ABSTRACT
BACKGROUND: Preeclampsia is a serious disease of pregnancy that lacks early diagnosis methods or effective treatment, except delivery. Dysregulated uterine immune cells and spiral arteries are implicated in preeclampsia, but the mechanistic link remains unclear. METHODS: Single-cell RNA sequencing and spatial transcriptomics were used to identify immune cell subsets associated with preeclampsia. Cell-based studies and animal models including conditional knockout mice and a new preeclampsia mouse model induced by recombinant mouse galectin-9 were applied to validate the pathogenic role of a CD11chigh subpopulation of decidual macrophages (dMφ) and to determine its underlying regulatory mechanisms in preeclampsia. A retrospective preeclampsia cohort study was performed to determine the value of circulating galectin-9 in predicting preeclampsia. RESULTS: We discovered a distinct CD11chigh dMφ subset that inhibits spiral artery remodeling in preeclampsia. The proinflammatory CD11chigh dMφ exhibits perivascular enrichment in the decidua from patients with preeclampsia. We also showed that trophoblast-derived galectin-9 activates CD11chigh dMφ by means of CD44 binding to suppress spiral artery remodeling. In 3 independent preeclampsia mouse models, placental and plasma galectin-9 levels were elevated. Galectin-9 administration in mice induces preeclampsia-like phenotypes with increased CD11chigh dMφ and defective spiral arteries, whereas galectin-9 blockade or macrophage-specific CD44 deletion prevents such phenotypes. In pregnant women, increased circulating galectin-9 levels in the first trimester and at 16 to 20 gestational weeks can predict subsequent preeclampsia onset. CONCLUSIONS: These findings highlight a key role of a distinct perivascular inflammatory CD11chigh dMφ subpopulation in the pathogenesis of preeclampsia. CD11chigh dMφ activated by increased galectin-9 from trophoblasts suppresses uterine spiral artery remodeling, contributing to preeclampsia. Increased circulating galectin-9 may be a biomarker for preeclampsia prediction and intervention.
Subject(s)
Decidua , Galectins , Macrophages , Pre-Eclampsia , Vascular Remodeling , Pre-Eclampsia/metabolism , Pre-Eclampsia/immunology , Pregnancy , Female , Animals , Galectins/metabolism , Macrophages/metabolism , Macrophages/immunology , Macrophages/pathology , Mice , Humans , Decidua/metabolism , Decidua/pathology , Mice, Knockout , Uterus/metabolism , Uterus/blood supply , Disease Models, Animal , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/genetics , Retrospective Studies , Mice, Inbred C57BL , CD11 AntigensABSTRACT
The placenta plays a crucial role in pregnancy success. ΔNp63α (p63), a transcription factor from the TP53 family, is highly expressed in villous cytotrophoblasts (CTBs), the epithelial stem cells of the human placenta, and is involved in CTB maintenance and differentiation. We examined the mechanisms of action of p63 by identifying its downstream targets. Gene expression changes were evaluated following overexpression and knockdown of p63 in the JEG3 choriocarcinoma cell line, using microarray-based RNA profiling. High-temperature requirement A4 (HTRA4), a placenta-specific serine protease involved in trophoblast differentiation and altered in preeclampsia, was identified as a gene reciprocally regulated by p63, and its expression was characterized in primary human placental tissues by RNA-sequencing and in situ hybridization. Potential p63 DNA-binding motifs were identified in the HTRA4 promoter, and p63 occupancy at some of these sites was confirmed using chromatin immunoprecipitation, followed by quantitative PCR in both JEG3 and trophoblast stem cells. These data begin to identify members of the transcriptional network downstream of p63, thus laying the groundwork for probing mechanisms by which this important transcription factor regulates trophoblast stemness and differentiation.
Subject(s)
Transcription Factors , Trophoblasts , Humans , Trophoblasts/metabolism , Female , Pregnancy , Transcription Factors/metabolism , Transcription Factors/genetics , Serine Endopeptidases/metabolism , Serine Endopeptidases/genetics , Cell Differentiation/genetics , Cell Line, Tumor , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Placenta/metabolism , Serine Proteases/metabolism , Serine Proteases/genetics , Promoter Regions, Genetic/genetics , Pre-Eclampsia/genetics , Pre-Eclampsia/metabolism , Pre-Eclampsia/pathology , Transcription, GeneticABSTRACT
The etiology of preeclampsia (PE), a complex and multifactorial condition, remains incompletely understood. DNA methylation, which is primarily regulated by three DNA methyltransferases (DNMTs), DNMT1, DNMT3A, and DNMT3B, plays a vital role in early embryonic development and trophectoderm differentiation. Yet, how DNMTs modulate trophoblast fusion and PE development remains unclear. In this study, we found that the DNMTs expression was downregulated during trophoblast cells fusion. Downregulation of DNMTs was observed during the reconstruction of the denuded syncytiotrophoblast (STB) layer of placental explants. Additionally, overexpression of DNMTs inhibited trophoblast fusion. Conversely, treatment with the DNA methylation inhibitor 5-aza-CdR decreased the expression of DNMTs and promoted trophoblast fusion. A combined analysis of DNA methylation data and gene transcriptome data obtained from the primary cytotrophoblasts (CTBs) fusion process identified 104 potential methylation-regulated differentially expressed genes (MeDEGs) with upregulated expression due to DNA demethylation, including CD59, TNFAIP3, SDC1, and CDK6. The transcription regulation region (TRR) of TNFAIP3 showed a hypomethylation with induction of 5-aza-CdR, which facilitated CREB recruitment and thereby participated in regulating trophoblast fusion. More importantly, clinical correlation analysis of PE showed that the abnormal increase in DNMTs may be involved in the development of PE. This study identified placental DNA methylation-regulated genes that may contribute to PE, offering a novel perspective on the role of epigenetics in trophoblast fusion and its implication in PE development.
