Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 786
Filter
Add more filters

Publication year range
1.
Mol Cell ; 82(5): 1003-1020.e15, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35182476

ABSTRACT

Chromatin misfolding has been implicated in cancer pathogenesis; yet, its role in therapy resistance remains unclear. Here, we systematically integrated sequencing and imaging data to examine the spatial and linear chromatin structures in targeted therapy-sensitive and -resistant human T cell acute lymphoblastic leukemia (T-ALL). We found widespread alterations in successive layers of chromatin organization including spatial compartments, contact domain boundaries, and enhancer positioning upon the emergence of targeted therapy resistance. The reorganization of genome folding structures closely coincides with the restructuring of chromatin activity and redistribution of architectural proteins. Mechanistically, the derepression and repositioning of the B-lineage-determining transcription factor EBF1 from the heterochromatic nuclear envelope to the euchromatic interior instructs widespread genome refolding and promotes therapy resistance in leukemic T cells. Together, our findings suggest that lineage-determining transcription factors can instruct changes in genome topology as a driving force for epigenetic adaptations in targeted therapy resistance.


Subject(s)
Chromatin , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Chromatin/genetics , Drug Repositioning , Humans , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , T-Lymphocytes/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
2.
Blood ; 143(20): 2053-2058, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38457359

ABSTRACT

ABSTRACT: Defining prognostic variables in T-lymphoblastic lymphoma (T-LL) remains a challenge. AALL1231 was a Children's Oncology Group phase 3 clinical trial for newly diagnosed patients with T acute lymphoblastic leukemia or T-LL, randomizing children and young adults to a modified augmented Berlin-Frankfurt-Münster backbone to receive standard therapy (arm A) or with addition of bortezomib (arm B). Optional bone marrow samples to assess minimal residual disease (MRD) at the end of induction (EOI) were collected in T-LL analyzed to assess the correlation of MRD at the EOI to event-free survival (EFS). Eighty-six (41%) of the 209 patients with T-LL accrued to this trial submitted samples for MRD assessment. Patients with MRD <0.1% (n = 75) at EOI had a superior 4-year EFS vs those with MRD ≥0.1% (n = 11) (89.0% ± 4.4% vs 63.6% ± 17.2%; P = .025). Overall survival did not significantly differ between the 2 groups. Cox regression for EFS using arm A as a reference demonstrated that MRD EOI ≥0.1% was associated with a greater risk of inferior outcome (hazard ratio, 3.73; 95% confidence interval, 1.12-12.40; P = .032), which was independent of treatment arm assignment. Consideration to incorporate MRD at EOI into future trials will help establish its value in defining risk groups. CT# NCT02112916.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Neoplasm, Residual , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Child , Female , Male , Adolescent , Child, Preschool , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/mortality , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Bortezomib/administration & dosage , Bortezomib/therapeutic use , Young Adult , Disease-Free Survival , Adult , Infant , Prognosis
3.
Blood ; 143(4): 320-335, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-37801708

ABSTRACT

ABSTRACT: T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive cancer with resistant clonal propagation in recurrence. We performed high-throughput droplet-based 5' single-cell RNA with paired T-cell receptor (TCR) sequencing of paired diagnosis-relapse (Dx_Rel) T-ALL samples to dissect the clonal diversities. Two leukemic evolutionary patterns, "clonal shift" and "clonal drift" were unveiled. Targeted single-cell DNA sequencing of paired Dx_Rel T-ALL samples further corroborated the existence of the 2 contrasting clonal evolution patterns, revealing that dynamic transcriptional variation might cause the mutationally static clones to evolve chemotherapy resistance. Analysis of commonly enriched drifted gene signatures showed expression of the RNA-binding protein MSI2 was significantly upregulated in the persistent TCR clonotypes at relapse. Integrated in vitro and in vivo functional studies suggested that MSI2 contributed to the proliferation of T-ALL and promoted chemotherapy resistance through the posttranscriptional regulation of MYC, pinpointing MSI2 as an informative biomarker and novel therapeutic target in T-ALL.


