnosis
8.
Mol Genet Metab ; 140(3): 107670, 2023 11.
Article in English | MEDLINE | ID: mdl-37542766

ABSTRACT

Acute hepatic porphyria (AHP) is a group of four rare inherited diseases, each resulting from a deficiency in a distinct enzyme in the heme biosynthetic pathway. Characterized by acute neurovisceral symptoms that may mimic other medical and psychiatric conditions, lack of recognition of the disease often leads to a delay in diagnosis and initiation of effective treatment. Biochemical testing for pathway intermediates that accumulate when the disease is active forms the basis for screening and establishing a diagnosis. Subsequent genetic analysis identifies the pathogenic variant, supporting screening of family members and genetic counseling. Management of AHP involves avoidance of known exogenous and hormonal triggers, symptomatic treatment, and prevention of recurrent attacks. Here we describe six case studies from our own real-world experience to highlight current recommendations and challenges associated with the diagnosis and long-term management of the disease.


Subject(s)
Porphobilinogen , Porphyrias, Hepatic , Humans , Porphyrias, Hepatic/diagnosis , Porphyrias, Hepatic/genetics , Porphyrias, Hepatic/therapy , Porphobilinogen Synthase , Heme/genetics
9.
J Inherit Metab Dis ; 46(6): 1186-1194, 2023 11.
Article in English | MEDLINE | ID: mdl-37650859

ABSTRACT

Acute intermittent porphyria (AIP) is a rare hereditary metabolic disease characterized by acute attacks and accumulation of the porphyrin precursors 5-aminolevulinic acid (ALA) and porphobilinogen (PBG). Patients with AIP have a high risk of primary liver cancer (PLC). We aimed to assess the association between porphyrin precursor excretion and the risk for PLC in patients with AIP. We studied 48 patients with AIP who developed PLC between 1987 and 2015 and 140 age and sex matched controls with AIP but no PLC. Data on all available urinary PBG and ALA samples collected from 1975 until 1 year before PLC diagnosis were analyzed and compared between cases and controls using logistic regression. Porphyrin precursor excretion was higher in patients with PLC (PBG median 7.9 [IQR 4.4-21.9] mmol/mol creatinine) than in controls (3.8 [1.2-9.8]) (adjusted odds ratio 1.07, 95% confidence interval: 1.02-1.12). None of the 28 patients with all registered samples below the upper limit of normal (ULN) developed PLC, and only one of the 45 patients with all samples <2× ULN developed PLC. Among non-PLC controls, ALA and PBG levels decreased after age 50-60 while an increasing trend was observed after age 65 among those who developed PLC. Increased urinary porphyrin precursors are associated with a high risk of developing PLC. Patients with normal levels appear to have a low risk while high or increasing ALA and PBG after age 65 indicates high risk, which should be considered in surveillance decisions.


Subject(s)
Liver Neoplasms , Porphyria, Acute Intermittent , Porphyrins , Humans , Middle Aged , Aged , Case-Control Studies , Aminolevulinic Acid/urine , Porphobilinogen/urine , Porphyrins/urine , Liver Neoplasms/etiology
10.
Biochemistry ; 61(21): 2409-2416, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36241173

ABSTRACT

Patients with major forms of acute hepatic porphyria present acute neurological attacks with overproduction of porphobilinogen (PBG) and δ-aminolevulinic acid (ALA). Even if ALA is considered the most likely agent inducing the acute symptoms, the mechanism of its accumulation has not been experimentally demonstrated. In the most frequent form, acute intermittent porphyria (AIP), inherited gene mutations induce a deficiency in PBG deaminase; thus, accumulation of the substrate PBG is biochemically obligated but not that of ALA. A similar scenario is observed in other forms of acute hepatic porphyria (i.e., porphyria variegate, VP) in which PBG deaminase is inhibited by metabolic intermediates. Here, we have investigated the molecular basis of δ-aminolevulinate accumulation using in vitro fluxomics monitored by NMR spectroscopy and other biophysical techniques. Our results show that porphobilinogen, the natural product of δ-aminolevulinate deaminase, effectively inhibits its anabolic enzyme at abnormally low concentrations. Structurally, this high affinity can be explained by the interactions that porphobilinogen generates with the active site, most of them shared with the substrate. Enzymatically, our flux analysis of an altered heme pathway demonstrates that a minimum accumulation of porphobilinogen will immediately trigger the accumulation of δ-aminolevulinate, a long-lasting observation in patients suffering from acute porphyrias.