Subject(s)
DNA (Cytosine-5-)-Methyltransferases , DNA Methylation , Pre-Eclampsia , Trophoblasts , Trophoblasts/metabolism , Female , Pre-Eclampsia/genetics , Pre-Eclampsia/metabolism , Pre-Eclampsia/pathology , Pregnancy , Humans , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , Cell Fusion , Placenta/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/geneticsABSTRACT
Preeclampsia (PE) is a complex human-specific complication frequently associated with placental pathology. The local renin-angiotensin system (RAS) in the human placenta, which plays a crucial role in regulating placental function, has been extensively documented. Glucocorticoids (GCs) are a class of steroid hormones. PE cases often have abnormalities in GCs levels and placental GCs barrier. Despite extensive speculation, there is currently no robust evidence indicating that GCs regulate placental RAS. This study aims to investigate these potential relationships. Plasma and placental samples were collected from both normal and PE pregnancies. The levels of angiotensin-converting enzyme (ACE), angiotensin II (Ang II), cortisol, and 11ß-hydroxysteroid dehydrogenases (11ßHSD) were analyzed. In PE placentas, cortisol, ACE, and Ang II levels were elevated, while 11ßHSD2 expression was reduced. Interestingly, a positive correlation was observed between ACE and cortisol levels in the placenta. A significant inverse correlation was found between the methylation statuses within the 11ßHSD2 gene promoter and its expression, meanwhile, 11ßHSD2 expression was negatively correlated with cortisol and ACE levels. In vitro experiments using placental trophoblast cells confirmed that active GCs can stimulate ACE transcription and expression through the GR pathway. Furthermore, 11ßHSD2 knockdown could enhance this activating effect. An in vivo study using a rat model of intrauterine GCs overexposure during mid-to-late gestation suggested that excess GCs in utero lead to increased ACE and Ang II levels in the placenta. Collectively, this study provides the first evidence of the relationships between 11ßHSD2 expression, GCs barrier, ACE, and Ang II levels in the placenta. It not only contributes to understanding the pathological features of the placental GCs barrier and RAS under PE conditions, also provides important information for revealing the pathological mechanism of PE.
Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 2 , Angiotensin II , DNA Methylation , Peptidyl-Dipeptidase A , Placenta , Pre-Eclampsia , Pregnancy , Female , Pre-Eclampsia/metabolism , Pre-Eclampsia/genetics , Pre-Eclampsia/pathology , Humans , Angiotensin II/metabolism , Placenta/metabolism , Animals , 11-beta-Hydroxysteroid Dehydrogenase Type 2/metabolism , 11-beta-Hydroxysteroid Dehydrogenase Type 2/genetics , Rats , Peptidyl-Dipeptidase A/metabolism , Peptidyl-Dipeptidase A/genetics , Adult , Down-Regulation , Renin-Angiotensin System/genetics , Renin-Angiotensin System/physiology , Hydrocortisone/metabolism , Rats, Sprague-DawleyABSTRACT
BACKGROUND: Preeclampsia is a syndrome of high blood pressure (BP) with end organ damage in late pregnancy that is associated with high circulating soluble VEGF receptor (sFlt1 [soluble Fms-like tyrosine kinase 1]). Women exposed to preeclampsia have a substantially increased risk of hypertension after pregnancy, but the mechanism remains unknown, leaving a missed interventional opportunity. After preeclampsia, women have enhanced sensitivity to hypertensive stress. Since smooth muscle cell mineralocorticoid receptors (SMC-MR) are activated by hypertensive stimuli, we hypothesized that high sFlt1 exposure in pregnancy induces a postpartum state of enhanced SMC-MR responsiveness. METHODS: Postpartum BP response to high salt intake was studied in women with prior preeclampsia. MR transcriptional activity was assessed in vitro in sFlt1-treated SMC by reporter assays and PCR. Preeclampsia was modeled by transient sFlt1 expression in pregnant mice. Two months post-partum, mice were exposed to high salt and then to AngII (angiotensin II) and BP and vasoconstriction were measured. RESULTS: Women exposed to preeclampsia had significantly enhanced salt sensitivity of BP verses those with a normotensive pregnancy. sFlt1 overexpression during pregnancy in mice induced elevated BP and glomerular endotheliosis, which resolved post-partum. The sFlt1 exposed post-partum mice had significantly increased BP response to 4% salt diet and to AngII infusion. In vitro, SMC-MR transcriptional activity in response to aldosterone or AngII was significantly increased after transient exposure to sFlt1 as was aldosterone-induced expression of AngII type 1 receptor. Post-partum, SMC-MR-KO mice were protected from the enhanced response to hypertensive stimuli after preeclampsia. Mechanistically, preeclampsia mice exposed to postpartum hypertensive stimuli develop enhanced aortic stiffness, microvascular myogenic tone, AngII constriction, and AngII type 1 receptor expression, all of which were prevented in SMC-MR-KO littermates. CONCLUSIONS: These data support that sFlt1-induced vascular injury during preeclampsia produces a persistent state of enhanced sensitivity of SMC-MR to activation. This contributes to postpartum hypertension in response to common stresses and supports testing of MR antagonism to mitigate the increased cardiovascular risk in women after PE.