Subject(s)
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , RNA-Binding Proteins , Humans , Clonal Evolution/genetics , Drug Resistance, Neoplasm/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Receptors, Antigen, T-Cell/genetics , Recurrence , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , T-Lymphocytes/metabolism
4.
Blood ; 143(21): 2166-2177, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38437728

ABSTRACT

ABSTRACT: T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy. Current treatments, based on intensive chemotherapy regimens provide overall survival rates of ∼85% in children and <50% in adults, calling the search of new therapeutic options. We previously reported that targeting the T-cell receptor (TCR) in T-ALL with anti-CD3 (αCD3) monoclonal antibodies (mAbs) enforces a molecular program akin to thymic negative selection, a major developmental checkpoint in normal T-cell development; induces leukemic cell death; and impairs leukemia progression to ultimately improve host survival. However, αCD3 monotherapy resulted in relapse. To find out actionable targets able to re-enforce leukemic cells' vulnerability to αCD3 mAbs, including the clinically relevant teplizumab, we identified the molecular program induced by αCD3 mAbs in patient-derived xenografts derived from T-ALL cases. Using large-scale transcriptomic analysis, we found prominent expression of tumor necrosis factor α (TNFα), lymphotoxin α (LTα), and multiple components of the "TNFα via NF-κB signaling" pathway in anti-CD3-treated T-ALL. We show in vivo that etanercept, a sink for TNFα/LTα, enhances αCD3 antileukemic properties, indicating that TNF/TNF receptor (TNFR) survival pathways interferes with TCR-induced leukemic cell death. However, suppression of TNF-mediated survival and switch to TNFR-mediated cell death through inhibition of cellular inhibitor of apoptosis protein-1/2 (cIAP1/2) with the second mitochondrial-derived activator of caspases (SMAC) mimetic birinapant synergizes with αCD3 to impair leukemia expansion in a receptor-interacting serine/threonine-protein kinase 1-dependent manner and improve mice survival. Thus, our results advocate the use of either TNFα/LTα inhibitors, or birinapant/other SMAC mimetics to improve anti-CD3 immunotherapy in T-ALL.


Subject(s)
CD3 Complex , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Tumor Necrosis Factor-alpha , Humans , Animals , Mice , CD3 Complex/immunology , CD3 Complex/antagonists & inhibitors , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/immunology , Immunotherapy/methods , Signal Transduction/drug effects , Xenograft Model Antitumor Assays , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use
5.
Blood ; 141(15): 1802-1811, 2023 04 13.
Article in English | MEDLINE | ID: mdl-36603187

ABSTRACT

To determine the prognostic significance of central nervous system (CNS) leukemic involvement in newly diagnosed T-cell acute lymphoblastic leukemia (T-ALL), outcomes on consecutive, phase 3 Children's Oncology Group clinical trials were examined. AALL0434 and AALL1231 tested efficacy of novel agents within augmented-Berlin-Frankfurt-Münster (aBFM) therapy. In addition to testing study-specific chemotherapy through randomization, the AALL0434 regimen delivered cranial radiation therapy (CRT) to most participants (90.8%), whereas AALL1231 intensified chemotherapy to eliminate CRT in 88.2% of participants. In an analysis of 2164 patients with T-ALL (AALL0434, 1550; AALL1231, 614), 1564 had CNS-1 (72.3%), 441 CNS-2 (20.4%), and 159 CNS-3 (7.3%). The 4-year event-free-survival (EFS) was similar for CNS-1 (85.1% ± 1.0%) and CNS-2 (83.2% ± 2.0%), but lower for CNS-3 (71.8% ± 4.0%; P = .0004). Patients with CNS-1 and CNS-2 had similar 4-year overall survival (OS) (90.1% ± 0.8% and 90.5% ± 1.5%, respectively), with OS for CNS-3 being 82.7% ± 3.4% (P = .005). Despite therapeutic differences, outcomes for CNS-1 and CNS-2 were similar regardless of CRT, intensified corticosteroids, or novel agents. Except for significantly superior outcomes with nelarabine on AALL0434 (4-year disease-free survival, 93.1% ± 5.2%), EFS/OS was inferior with CNS-3 status, all of whom received CRT. Combined analyses of >2000 patients with T-ALL identified that CNS-1 and CNS-2 status at diagnosis had similar outcomes. Unlike B-ALL, CNS-2 status in T-ALL does not impact outcome with aBFM therapy, without additional intrathecal therapy, with or without CRT. Although nelarabine improved outcomes for those with CNS-3 status, novel approaches are needed. These trials were registered at www.clinicaltrials.gov as #NCT00408005 (AALL0434) and #NCT02112916 (AALL1231).