Subject(s)
Porphyria, Acute Intermittent , Porphyrias, Hepatic , Humans , Porphyria, Acute Intermittent/genetics , Porphyria, Acute Intermittent/metabolism , Porphobilinogen , Hydroxymethylbilane Synthase/genetics , Hydroxymethylbilane Synthase/metabolism , Porphyrias, Hepatic/genetics
11.
J Hepatol ; 77(4): 1038-1046, 2022 10.
Article in English | MEDLINE | ID: mdl-35636578

ABSTRACT

BACKGROUND & AIMS: Acute intermittent porphyria (AIP), caused by heterozygous germline mutations of the heme synthesis pathway enzyme HMBS (hydroxymethylbilane synthase), confers a high risk of hepatocellular carcinoma (HCC) development. Yet, the role of HMBS in liver tumorigenesis remains unclear. METHODS: Herein, we explore HMBS alterations in a large series of 758 HCC cases, including 4 patients with AIP. We quantify the impact of HMBS mutations on heme biosynthesis pathway intermediates and we investigate the molecular and clinical features of HMBS-mutated tumors. RESULTS: We identify recurrent bi-allelic HMBS inactivation, both in patients with AIP acquiring a second somatic HMBS mutation and in sporadic HCC with 2 somatic hits. HMBS alterations are enriched in truncating mutations, in particular in splice regions, leading to abnormal transcript structures. Bi-allelic HMBS inactivation results in a massive accumulation of its toxic substrate porphobilinogen and synergizes with CTNNB1-activating mutations, leading to the development of well-differentiated tumors with a transcriptomic signature of Wnt/ß-catenin pathway activation and a DNA methylation signature related to ageing. HMBS-inactivated HCC mostly affects females, in the absence of fibrosis and classical HCC risk factors. CONCLUSIONS: These data identify HMBS as a tumor suppressor gene whose bi-allelic inactivation defines a homogenous clinical and molecular HCC subtype. LAY SUMMARY: Heme (the precursor to hemoglobin, which plays a key role in oxygen transport around the body) synthesis occurs in the liver and involves several enzymes including hydroxymethylbilane synthase (HMBS). HMBS mutations cause acute intermittent porphyria, a disease caused by the accumulation of toxic porphyrin precursors. Herein, we show that HMBS inactivation is also involved in the development of liver cancers with distinct clinical and molecular characteristics.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Porphyria, Acute Intermittent , Carcinoma, Hepatocellular/complications , Carcinoma, Hepatocellular/genetics , Female , Heme , Humans , Hydroxymethylbilane Synthase/genetics , Liver Neoplasms/complications , Liver Neoplasms/genetics , Mutation , Oxygen , Porphobilinogen , Porphyria, Acute Intermittent/etiology , Porphyria, Acute Intermittent/genetics , beta Catenin/genetics
12.
N Engl J Med ; 380(6): 549-558, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30726693