Subject(s)
Hypertension , Pre-Eclampsia , Humans , Pregnancy , Female , Mice , Animals , Pre-Eclampsia/etiology , Pre-Eclampsia/metabolism , Vascular Endothelial Growth Factor Receptor-1/genetics , Vascular Endothelial Growth Factor Receptor-1/metabolism , Receptors, Mineralocorticoid/genetics , Aldosterone , Muscle, Smooth/metabolismABSTRACT
INTRODUCTION: To explore the potential impact of 27-hydroxycholesterol (27-HC) on trophoblast cell function in pre-eclampsia. RESULTS: The levels of 27-HC and the expression of CYP27A1 are upregulated in clinical samples of PE. Furthermore, high concentrations of 27-HC can inhibit the invasion and migration ability of trophoblast cells in vitro, and this inhibitory effect is weakened after LXR silencing. In HTR8/SVneo cells treated with 27-HC, the expression of ABCA1/ABCG1 are increased. Finally, we established a mouse model of PE using l-NAME (N-Nitro-l-Arginine Methyl Ester). We found an increase in the levels of 27-HC in the peripheral blood serum of the PE mouse model, and an upregulation of CYP27A1 and LXR expressions in the placenta of the PE mouse model. CONCLUSION: 27-HC inhibits the invasion and migration ability of trophoblast cells by activating the LXR signaling pathway, which is involved in the pathogenesis of Pre-eclampsia(PE).
Subject(s)
Pre-Eclampsia , Pregnancy , Humans , Mice , Female , Animals , Pre-Eclampsia/genetics , Pre-Eclampsia/metabolism , Trophoblasts/metabolism , Placenta/metabolism , Signal Transduction/physiology , Up-Regulation , Cell Movement/physiology , Cell Proliferation/physiologyABSTRACT
The glycosylphosphatidylinositol (GPI) biosynthetic pathway in the endoplasmic reticulum (ER) is crucial for generating GPI-anchored proteins (GPI-APs), which are translocated to the cell surface and play a vital role in cell signaling and adhesion. This study focuses on two integral components of the GPI pathway, the PIGL and PIGF proteins, and their significance in trophoblast biology. We show that GPI pathway mutations impact on placental development impairing the differentiation of the syncytiotrophoblast (SynT), and especially the SynT-II layer, which is essential for the establishment of the definitive nutrient exchange area within the placental labyrinth. CRISPR/Cas9 knockout of Pigl and Pigf in mouse trophoblast stem cells (mTSCs) confirms the role of these GPI enzymes in syncytiotrophoblast differentiation. Mechanistically, impaired GPI-AP generation induces an excessive unfolded protein response (UPR) in the ER in mTSCs growing in stem cell conditions, akin to what is observed in human preeclampsia. Upon differentiation, the impairment of the GPI pathway hinders the induction of WNT signaling for early SynT-II development. Remarkably, the transcriptomic profile of Pigl- and Pigf-deficient cells separates human patient placental samples into preeclampsia and control groups, suggesting an involvement of Pigl and Pigf in establishing a preeclamptic gene signature. Our study unveils the pivotal role of GPI biosynthesis in early placentation and uncovers a new preeclampsia gene expression profile associated with mutations in the GPI biosynthesis pathway, providing novel molecular insights into placental development with implications for enhanced patient stratification and timely interventions.
Subject(s)
Cell Differentiation , Glycosylphosphatidylinositols , Placentation , Trophoblasts , Trophoblasts/metabolism , Trophoblasts/cytology , Female , Pregnancy , Animals , Humans , Mice , Placentation/genetics , Glycosylphosphatidylinositols/metabolism , Glycosylphosphatidylinositols/biosynthesis , Placenta/metabolism , Placenta/cytology , Wnt Signaling Pathway , Pre-Eclampsia/metabolism , Pre-Eclampsia/genetics , Pre-Eclampsia/pathology , Endoplasmic Reticulum/metabolism , Biosynthetic Pathways/genetics , Unfolded Protein Response , CRISPR-Cas SystemsABSTRACT
Preeclampsia (PE) is a life-threatening pregnancy-specific complication with controversial mechanisms and no effective treatment except delivery is available. Currently, increasing researchers suggested that PE shares pathophysiologic features with protein misfolding/aggregation disorders, such as Alzheimer disease (AD). Evidences have proposed defective autophagy as a potential source of protein aggregation in PE. Endoplasmic reticulum-selective autophagy (ER-phagy) plays a critical role in clearing misfolded proteins and maintaining ER homeostasis. However, its roles in the molecular pathology of PE remain unclear. We found that lncRNA DUXAP8 was upregulated in preeclamptic placentae and significantly correlated with clinical indicators. DUXAP8 specifically binds to PCBP2 and inhibits its ubiquitination-mediated degradation, and decreased levels of PCBP2 reversed the activation effect of DUXAP8 overexpression on AKT/mTOR signaling pathway. Function experiments showed that DUXAP8 overexpression inhibited trophoblastic proliferation, migration, and invasion of HTR-8/SVneo and JAR cells. Moreover, pathological accumulation of swollen and lytic ER (endoplasmic reticulum) was observed in DUXAP8-overexpressed HTR8/SVneo cells and PE placental villus trophoblast cells, which suggesting that ER clearance ability is impaired. Further studies found that DUXAP8 overexpression impaired ER-phagy and caused protein aggregation medicated by reduced FAM134B and LC3II expression (key proteins involved in ER-phagy) via activating AKT/mTOR signaling pathway. The increased level of FAM134B significantly reversed the inhibitory effect of DUXAP8 overexpression on the proliferation, migration, and invasion of trophoblasts. In vivo, DUXAP8 overexpression through tail vein injection of adenovirus induced PE-like phenotypes in pregnant rats accompanied with activated AKT/mTOR signaling, decreased expression of FAM134B and LC3-II proteins and increased protein aggregation in placental tissues. Our study reveals the important role of lncRNA DUXAP8 in regulating trophoblast biological behaviors through FAM134B-mediated ER-phagy, providing a new theoretical basis for understanding the pathogenesis of PE.