Subject(s)
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Child , Humans , Infant , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Central Nervous System , Disease-Free Survival , Methotrexate , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Prognosis , T-Lymphocytes , Treatment Outcome
6.
Blood ; 141(5): 503-518, 2023 02 02.
Article in English | MEDLINE | ID: mdl-35981563

ABSTRACT

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive and often incurable disease. To uncover therapeutic vulnerabilities, we first developed T-ALL patient-derived tumor xenografts (PDXs) and exposed PDX cells to a library of 433 clinical-stage compounds in vitro. We identified 39 broadly active drugs with antileukemia activity. Because endothelial cells (ECs) can alter drug responses in T-ALL, we developed an EC/T-ALL coculture system. We found that ECs provide protumorigenic signals and mitigate drug responses in T-ALL PDXs. Whereas ECs broadly rescued several compounds in most models, for some drugs the rescue was restricted to individual PDXs, suggesting unique crosstalk interactions and/or intrinsic tumor features. Mechanistically, cocultured T-ALL cells and ECs underwent bidirectional transcriptomic changes at the single-cell level, highlighting distinct "education signatures." These changes were linked to bidirectional regulation of multiple pathways in T-ALL cells as well as in ECs. Remarkably, in vitro EC-educated T-ALL cells transcriptionally mirrored ex vivo splenic T-ALL at single-cell resolution. Last, 5 effective drugs from the 2 drug screenings were tested in vivo and shown to effectively delay tumor growth and dissemination thus prolonging overall survival. In sum, we developed a T-ALL/EC platform that elucidated leukemia-microenvironment interactions and identified effective compounds and therapeutic vulnerabilities.


Subject(s)
Endothelial Cells , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Endothelial Cells/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Cell Communication , Coculture Techniques , Tumor Microenvironment
7.
Blood ; 142(2): 158-171, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37023368

ABSTRACT

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy with a dismal prognosis related to refractory/relapsing diseases, raising the need for new targeted therapies. Activating mutations of interleukin-7-receptor pathway genes (IL-7Rp) play a proven leukemia-supportive role in T-ALL. JAK inhibitors, such as ruxolitinib, have recently demonstrated preclinical efficacy. However, prediction markers for sensitivity to JAK inhibitors are still lacking. Herein, we show that IL-7R (CD127) expression is more frequent (∼70%) than IL-7Rp mutations in T-ALL (∼30%). We compared the so-called nonexpressers (no IL-7R expression/IL-7Rp mutation), expressers (IL7R expression without IL-7Rp mutation), and mutants (IL-7Rp mutations). Integrative multiomics analysis outlined IL-7R deregulation in virtually all T-ALL subtypes, at the epigenetic level in nonexpressers, genetic level in mutants, and posttranscriptional level in expressers. Ex vivo data using primary-derived xenografts support that IL-7Rp is functional whenever the IL-7R is expressed, regardless of the IL-7Rp mutational status. Consequently, ruxolitinib impaired T-ALL survival in both expressers and mutants. Interestingly, we show that expressers displayed ectopic IL-7R expression and IL-7Rp addiction conferring a deeper sensitivity to ruxolitinib. Conversely, mutants were more sensitive to venetoclax than expressers. Overall, the combination of ruxolitinib and venetoclax resulted in synergistic effects in both groups. We illustrate the clinical relevance of this association by reporting the achievement of complete remission in 2 patients with refractory/relapsed T-ALL. This provides proof of concept for translation of this strategy into clinics as a bridge-to-transplantation therapy. IL7R expression can be used as a biomarker for sensitivity to JAK inhibition, thereby expanding the fraction of patients with T-ALL eligible for ruxolitinib up to nearly ∼70% of T-ALL cases.