ABSTRACT

BACKGROUND: Induction of delta aminolevulinic acid synthase 1 ( ALAS1) gene expression and accumulation of neurotoxic intermediates result in neurovisceral attacks and disease manifestations in patients with acute intermittent porphyria, a rare inherited disease of heme biosynthesis. Givosiran is an investigational RNA interference therapeutic agent that inhibits hepatic ALAS1 synthesis. METHODS: We conducted a phase 1 trial of givosiran in patients with acute intermittent porphyria. In part A of the trial, patients without recent porphyria attacks (i.e., no attacks in the 6 months before baseline) were randomly assigned to receive a single subcutaneous injection of one of five ascending doses of givosiran (0.035, 0.10, 0.35, 1.0, or 2.5 mg per kilogram of body weight) or placebo. In part B, patients without recent attacks were randomly assigned to receive once-monthly injections of one of two doses of givosiran (0.35 or 1.0 mg per kilogram) or placebo (total of two injections 28 days apart). In part C, patients who had recurrent attacks were randomly assigned to receive injections of one of two doses of givosiran (2.5 or 5.0 mg per kilogram) or placebo once monthly (total of four injections) or once quarterly (total of two injections) during a 12-week period, starting on day 0. Safety, pharmacokinetic, pharmacodynamic, and exploratory efficacy outcomes were evaluated. RESULTS: A total of 23 patients in parts A and B and 17 patients in part C underwent randomization. Common adverse events included nasopharyngitis, abdominal pain, and diarrhea. Serious adverse events occurred in 6 patients who received givosiran in parts A through C combined. In part C, all 6 patients who were assigned to receive once-monthly injections of givosiran had sustained reductions in ALAS1 messenger RNA (mRNA), delta aminolevulinic acid, and porphobilinogen levels to near normal. These reductions were associated with a 79% lower mean annualized attack rate than that observed with placebo (exploratory efficacy end point). CONCLUSIONS: Once-monthly injections of givosiran in patients who had recurrent porphyria attacks resulted in mainly low-grade adverse events, reductions in induced ALAS1 mRNA levels, nearly normalized levels of the neurotoxic intermediates delta aminolevulinic acid and porphobilinogen, and a lower attack rate than that observed with placebo. (Funded by Alnylam Pharmaceuticals; ClinicalTrials.gov number, NCT02452372 .).


Subject(s)
5-Aminolevulinate Synthetase/antagonists & inhibitors , Amides/administration & dosage , Porphyria, Acute Intermittent/drug therapy , RNAi Therapeutics , 5-Aminolevulinate Synthetase/genetics , 5-Aminolevulinate Synthetase/metabolism , Acetylgalactosamine/analogs & derivatives , Adult , Amides/adverse effects , Dose-Response Relationship, Drug , Drug Administration Schedule , Female , Humans , Injections, Subcutaneous , Liver/metabolism , Male , Middle Aged , Molecular Targeted Therapy , Porphobilinogen/blood , Pyrrolidines , RNA, Messenger/metabolism , RNA, Messenger/urine
13.
Anal Chem ; 94(6): 2794-2802, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35109653

ABSTRACT

Phosphorescence lifetime imaging microscopy (PLIM) using a phosphorescent oxygen probe is an innovative technique for elucidating the behavior of oxygen in living tissues. In this study, we designed and synthesized an Ir(III) complex, PPYDM-BBMD, that exhibits long-lived phosphorescence in the near-infrared region and enables in vivo oxygen imaging in deeper tissues. PPYDM-BBMD has a π-extended ligand based on a meso-mesityl dipyrromethene structure and phenylpyridine ligands with cationic dimethylamino groups to promote intracellular uptake. This complex gave a phosphorescence spectrum with a maximum at 773 nm in the wavelength range of the so-called biological window and exhibited an exceptionally long lifetime (18.5 µs in degassed acetonitrile), allowing for excellent oxygen sensitivity even in the near-infrared window. PPYDM-BBMD showed a high intracellular uptake in cultured cells and mainly accumulated in the endoplasmic reticulum. We evaluated the oxygen sensitivity of PPYDM-BBMD phosphorescence in alpha mouse liver 12 (AML12) cells based on the Stern-Volmer analysis, which gave an O2-induced quenching rate constant of 1.42 × 103 mmHg-1 s-1. PPYDM-BBMD was administered in the tail veins of anesthetized mice, and confocal one-photon PLIM images of hepatic tissues were measured at different depths from the liver surfaces. The PLIM images visualized the oxygen gradients in hepatic lobules up to a depth of about 100 µm from the liver surfaces with a cellular-level resolution, allowing for the quantification of oxygen partial pressure based on calibration results using AML12 cells.