Subject(s)
Autophagy , Endoplasmic Reticulum , Pre-Eclampsia , Proto-Oncogene Proteins c-akt , RNA, Long Noncoding , Signal Transduction , TOR Serine-Threonine Kinases , Trophoblasts , Adult , Animals , Female , Humans , Pregnancy , Rats , Autophagy/genetics , Cell Line , Cell Movement/genetics , Cell Proliferation/genetics , Endoplasmic Reticulum/metabolism , Placenta/metabolism , Pre-Eclampsia/metabolism , Pre-Eclampsia/genetics , Pre-Eclampsia/pathology , Proto-Oncogene Proteins c-akt/metabolism , Rats, Sprague-Dawley , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , TOR Serine-Threonine Kinases/metabolism , Trophoblasts/metabolism , Trophoblasts/pathology , MaleABSTRACT
Cardiometabolic disorders, such as obesity, insulin resistance, and hypertension, prior to and within pregnancy are increasing in prevalence worldwide. Pregnancy-associated cardiometabolic disease poses a great risk to the short- and long-term well-being of the mother and offspring. Hypertensive pregnancy, notably preeclampsia, as well as gestational diabetes are the major diseases of pregnancy growing in prevalence as a result of growing cardiometabolic disease prevalence. The mechanisms whereby obesity, diabetes, and other comorbidities lead to preeclampsia and gestational diabetes are incompletely understood and continually evolving in the literature. In addition, novel therapeutic avenues are currently being explored in these patients to offset cardiometabolic-induced adverse pregnancy outcomes in preeclamptic and gestational diabetes pregnancies. In this review, we discuss the emerging pathophysiological mechanisms of preeclampsia and gestational diabetes in the context of cardiometabolic risk as well as the most recent preclinical and clinical updates in the pathogenesis and treatment of these conditions.
Subject(s)
Diabetes, Gestational , Pre-Eclampsia , Humans , Pregnancy , Diabetes, Gestational/metabolism , Diabetes, Gestational/epidemiology , Female , Pre-Eclampsia/metabolism , Pre-Eclampsia/epidemiology , Cardiometabolic Risk Factors , Animals , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/metabolism , Insulin Resistance , Obesity/epidemiology , Obesity/metabolism , Obesity/complications , Risk FactorsABSTRACT
Preeclampsia, a significant cause of maternal and perinatal morbidity and mortality, remains poorly understood, in terms of its pathogenesis. This study aims to uncover novel and effective biomarkers for preeclampsia by conducting a comparative analysis of differential proteins in placentas from early onset preeclampsia (EOPE) and normal pregnancies. Utilizing tandem mass tag (TMT)-based quantitative proteomics, we identified differentially expressed proteins in placental tissues from 15 EOPE patients and 15 normal pregnant women. These proteins were subsequently validated by using parallel reaction monitoring (PRM). Our analysis revealed a total of 59 differentially expressed proteins, with 25 up-regulated and 34 down-regulated proteins in EOPE placental tissues compared to those from normal pregnancies. Validation through PRM confirmed the differential expression of 6 proteins. Our findings suggest these 6 proteins could play crucial roles in the pathogenesis of EOPE, highlighting the potential involvement of the estrogen signaling pathway and dilated cardiomyopathy (DCM) pathway in the development of preeclampsia. The data were deposited with the ProteomeXchange Consortium via the iProX partner repository with the identifier PXD055025.
Subject(s)
Placenta , Pre-Eclampsia , Proteomics , Humans , Pre-Eclampsia/metabolism , Pre-Eclampsia/pathology , Pregnancy , Female , Placenta/metabolism , Proteomics/methods , Adult , Biomarkers/metabolism , Biomarkers/analysis , Proteome/analysis , Proteome/metabolism , Tandem Mass Spectrometry , Up-RegulationABSTRACT
Ribosome profiling and mass spectrometry have revealed thousands of previously unannotated small and alternative open reading frames (sm/alt-ORFs) that are translated into micro/alt-proteins in mammalian cells. However, their prevalence across human tissues and biological roles remains largely undefined. The placenta is an ideal model for identifying unannotated microproteins and alt-proteins due to its considerable protein diversity that is required to sustain fetal development during pregnancy. Here, we profiled unannotated microproteins and alt-proteins in human placental tissues from preeclampsia patients or healthy individuals by proteomics, identified 52 unannotated microproteins or alt-proteins, and demonstrated that five microproteins can be translated from overexpression constructs in a heterologous cell line, although several are unstable. We further demonstrated that one microprotein, XRCC6P1, associates with translation initiation factor eIF3 and negatively regulates translation when exogenously overexpressed. Thus, we revealed a hidden sm/alt-ORF-encoded proteome in the human placenta, which may advance the mechanism studies for placenta development as well as placental disorders such as preeclampsia.