Subject(s)
Janus Kinase Inhibitors , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Receptors, Interleukin-7/genetics , Receptors, Interleukin-7/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Janus Kinase Inhibitors/therapeutic use , T-Lymphocytes/pathology
8.
Blood ; 142(3): 274-289, 2023 07 20.
Article in English | MEDLINE | ID: mdl-36989489

ABSTRACT

Interleukin-7 (IL-7) supports the growth and chemoresistance of T-cell acute lymphoblastic leukemia (T-ALL), particularly the early T-cell precursor subtype (ETP-ALL), which frequently has activating mutations of IL-7 signaling. Signal transducer and activator of transcription (STAT5) is an attractive therapeutic target because it is almost universally activated in ETP-ALL, even in the absence of mutations of upstream activators such as the IL-7 receptor (IL-7R), Janus kinase, and Fms-like tyrosine kinase 3 (FLT3). To examine the role of activated STAT5 in ETP-ALL, we have used a Lmo2-transgenic (Lmo2Tg) mouse model in which we can monitor chemoresistant preleukemia stem cells (pre-LSCs) and leukemia stem cells (LSCs) that drive T-ALL development and relapse following chemotherapy. Using IL-7R-deficient Lmo2Tg mice, we show that IL-7 signaling was not required for the formation of pre-LSCs but essential for their expansion and clonal evolution into LSCs to generate T-ALL. Activated STAT5B was sufficient for the development of T-ALL in IL-7R-deficient Lmo2Tg mice, indicating that inhibition of STAT5 is required to block the supportive signals provided by IL-7. To further understand the role of activated STAT5 in LSCs of ETP-ALL, we developed a new transgenic mouse that enables T-cell specific and doxycycline-inducible expression of the constitutively activated STAT5B1∗6 mutant. Expression of STAT5B1∗6 in T cells had no effect alone but promoted expansion and chemoresistance of LSCs in Lmo2Tg mice. Pharmacologic inhibition of STAT5 with pimozide-induced differentiation and loss of LSCs, while enhancing response to chemotherapy. Furthermore, pimozide significantly reduced leukemia burden in vivo and overcame chemoresistance of patient-derived ETP-ALL xenografts. Overall, our results demonstrate that STAT5 is an attractive therapeutic target for eradicating LSCs in ETP-ALL.


Subject(s)
Precursor Cells, T-Lymphoid , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Mice , Animals , STAT5 Transcription Factor/genetics , STAT5 Transcription Factor/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Interleukin-7/genetics , Interleukin-7/metabolism , Pimozide/therapeutic use , Mice, Transgenic
9.
Blood ; 141(25): 3019-3030, 2023 06 22.
Article in English | MEDLINE | ID: mdl-37018730

ABSTRACT

T-cell lymphoblastic lymphoma (T-LLy) and T-cell acute lymphoblastic leukemia (T-ALL) have historically been considered a spectrum of the same disease. However, recent evidence demonstrating differential responses to chemotherapy raise the possibility that T-LLy and T-ALL are distinct clinical and biologic entities. Here, we examine differences between the 2 diseases and use illustrative cases to highlight key recommendations on how to best treat patients with newly diagnosed and relapsed/refractory T-LLy. We discuss results of recent clinical trials incorporating use of nelarabine and bortezomib, choice of induction steroid, role of cranial radiotherapy, and risk stratification markers to identify patients at highest risk of relapse and to further refine current treatment strategies. Because prognosis for relapsed or refractory T-LLy patients is poor, we discuss ongoing investigations incorporating novel therapies, including immunotherapeutics, into upfront and salvage regimens and the role of hematopoietic stem cell transplantation.