Subject(s)
Iridium , Oxygen , Iridium/chemistry , Ligands , Oxygen/analysis , Porphobilinogen/analogs & derivatives
14.
BMC Plant Biol ; 22(1): 463, 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36167497

ABSTRACT

BACKGROUND: Broomcorn millet is highly tolerant to drought and barren soil. Changes in chlorophyll content directly affect leaf color, which subsequently leadsleading to poor photosynthetic performance and reduced crop yield. Herein, we isolated a yellow leaf mutant (YX-yl) using a forward genetics approach and evaluated its agronomic traits, photosynthetic pigment content, chloroplast ultrastructure, and chlorophyll precursors. Furthermore, the molecular mechanism of yellowing was explored using transcriptome sequencing. RESULTS: The YX-yl mutant showed significantly decreased plant height and low yield. The leaves exhibited a yellow-green phenotype and poor photosynthetic capacity during the entire growth period. The content of chlorophyll a, chlorophyll b, and carotenoids in YX-yl leaves was lower than that in wild-type leaves. Chlorophyll precursor analysis results showed that chlorophyll biosynthesis in YX-yl was hindered by the conversion of porphobilinogen to protoporphyrin IX. Examination of chloroplast ultrastructure in the leaves revealed that the chloroplasts of YX-yl accumulated on one side of the cell. Moreover, the chloroplast structure of YX-yl was degraded. The inner and outer membranes of the chloroplasts could not be distinguished well. The numbers of grana and grana thylakoids in the chloroplasts were low. The transcriptome of the yellowing mutant YX-yl was sequenced and compared with that of the wild type. Nine chlorophyll-related genes with significantly different expression profiles were identified: PmUROD, PmCPO, PmGSAM, PmPBDG, PmLHCP, PmCAO, PmVDE, PmGluTR, and PmPNPT. The proteins encoded by these genes were located in the chloroplast, chloroplast membrane, chloroplast thylakoid membrane, and chloroplast matrix and were mainly involved in chlorophyll biosynthesis and redox-related enzyme regulation. CONCLUSIONS: YX-yl is an ideal material for studying pigment metabolism mechanisms. Changes in the expression patterns of some genes between YX-yl and the wild type led to differences in chloroplast structures and enzyme activities in the chlorophyll biosynthesis pathway, ultimately resulting in a yellowing phenotype in the YX-yl mutant. Our findings provide an insight to the molecular mechanisms of leaf color formation and chloroplast development in broomcorn millet.


Subject(s)
Panicum , Carotenoids/metabolism , Chlorophyll/metabolism , Chlorophyll A/metabolism , Gene Expression Regulation, Plant , Panicum/metabolism , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Porphobilinogen/metabolism , Soil
15.
Chemistry ; 28(17): e202104072, 2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35157336

ABSTRACT

The fast relaxation processes in the excited electronic states of functionalized aza-boron-dipyrromethene (aza-BODIPY) derivatives (1-4) were investigated in liquid media at room temperature, including the linear photophysical, photochemical, and nonlinear optical (NLO) properties. Optical gain was revealed for nonfluorescent derivatives 3 and 4 in the near infrared (NIR) spectral range under femtosecond excitation. The values of two-photon absorption (2PA) and excited-state absorption (ESA) cross-sections were obtained for 1-4 in dichloromethane using femtosecond Z-scans, and the role of bromine substituents in the molecular structures of 2 and 4 is discussed. The nature of the excited states involved in electronic transitions of these dyes was investigated using quantum-chemical TD-DFT calculations, and the obtained spectral parameters are in reasonable agreement with the experimental data. Significant 2PA (maxima cross-sections ∼2000 GM), and large ESA cross-sections ∼10-20  m2 of these new aza-BODIPY derivatives 1-4 along with their measured high photostability reveal their potential for photonic applications in general and optical limiting in particular.