Subject(s)
Placenta , Pre-Eclampsia , Protein Biosynthesis , Proteomics , Humans , Pregnancy , Female , Placenta/metabolism , Proteomics/methods , Pre-Eclampsia/metabolism , Pre-Eclampsia/genetics , Open Reading Frames , Eukaryotic Initiation Factor-3/metabolism , Eukaryotic Initiation Factor-3/genetics , Proteome/analysis , Proteome/metabolism , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , MicropeptidesABSTRACT
Early-onset preeclampsia, which occurrs before 34 weeks of gestation, is the most dangerous classification of preeclampsia, which is a pregnancy-specific disease that causes 1% of maternal deaths. G protein-coupled receptor 124 (GPR124) is significantly expressed at various stages of the human reproductive process, particularly during embryogenesis and angiogenesis. Our prior investigation demonstrated a notable decrease in GPR124 expression in the placentas of patients with early-onset preeclampsia compared to that in normal pregnancy placentas. However, there is a lack of extensive investigation into the molecular processes that contribute to the role of GPR124 in placenta development. This study aimed to examine the mechanisms by which GPR124 affects the occurrence of early-onset preeclampsia and its function in trophoblast. Proliferative, invasive, migratory, apoptotic, and inflammatory processes were identified in GPR124 knockdown, GPR124 overexpression, and normal HTR8/SVneo cells. The mechanism of GPR124-mediated cell function in GPR124 knockdown HTR8/SVneo cells was examined using inhibitors of the JNK or P38 MAPK pathway. Downregulation of GPR124 was found to significantly inhibit proliferation, invasion and migration, and promote apoptosis of HTR8/SVneo cells when compared to the control and GPR124 overexpression groups. This observation is consistent with the pathological characteristics of preeclampsia. In addition, GPR124 overexpression inhibits the secretion of pro-inflammatory cytokines interleukin (IL)-8 and interferon-γ (IFN-γ) while enhancing the secretion of the anti-inflammatory cytokine interleukin (IL)-4. Furthermore, GPR124 suppresses the activation of P-JNK and P-P38 within the JNK/P38 MAPK pathway. The invasion, apoptosis, and inflammation mediated by GPR124 were partially restored by suppressing the JNK and P38 MAPK pathways in HTR8/SVneo cells. GPR124 plays a crucial role in regulating trophoblast proliferation, invasion, migration, apoptosis, and inflammation via the JNK and P38 MAPK pathways. Furthermore, the effect of GPR124 on trophoblast suggests its involvement in the pathogenesis of early-onset preeclampsia.
Subject(s)
Apoptosis , Cell Movement , Cell Proliferation , Inflammation , Pre-Eclampsia , Receptors, G-Protein-Coupled , Trophoblasts , p38 Mitogen-Activated Protein Kinases , Humans , Trophoblasts/metabolism , Trophoblasts/pathology , Apoptosis/genetics , Cell Proliferation/genetics , Female , Cell Movement/genetics , Pregnancy , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , p38 Mitogen-Activated Protein Kinases/metabolism , p38 Mitogen-Activated Protein Kinases/genetics , Pre-Eclampsia/pathology , Pre-Eclampsia/genetics , Pre-Eclampsia/metabolism , Inflammation/pathology , Inflammation/genetics , Inflammation/metabolism , MAP Kinase Signaling System , Cell Line , JNK Mitogen-Activated Protein Kinases/metabolism , Placenta/metabolism , Placenta/pathology , Receptors, EstrogenABSTRACT
Preeclampsia (PE) is associated with increased angiotensin II sensitivity and poor neurological outcomes marked by temporal loss of neural control of blood pressure. Yet the role of centrally expressed angiotensin II type 1 receptor (AT1R) within the paraventricular nucleus of the hypothalamus (PVN) in the PE model is not understood. In a PE rat model with reduced placental perfusion pressure (RUPP) induced on gestational day 14 (GD14), the PVN expression and cellular localization of AT1R were assessed using immunofluorescence and western blotting. The sensitivity of RUPP to acute angiotensin II infusion was assessed. AT1R was antagonized by losartan (100 µg/kg/day) for 5 days intracerebroventricularly (ICV). Hemodynamic data and samples were collected on GD19 for further analysis. RUPP upregulated (p < 0.05) mRNA and protein of AT1R within the PVN and lowered (p < 0.05) circulating angiotensin II in rats. RUPP increased neural and microglial activation. Cellular localization assessment revealed that AT1R was primarily expressed in neurons and slightly in microglia and astrocytes. Infusion of 100 ng/kg as bolus increased the mean arterial pressure (MAP in mmHg) in both RUPP and Sham. ICV losartan infusion attenuated RUPP-increased MAP (113.6 ± 6.22 in RUPP vs. 92.16 ± 5.30 in RUPP + Los, p = 0.021) and the expression of nuclear transcription factor NF-κB, tyrosine hydroxylase (TH), NADPH oxidase 4 (NOX4) and reactive oxygen species (ROS) in the PVN. Our data suggest that centrally expressed AT1R, within the PVN, contributes to placental ischemia-induced hypertension in RUPP rats highlighting its therapeutic potential in PE.