Subject(s)
Leukemia-Lymphoma, Adult T-Cell , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Child , Young Adult , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Leukemia-Lymphoma, Adult T-Cell/drug therapy , Recurrence , T-Lymphocytes
10.
Mol Cell ; 67(1): 5-18.e19, 2017 Jul 06.
Article in English | MEDLINE | ID: mdl-28673542

ABSTRACT

Processive elongation of RNA Polymerase II from a proximal promoter paused state is a rate-limiting event in human gene control. A small number of regulatory factors influence transcription elongation on a global scale. Prior research using small-molecule BET bromodomain inhibitors, such as JQ1, linked BRD4 to context-specific elongation at a limited number of genes associated with massive enhancer regions. Here, the mechanistic characterization of an optimized chemical degrader of BET bromodomain proteins, dBET6, led to the unexpected identification of BET proteins as master regulators of global transcription elongation. In contrast to the selective effect of bromodomain inhibition on transcription, BET degradation prompts a collapse of global elongation that phenocopies CDK9 inhibition. Notably, BRD4 loss does not directly affect CDK9 localization. These studies, performed in translational models of T cell leukemia, establish a mechanism-based rationale for the development of BET bromodomain degradation as cancer therapy.


Subject(s)
Cyclin-Dependent Kinase 9/metabolism , Nuclear Proteins/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Transcription Elongation, Genetic , Transcription Factors/metabolism , Adaptor Proteins, Signal Transducing , Animals , Antineoplastic Agents/pharmacology , Cell Cycle Proteins , Cyclin-Dependent Kinase 9/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Dose-Response Relationship, Drug , Female , Gene Expression Regulation, Leukemic , HCT116 Cells , HEK293 Cells , Humans , Jurkat Cells , Mice, Inbred NOD , Mice, SCID , Mice, Transgenic , Multiprotein Complexes , Nuclear Proteins/genetics , Peptide Hydrolases/genetics , Peptide Hydrolases/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Protein Stability , Proteolysis , RNA Polymerase II/metabolism , Time Factors , Transcription Elongation, Genetic/drug effects , Transcription Factors/genetics , Transfection , Ubiquitin-Protein Ligases , Xenograft Model Antitumor Assays
11.
Carcinogenesis ; 45(6): 424-435, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38302114

ABSTRACT

T-cell acute lymphoblastic leukemia (T-ALL) is a highly aggressive hematologic malignancy originating from T progenitor cells. It accounts for 15% of childhood and 25% of adult ALL cases. GNE-987 is a novel chimeric molecule developed using proteolysis-targeting chimeras (PROTAC) technology for targeted therapy. It consists of a potent inhibitor of the bromodomain and extraterminal (BET) protein, as well as the E3 ubiquitin ligase Von Hippel-Lindau (VHL), which enables the effective induction of proteasomal degradation of BRD4. Although GNE-987 has shown persistent inhibition of cell proliferation and apoptosis, its specific antitumor activity in T-ALL remains unclear. In this study, we aimed to investigate the molecular mechanisms underlying the antitumor effect of GNE-987 in T-ALL. To achieve this, we employed technologies including RNA sequencing (RNA-seq), chromatin immunoprecipitation sequencing (ChIP-seq) and CUT&Tag. The degradation of BET proteins, specifically BRD4, by GNE-987 has a profound impact on T-ALL cell. In in vivo experiments, sh-BRD4 lentivirus reduced T-ALL cell proliferation and invasion, extending the survival time of mice. The RNA-seq and CUT&Tag analyses provided further insights into the mechanism of action of GNE-987 in T-ALL. These analyses revealed that GNE-987 possesses the ability to suppress the expression of various genes associated with super-enhancers (SEs), including lymphoblastic leukemia 1 (LCK). By targeting these SE-associated genes, GNE-987 effectively inhibits the progression of T-ALL. Importantly, SE-related oncogenes like LCK were identified as critical targets of GNE-987. Based on these findings, GNE-987 holds promise as a potential novel candidate drug for the treatment of T-ALL.