Subject(s)
Boron , Fluorescent Dyes , Boron Compounds , Fluorescent Dyes/chemistry , Porphobilinogen/analogs & derivatives , Spectrum Analysis
16.
Photochem Photobiol Sci ; 21(9): 1677-1687, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35796875

ABSTRACT

For long-term live-cell fluorescence imaging and biosensing, it is crucial to work with a dye that has high fluorescence quantum yield and photostability without being detrimental to the cells. In this paper, we demonstrate that neutral boron-dipyrromethene (BODIPY)-based molecular rotors have great properties for high-light-dosage demanding live-cell fluorescence imaging applications that require repetitive illuminations. In molecular rotors, an intramolecular rotation (IMR) allows an alternative route for the decay of the singlet excited state (S1) via the formation of an intramolecular charge transfer state (CT). The occurrence of IMR reduces the probability of the formation of a triplet state (T1) which could further react with molecular oxygen (3O2) to form cytotoxic reactive oxygen species, e.g., singlet oxygen (1O2). We demonstrate that the oxygen-related nature of the phototoxicity for BODIPY derivatives can be significantly reduced if a neutral molecular rotor is used as a probe. The studied neutral molecular rotor probe shows remarkably lower phototoxicity when compared with both the non-rotating BODIPY derivative and the cationic BODIPY-based molecular rotor in different light dosages and dye concentrations. It is also evident that the charge and localization of the fluorescent probe are as significant as the IMR in terms of the phototoxicity in a long-term live-cell imaging.


Subject(s)
Boron Compounds , Boron , Boron Compounds/chemistry , Boron Compounds/toxicity , Molecular Probes , Oxygen , Porphobilinogen/analogs & derivatives
17.
Semin Dial ; 35(1): 93-95, 2022 01.
Article in English | MEDLINE | ID: mdl-34558740

ABSTRACT

Acute intermittent porphyria is one of eight disorders arising from disturbances in heme biosynthesis where the precursors, 5-aminolevulinate and porphobilinogen, are elevated in plasma and urine. Attacks are characterized by severe abdominal pain, vomiting and/or obstipation, neurological manifestations, and psychological disturbances. The mainstay of treatment is hemin infusion to induce the negative feedback of heme synthesis. Hemodialysis is casuistically suggested as an alternative treatment. We present a case report of a 78-year-old male with acute intermittent porphyria and renal failure treated with peritoneal dialysis resulting in complete discontinuance of longstanding painful and disabling porphyria attacks.


Subject(s)
Peritoneal Dialysis , Porphyria, Acute Intermittent , Aged , Heme , Humans , Male , Pain , Peritoneal Dialysis/adverse effects , Porphobilinogen , Porphyria, Acute Intermittent/complications , Porphyria, Acute Intermittent/diagnosis , Porphyria, Acute Intermittent/therapy , Recurrence , Renal Dialysis/adverse effects
18.
J Phys Chem A ; 126(9): 1530-1541, 2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35230124

ABSTRACT

A boron dipyrromethene (BODIPY) derivative bearing a cis-proline residue at the meso-position crystallizes in the form of platelets with strong (i.e., ΦF = 0.34) red fluorescence, but the absorption and emission spectra differ markedly from those for dilute solutions. A key building block for the crystal is a pseudo-dimer where hydrogen bonding aligns the proline groups and separates the terminal chromophores by ca. 25 Å. Comparison with a covalently linked bichromophore suggests that one-dimensional (1D) excitonic coupling between the terminals is too small to perturb the optical properties. However, accretion of the pseudo-dimer forms narrow channels possessing a high density of chromophores. The resultant absorption spectrum exhibits strong excitonic splitting, which can be explained quantitatively using the extended dipole approach and allowing for coupling between ca. 30 BODIPY units. Fluorescence, which decays with a lifetime of 2.2 ns, is assigned to a delocalized and (slightly) super-radiant BODIPY dimer situated at the interface and populated via electronic energy transfer from the interior.