Subject(s)
Angiotensin II , Losartan , Paraventricular Hypothalamic Nucleus , Placenta , Rats, Sprague-Dawley , Receptor, Angiotensin, Type 1 , Animals , Paraventricular Hypothalamic Nucleus/metabolism , Paraventricular Hypothalamic Nucleus/drug effects , Pregnancy , Receptor, Angiotensin, Type 1/metabolism , Receptor, Angiotensin, Type 1/genetics , Female , Rats , Placenta/metabolism , Placenta/drug effects , Losartan/pharmacology , Angiotensin II/pharmacology , Hypertension/metabolism , Hypertension/physiopathology , Ischemia/metabolism , Pre-Eclampsia/metabolism , Pre-Eclampsia/physiopathology , Angiotensin II Type 1 Receptor Blockers/pharmacology , Up-Regulation , Blood Pressure/drug effectsABSTRACT
Gestational diabetes mellitus (GDM) complicated with preeclampsia can lead to polyhydramnios, ketosis. Herein, we explored that CPEB4 in cancer progression of preeclampsia and its underlying mechanism. All the serum samples were collected from patients with preeclampsia. These was the induction of CPEB4 in patients with preeclampsia. The serum of CPEB4 mRNA expression was positive correlation with Proteinuria, systolic blood pressure and diastolic blood pressure in patients. The serum of CPEB4 mRNA expression was also negative correlation with body weight of infant in patients. The serum of CPEB4 mRNA expression also was negative correlation with GPX4 level and GSH activity level in patients. The serum of CPEB4 mRNA expression was positive correlation with iron content in patients. CPEB4 gene inhibited trophoblast cell proliferation. CPEB4 gene promoted trophoblast cell ferroptosis by mitochondrial damage. CPEB4 gene induced PFKFB3 expression by the inhibition of PFKFB3 Ubiquitination. PFKFB3 inhibitor reduced the effects of CPEB4 on cell proliferation and ferroptosis of trophoblast cell. Taken together, the CPEB4 promoted trophoblast cell ferroptosis through mitochondrial damage by the induction of PFKFB3 expression, CPEB4 as an represents a potential therapeutic strategy for the treatment of preeclampsia or various types of GDM.
Subject(s)
Diabetes, Gestational , Ferroptosis , Pre-Eclampsia , Pregnancy , Female , Humans , Down-Regulation , Pre-Eclampsia/genetics , Pre-Eclampsia/metabolism , Ferroptosis/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , RNA, Messenger , Phosphofructokinase-2/genetics , Phosphofructokinase-2/metabolismABSTRACT
BACKGROUND: Imbalanced immune responses are involved in developing preeclampsia (PE). We wish to explore the expression and potential changes of immune checkpoint molecules TIGIT, CD226 and CD155 in PE patients. METHODS: The expression of the immune checkpoint molecules TIGIT, CD226 and CD155 in different lymphocyte subpopulations was determined by flow cytometry in 24 patients with PE and compared to 24 healthy pregnant women of the same gestational age as the controls.âSerum CD155 was detected by ELISA in the patients with PE compared to controls. RESULTS: The percentages of CD4+ and CD8+ T lymphocytes in the peripheral blood of PE patients were not significantly different from those of the controls, whereas the regulatory T cells (Tregs) in PE patients were significantly lower than those in controls (6.43 ± 1.77% vs. 7.48 ± 1.71%, P = 0.0420). The expression of TIGIT and CD226 showed different percentages on CD4+ T cells, CD8+ T cells and Treg cells. However, the difference in the percentages of TIGIT, CD226 on these T cells between the two groups was not statistically significant. The level of CD155 in peripheral serum of PE patients was 6.64 ± 1.79 ng/ml, which was not significantly different from that in the control group 5.61 ± 1.77 ng/ml, P = 0.0505. The present results demonstrate that TIGIT, CD226 and CD155 are not present at altered immune conditions in the peripheral blood of patients with PE, compared with normal pregnant women. CONCLUSION: The immune checkpoint molecules TIGIT, CD226 and CD155 are not abnormally expressed in PE patients.