Subject(s)
Apoptosis , Cell Proliferation , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Transcription Factors , Xenograft Model Antitumor Assays , Humans , Animals , Mice , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Cell Proliferation/drug effects , Apoptosis/drug effects , Transcription Factors/genetics , Transcription Factors/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Enhancer Elements, Genetic , Bromodomain Containing Proteins
12.
Br J Haematol ; 204(6): 2301-2318, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38685813

ABSTRACT

T-cell acute lymphoblastic leukaemia (T-ALL) is a highly aggressive and heterogeneous lymphoid malignancy with poor prognosis in adult patients. Aberrant activation of the NOTCH1 signalling pathway is involved in the pathogenesis of over 60% of T-ALL cases. Ubiquitin-specific protease 28 (USP28) is a deubiquitinase known to regulate the stability of NOTCH1. Here, we report that genetic depletion of USP28 or using CT1113, a potent small molecule targeting USP28, can strongly destabilize NOTCH1 and inhibit the growth of T-ALL cells. Moreover, we show that USP28 also regulates the stability of sterol regulatory element binding protein 1 (SREBP1), which has been reported to mediate increased lipogenesis in tumour cells. As the most critical transcription factor involved in regulating lipogenesis, SREBP1 plays an important role in the metabolism of T-ALL. Therefore, USP28 may be a potential therapeutic target, and CT1113 may be a promising novel drug for T-ALL with or without mutant NOTCH1.


Subject(s)
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Ubiquitin Thiolesterase , Humans , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/antagonists & inhibitors , Ubiquitin Thiolesterase/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Receptor, Notch1/genetics , Receptor, Notch1/metabolism , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
13.
Blood ; 140(1): 45-57, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35452517

ABSTRACT

Acute lymphoblastic leukemia (ALL) is the most common malignant disease affecting children. Although therapeutic strategies have improved, T-cell acute lymphoblastic leukemia (T-ALL) relapse is associated with chemoresistance and a poor prognosis. One strategy to overcome this obstacle is the application of monoclonal antibodies. Here, we show that leukemic cells from patients with T-ALL express surface CD38 and CD47, both attractive targets for antibody therapy. We therefore investigated the commercially available CD38 antibody daratumumab (Dara) in combination with a proprietary modified CD47 antibody (Hu5F9-IgG2σ) in vitro and in vivo. Compared with single treatments, this combination significantly increased in vitro antibody-dependent cellular phagocytosis in T-ALL cell lines as well as in random de novo and relapsed/refractory T-ALL patient-derived xenograft (PDX) samples. Similarly, enhanced antibody-dependent cellular phagocytosis was observed when combining Dara with pharmacologic inhibition of CD47 interactions using a glutaminyl cyclase inhibitor. Phase 2-like preclinical in vivo trials using T-ALL PDX samples in experimental minimal residual disease-like (MRD-like) and overt leukemia models revealed a high antileukemic efficacy of CD47 blockade alone. However, T-ALL xenograft mice subjected to chemotherapy first (postchemotherapy MRD) and subsequently cotreated with Dara and Hu5F9-IgG2σ displayed significantly reduced bone marrow infiltration compared with single treatments. In relapsed and highly refractory T-ALL PDX combined treatment with Dara and Hu5F9-IgG2σ was required to substantially prolong survival compared with single treatments. These findings suggest that combining CD47 blockade with Dara is a promising therapy for T-ALL, especially for relapsed/refractory disease harboring a dismal prognosis in patients.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Animals , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , CD47 Antigen , Humans , Mice , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
14.
Blood ; 140(17): 1891-1906, 2022 10 27.
Article in English | MEDLINE | ID: mdl-35544598

ABSTRACT

Relapse and refractory T-cell acute lymphoblastic leukemia (T-ALL) has a poor prognosis, and new combination therapies are sorely needed. Here, we used an ex vivo high-throughput screening platform to identify drug combinations that kill zebrafish T-ALL and then validated top drug combinations for preclinical efficacy in human disease. This work uncovered potent drug synergies between AKT/mTORC1 (mammalian target of rapamycin complex 1) inhibitors and the general tyrosine kinase inhibitor dasatinib. Importantly, these same drug combinations effectively killed a subset of relapse and dexamethasone-resistant zebrafish T-ALL. Clinical trials are currently underway using the combination of mTORC1 inhibitor temsirolimus and dasatinib in other pediatric cancer indications, leading us to prioritize this therapy for preclinical testing. This combination effectively curbed T-ALL growth in human cell lines and primary human T-ALL and was well tolerated and effective in suppressing leukemia growth in patient-derived xenografts (PDX) grown in mice. Mechanistically, dasatinib inhibited phosphorylation and activation of the lymphocyte-specific protein tyrosine kinase (LCK) to blunt the T-cell receptor (TCR) signaling pathway, and when complexed with mTORC1 inhibition, induced potent T-ALL cell killing through reducing MCL-1 protein expression. In total, our work uncovered unexpected roles for the LCK kinase and its regulation of downstream TCR signaling in suppressing apoptosis and driving continued leukemia growth. Analysis of a wide array of primary human T-ALLs and PDXs grown in mice suggest that combination of temsirolimus and dasatinib treatment will be efficacious for a large fraction of human T-ALLs.