Subject(s)
Boron , Proline , Boron/chemistry , Boron Compounds , Porphobilinogen/analogs & derivatives , Porphobilinogen/chemistry
19.
Biochem J ; 478(5): 1023-1042, 2021 03 12.
Article in English | MEDLINE | ID: mdl-33600566

ABSTRACT

Hydroxymethylbilane synthase (HMBS), which is involved in the heme biosynthesis pathway, has a dipyrromethane cofactor and combines four porphobilinogen (PBG) molecules to form a linear tetrapyrrole, hydroxymethylbilane. Enzyme kinetic study of human HMBS using a PBG-derivative, 2-iodoporphobilinogen (2-I-PBG), exhibited noncompetitive inhibition with the inhibition constant being 5.4 ± 0.3 µM. To elucidate the reaction mechanism of HMBS in detail, crystal structure analysis of 2-I-PBG-bound holo-HMBS and its reaction intermediate possessing two PBG molecules (ES2), and inhibitor-free ES2 was performed at 2.40, 2.31, and 1.79 Šresolution, respectively. Their overall structures are similar to that of inhibitor-free holo-HMBS, and the differences are limited near the active site. In both 2-I-PBG-bound structures, 2-I-PBG is located near the terminus of the cofactor or the tetrapyrrole chain. The propionate group of 2-I-PBG interacts with the side chain of Arg173, and its acetate group is associated with the side chains of Arg26 and Ser28. Furthermore, the aminomethyl group and pyrrole nitrogen of 2-I-PBG form hydrogen bonds with the side chains of Gln34 and Asp99, respectively. These amino acid residues form a single substrate-binding site, where each of the four PBG molecules covalently binds to the cofactor (or oligopyrrole chain) consecutively, ultimately forming a hexapyrrole chain. Molecular dynamics simulation of the ES2 intermediate suggested that the thermal fluctuation of the lid and cofactor-binding loops causes substrate recruitment and oligopyrrole chain shift needed for consecutive condensation. Finally, the hexapyrrole chain is hydrolyzed self-catalytically to produce hydroxymethylbilane.


Subject(s)
Hydroxymethylbilane Synthase/chemistry , Hydroxymethylbilane Synthase/metabolism , Porphobilinogen/metabolism , Uroporphyrinogens/metabolism , Catalysis , Catalytic Domain , Crystallography, X-Ray , Humans , Molecular Dynamics Simulation , Protein Conformation , Protein Domains , Substrate Specificity
20.
Int J Mol Sci ; 24(1)2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36613492

ABSTRACT

Porphobilinogen deaminase (PBGD) haploinsufficiency (acute intermittent porphyria, AIP) is characterized by neurovisceral attacks associated with high production, accumulation and urinary excretion of heme precursors, δ-aminolevulinic acid (ALA) and porphobilinogen (PBG). The estimated clinical penetrance for AIP is extremely low (<1%), therefore it is likely that other factors may play an important role in the predisposition to developing attacks. Fasting is a known triggering factor. Given the increased prevalence of insulin resistance in patients and the large urinary loss of succinyl-CoA to produce ALA and PBG, we explore the impact of reduced availability of energy metabolites in the severity of AIP pathophysiology. Classic studies found clinical improvement in patients affected by AIP associated with the administration of glucose and concomitant insulin secretion, or after hyperinsulinemia associated with diabetes. Molecular studies have confirmed that glucose and insulin administration induces a repressive effect on hepatic ALA Synthase, the first and regulatory step of the heme pathway. More recently, the insulin-mimicking α-lipoic acid has been shown to improve glucose metabolism and mitochondrial dysfunction in a hepatocyte cell line transfected with interfering RNA targeting PBGD. In AIP mice, preventive treatment with an experimental fusion protein of insulin and apolipoprotein A-I improved the disease by promoting fat mobilization in adipose tissue, increasing the metabolite bioavailability for the TCA cycle and inducing mitochondrial biogenesis in the liver. In this review, we analyze the possible mechanisms underlying abnormal hepatocellular carbohydrate homeostasis in AIP.


Subject(s)
Insulin Resistance , Porphyria, Acute Intermittent , Animals , Mice , Aminolevulinic Acid/metabolism , Carbohydrate Metabolism , Glucose/therapeutic use , Heme/metabolism , Hydroxymethylbilane Synthase/genetics , Insulin/metabolism , Porphobilinogen/urine , Porphyria, Acute Intermittent/genetics , Porphyria, Acute Intermittent/therapy , Humans
SELECTION OF CITATIONS
SEARCH DETAIL