Subject(s)
CD8-Positive T-Lymphocytes , Pre-Eclampsia , Humans , Pregnancy , Female , Immune Checkpoint Proteins/metabolism , Pre-Eclampsia/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , Receptors, Immunologic/metabolismABSTRACT
Aberrant long non-coding RNA (lncRNA) expression has been shown to be involved in the pathological process of pre-eclampsia (PE), yet only a small portion of lncRNAs has been characterized concerning the function and molecular mechanisms involved in PE. This study aimed to investigate the regulatory mechanism of the lncRNA AC092100.1 (AC092100.1) in angiogenesis in PE. In our study, bioinformatics analysis was performed to screen for differentially expressed lncRNAs between normal subjects and PE patients. The levels of AC092100.1 in placental tissues of patients with or without PE were validated using qRT-PCR. The effect of AC092100.1 overexpression on the proliferation, migration, and tube formation of human umbilical vein endothelial cells (HUVECs) was investigated. The binding of AC092100.1 and YT521-B homology domain-containing 2 (YTHDC2) was predicted and verified. The effect of AC092100.1/YTHDC2 on the expression of vascular endothelial growth factor-A (VEGFA) in HUVECs was determined. Finally, a PE mice model was conducted. Fetal mouse growth, the abundance of mesenchymal morphology markers, including hypoxia-inducible factor 1-alpha (HIF-1α), soluble fms-like tyrosine kinase-1 (sFlt-1), soluble endoglin (sEng), Slug, and Vimentin, and endothelial markers, including placental growth factor (PLGF), CD31, and vascular endothelial (VE)-cadherin, in placental tissues were assessed. Here, we found that AC092100.1 was abnormally downregulated in placental tissues from PE patients. We established that AC092100.1 overexpression promoted HUVEC proliferation, migration, and tube formation in vitro. Mechanistically, AC092100.1 induced the accumulation of YTHDC2 and VEGFA through binding to YTHDC2 in HUVECs. Inhibition of YTHDC2 or VEGFA reversed AC092100.1-promoted tube formation. AC092100.1 overexpression contributed to alleviating fetal growth disorder, decreased levels of sEng, HIF-1α, sFlt-1, Slug, and Vimentin, and increased levels of VEGFA, PLGF, CD31, and VE-cadherin in PE mice. Our findings provided evidence supporting the role of the AC092100.1/YTHDC2/VEGFA axis in regulating angiogenesis, which demonstrated a therapeutic pathway for PE targeting angiogenesis.
Subject(s)
Human Umbilical Vein Endothelial Cells , Pre-Eclampsia , RNA, Long Noncoding , Signal Transduction , Vascular Endothelial Growth Factor A , Pre-Eclampsia/metabolism , Pre-Eclampsia/genetics , Pre-Eclampsia/pathology , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Animals , Female , Pregnancy , Human Umbilical Vein Endothelial Cells/metabolism , Mice , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Cell Proliferation , Cell Movement , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/genetics , Placenta/metabolism , AngiogenesisABSTRACT
Preeclampsia (PE) is a multisystemic disorder of pregnancy that not only causes perinatal mortality and morbidity but also has a long-term toll on the maternal and fetal cardiovascular system. Women diagnosed with PE are at greater risk for the subsequent development of hypertension, ischemic heart disease, cardiomyopathy, cerebral edema, seizures, and end-stage renal disease. Although PE is considered heterogeneous, inefficient extravillous trophoblast (EVT) migration leading to deficient spiral artery remodeling and increased uteroplacental vascular resistance is the likely initiation of the disease. The principal pathophysiology is placental hypoxia, causing subsequent oxidative stress, leading to mitochondrial dysfunction, mitophagy, and immunological imbalance. The damage imposed on the placenta in turn results in the "stress response" categorized by the dysfunctional release of vasoactive components including oxidative stressors, proinflammatory factors, and cytokines into the maternal circulation. These bioactive factors have deleterious effects on systemic endothelial cells and coagulation leading to generalized vascular dysfunction and hypercoagulability. A better understanding of these metabolic factors may lead to novel therapeutic approaches to prevent and treat this multisystemic disorder. In this review, we connect the hypoxic-oxidative stress and inflammation involved in the pathophysiology of PE to the resulting persistent cardiovascular complications in patients with preeclampsia.
Subject(s)
Oxidative Stress , Pre-Eclampsia , Humans , Female , Pre-Eclampsia/physiopathology , Pre-Eclampsia/metabolism , Pregnancy , Maternal Health , Animals , Placenta/metabolism , Placenta/physiopathology , Placenta/blood supply , Cardiovascular Diseases/physiopathology , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/etiology , Inflammation/metabolism , Inflammation/physiopathology , Cardiovascular System/metabolism , Cardiovascular System/physiopathologyABSTRACT
Preeclampsia (PE), a leading cause of maternal/fetal morbidity and mortality, is a hypertensive pregnancy disorder with end-organ damage that manifests after 20 wk of gestation. PE is characterized by chronic immune activation and endothelial dysfunction. Clinical studies report reduced IL-33 signaling in PE. We use the Reduced Uterine Perfusion Pressure (RUPP) rat model, which mimics many PE characteristics including reduced IL-33, to identify mechanisms mediating PE pathophysiology. We hypothesized that IL-33 supplementation would improve blood pressure (BP), inflammation, and oxidative stress (ROS) during placental ischemia. We implanted intraperitoneal mini-osmotic pumps infusing recombinant rat IL-33 (1 µg/kg/day) into normal pregnant (NP) and RUPP rats from gestation day 14 to 19. We found that IL-33 supplementation in RUPP rats reduces maternal blood pressure and improves the uterine artery resistance index (UARI). In addition to physiological improvements, we found decreased circulating and placental cytolytic Natural Killer cells (cNKs) and decreased circulating, placental, and renal TH17s in IL-33-treated RUPP rats. cNK cell cytotoxic activity also decreased in IL-33-supplemented RUPP rats. Furthermore, renal ROS and placental preproendothelin-1 (PPET-1) decreased in RUPP rats treated with IL-33. These findings demonstrate a role for IL-33 in controlling vascular function and maternal BP during pregnancy by decreasing inflammation, renal ROS, and PPET-1 expression. These data suggest that IL-33 may have therapeutic potential in managing PE.NEW & NOTEWORTHY Though decreased IL-33 signaling has been clinically associated with PE, the mechanisms linking this signaling pathway to overall disease pathophysiology are not well understood. This study provides compelling evidence that mechanistically links reduced IL-33 with the inflammatory response and vascular dysfunction observed in response to placental ischemia, such as in PE. Data presented in this study submit the IL-33 signaling pathway as a possible therapeutic target for the treatment of PE.