Subject(s)
Lymphocyte Specific Protein Tyrosine Kinase p56(lck) , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Child , Humans , Mice , Animals , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Dasatinib/pharmacology , Dasatinib/therapeutic use , Zebrafish/metabolism , Tyrosine , Cell Line, Tumor , Signal Transduction , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Mechanistic Target of Rapamycin Complex 1/metabolism , Receptors, Antigen, T-Cell/therapeutic use , T-Lymphocytes/metabolism , Recurrence , Mammals/metabolism
15.
Cytotherapy ; 26(5): 466-471, 2024 05.
Article in English | MEDLINE | ID: mdl-38430078

ABSTRACT

BACKGROUND AIMS: Daratumumab, a human IgG monoclonal antibody targeting CD38, is a promising treatment for pediatric patients with relapsed or refractory T-cell acute lymphoblastic leukemia (T-ALL). We describe a case of delayed engraftment following a mismatched, unrelated donor hematopoietic stem cell transplant (HSCT) in a 14-year-old female with relapsed T-ALL, treated with daratumumab and chemotherapy. By Day 28 post-HSCT, the patient had no neutrophil engraftment but full donor myeloid chimerism. METHODS: We developed two novel, semi-quantitative, antibody-based assays to measure the patient's bound and plasma daratumumab levels to determine if prolonged drug exposure may have contributed to her slow engraftment. RESULTS: Daratumumab levels were significantly elevated more than 30 days after the patient's final infusion, and levels inversely correlated with her white blood cell counts. To clear daratumumab, the patient underwent several rounds of plasmapheresis and subsequently engrafted. CONCLUSIONS: This is the first report of both delayed daratumumab clearance and delayed stem cell engraftment following daratumumab treatment in a pediatric patient. Further investigation is needed to elucidate the optimal dosing of daratumumab for treatment of acute leukemias in pediatric populations as well as daratumumab's potential effects on hematopoietic stem cells and stem cell engraftment following allogenic HSCT.


Subject(s)
Antibodies, Monoclonal , Hematopoietic Stem Cell Transplantation , Transplantation, Homologous , Humans , Hematopoietic Stem Cell Transplantation/methods , Female , Antibodies, Monoclonal/therapeutic use , Adolescent , Transplantation, Homologous/methods , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Graft Survival/drug effects
16.
J Pediatr Hematol Oncol ; 46(3): e241-e243, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38447104

ABSTRACT

Patients undergoing therapy for T cell acute lymphoblastic leukemia are at risk of infections during their treatment course. Cat scratch disease caused by Bartonella hensalae can masquerade as leukemic relapse and cause systemic infection. Obtaining a thorough exposure history may aid clinicians in making the diagnosis.


Subject(s)
Bartonella henselae , Cat-Scratch Disease , Lymphadenopathy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Cat-Scratch Disease/complications , Cat-Scratch Disease/diagnosis , Cat-Scratch Disease/drug therapy , Lymphadenopathy/etiology , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/complications , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , T-Lymphocytes
17.
J Oncol Pharm Pract ; 30(3): 594-596, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38105625

ABSTRACT

INTRODUCTION: Nelarabine is now increasingly being used for the treatment of relapsed T-cell acute lymphoblastic leukemia/lymphoma, and about 18% of patients experience ≥ grade 3 toxicity. Despite the increasing use of this drug, there are no guidelines for managing its neurotoxicity. We would like to share our experience with one such case. CASE REPORT: A sixteen-year-old girl with T-lymphoblastic lymphoma received Nelarabine as part of her relapse treatment. Three weeks post-treatment, patient presented with worsening encephalopathy, bulbar palsy, and seizures. MANAGEMENT AND OUTCOME: After a detailed evaluation, Nelarabine neurotoxicity was strongly considered and was managed with a combination of steroids, intravenous immunoglobulin, and aminophylline, with almost complete recovery starting at 72 hours of treatment initiation. DISCUSSION: Despite the increasing use of this drug, guidelines for the management of the neurological adverse effects of Nelarabine are lacking. The above-mentioned combination of drugs worked for our patient, but larger numbers are needed to validate this as an approved treatment regimen.