Subject(s)
Hypertension , Interleukin-33 , Pre-Eclampsia , Uterine Artery , Animals , Female , Pregnancy , Rats , Blood Pressure/drug effects , Dietary Supplements , Disease Models, Animal , Hypertension/drug therapy , Inflammation/metabolism , Interleukin-33/pharmacology , Ischemia/metabolism , Placenta/blood supply , Pre-Eclampsia/drug therapy , Pre-Eclampsia/metabolism , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Uterine Artery/drug effects , Uterine Artery/metabolismABSTRACT
One of the initiating events in preeclampsia (PE) is placental ischemia. Rodent models of placental ischemia do not present with vascular endothelial dysfunction, a hallmark of PE. We previously demonstrated a role for leptin in endothelial dysfunction in pregnancy in the absence of placental ischemia. We hypothesized that placental ischemia requires hyperleptinemia and endothelial mineralocorticoid receptor (ECMR) expression to induce PE-associated endothelial dysfunction in pregnant mice. We induced placental ischemia via the reduced uterine perfusion pressure (RUPP) procedure in pregnant ECMR-intact (ECMR+/+) and ECMR deletion (ECMR-/-) mice at gestational day (GD) 13. ECMR+/+ RUPP pregnant mice also received concurrent leptin infusion via miniosmotic pump (0.9 mg/kg/day). RUPP increased blood pressure via radiotelemetry and decreased fetal growth in ECMR+/+ pregnant mice. Both increases in blood pressure and reduced fetal growth were abolished in RUPP ECMR-/- mice. Placental ischemia did not decrease endothelial-dependent relaxation to acetylcholine (ACh) but increased phenylephrine (Phe) contraction in mesenteric arteries of pregnant mice, which was ablated by ECMR deletion. Addition of leptin to RUPP mice significantly reduced ACh relaxation in ECMR+/+ pregnant mice, accompanied by an increase in soluble FMS-like tyrosine kinase-1 (sFlt-1)/placental growth factor (PLGF) ratio. In conclusion, our data indicate that high leptin levels drive endothelial dysfunction in PE and that ECMR is required for clinical characteristics of hypertension and fetal growth restriction in placental ischemia PE. Collectively, we show that both ECMR and leptin play a role to mediate PE.NEW & NOTEWORTHY Leptin is a key feature of preeclampsia that initiates vascular endothelial dysfunction in preeclampsia characterized by placental ischemia. Endothelial mineralocorticoid receptor (ECMR) deletion in placental ischemia protects pregnant mice from elevations in blood pressure and fetal growth restriction in pregnancy. Increases in leptin production mediate the key pathological feature of endothelial dysfunction in preeclampsia in rodents. ECMR activation contributes to the increase in blood pressure and fetal growth restriction in preeclampsia.
Subject(s)
Ischemia , Leptin , Placenta , Pre-Eclampsia , Receptors, Mineralocorticoid , Animals , Pregnancy , Female , Leptin/metabolism , Leptin/blood , Placenta/metabolism , Placenta/blood supply , Ischemia/physiopathology , Ischemia/metabolism , Ischemia/genetics , Receptors, Mineralocorticoid/metabolism , Receptors, Mineralocorticoid/genetics , Pre-Eclampsia/metabolism , Pre-Eclampsia/physiopathology , Pre-Eclampsia/genetics , Mice, Knockout , Blood Pressure , Mice, Inbred C57BL , Mice , Disease Models, Animal , Fetal Growth Retardation/metabolism , Fetal Growth Retardation/physiopathology , Fetal Growth Retardation/genetics , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiopathology , Vasodilation/drug effectsABSTRACT
Preeclampsia (PE) is characterized by hypertension, proteinuria, and fetal growth restriction during pregnancy, suggesting that the preeclamptic intrauterine environment may affect the growth and health of the offspring. This study aimed to how maternal hypertension affects male offspring growth, focusing on lipid metabolism and blood pressure in mice. Female mice were infused with angiotensin II (Ang II) on gestational day 12. Dysregulation and accumulation of lipid were observed in the placenta of Ang II-induced maternal hypertensive dams, associating with fetal growth restriction. Ang II-offspring showed lower birth weight than in the control-offspring. Isolated and differentiated adipocyte from neonatal mice of Ang II-dams showed higher Pparγ mRNA expression compared with the control group. Lower body weight tendency had continued in Ang II-offspring during long period, body weight of Ang II-offspring caught up the control-offspring at 16 weeks of age. The adipose tissue of Ang II-offspring in adult also showed higher Pparγ mRNA expression with the accumulation of neutrophils and inflammatory monocytes than in those control. In addition, Ang II-offspring had higher basal blood pressure and higher sensitivity to hypertensive stimuli than in the control-offspring. Taken together, maternal hypertension induced by Ang II changes placental function, causing a lower birth weight. These changes in the intrauterine environment may affect adipocyte function and blood pressure of offspring after growth.