Subject(s)
Arabinonucleosides , Neurotoxicity Syndromes , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Arabinonucleosides/adverse effects , Arabinonucleosides/therapeutic use , Female , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Neurotoxicity Syndromes/etiology , Adolescent , Antineoplastic Agents/adverse effects , Antineoplastic Agents/therapeutic use
18.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Article in English | MEDLINE | ID: mdl-34413196

ABSTRACT

Pediatric T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy resulting from overproduction of immature T-cells in the thymus and is typified by widespread alterations in DNA methylation. As survival rates for relapsed T-ALL remain dismal (10 to 25%), development of targeted therapies to prevent relapse is key to improving prognosis. Whereas mutations in the DNA demethylating enzyme TET2 are frequent in adult T-cell malignancies, TET2 mutations in T-ALL are rare. Here, we analyzed RNA-sequencing data of 321 primary T-ALLs, 20 T-ALL cell lines, and 25 normal human tissues, revealing that TET2 is transcriptionally repressed or silenced in 71% and 17% of T-ALL, respectively. Furthermore, we show that TET2 silencing is often associated with hypermethylation of the TET2 promoter in primary T-ALL. Importantly, treatment with the DNA demethylating agent, 5-azacytidine (5-aza), was significantly more toxic to TET2-silenced T-ALL cells and resulted in stable re-expression of the TET2 gene. Additionally, 5-aza led to up-regulation of methylated genes and human endogenous retroviruses (HERVs), which was further enhanced by the addition of physiological levels of vitamin C, a potent enhancer of TET activity. Together, our results clearly identify 5-aza as a potential targeted therapy for TET2-silenced T-ALL.


Subject(s)
Ascorbic Acid/pharmacology , Azacitidine/pharmacology , Biomarkers, Tumor/metabolism , DNA Methylation , DNA-Binding Proteins/antagonists & inhibitors , Dioxygenases/antagonists & inhibitors , Gene Expression Regulation, Neoplastic , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Antimetabolites, Antineoplastic/pharmacology , Antioxidants/pharmacology , Apoptosis , Biomarkers, Tumor/genetics , Cell Proliferation , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Dioxygenases/genetics , Dioxygenases/metabolism , Drug Therapy, Combination , Humans , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Promoter Regions, Genetic , RNA-Seq , Tumor Cells, Cultured
19.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(5): 469-475, 2024 May 15.
Article in Zh | MEDLINE | ID: mdl-38802906

ABSTRACT

OBJECTIVES: To investigate the prognosis of childhood T-lymphoblastic lymphoma (T-LBL) treated with acute lymphoblastic leukemia (ALL) regimen and related influencing factors. METHODS: A retrospective analysis was performed for the prognostic characteristics of 29 children with T-LBL who were treated with ALL regimen (ALL-2009 or CCCG-ALL-2015 regimen) from May 2010 to May 2022. RESULTS: The 29 children with T-LBL had a 5-year overall survival (OS) rate of 84%±7% and an event-free survival (EFS) rate of 81%±8%. The children with B systemic symptoms (unexplained fever >38°C for more than 3 days; night sweats; weight loss >10% within 6 months) at initial diagnosis had a lower 5-year EFS rate compared to the children without B symptoms (P<0.05). The children with platelet count >400×109/L and involvement of both mediastinum and lymph nodes at initial diagnosis had lower 5-year OS rates (P<0.05). There were no significant differences in 5-year OS and EFS rates between the children treated with CCCG-ALL-2015 regimen and those treated with ALL-2009 regimen (P>0.05). Compared with the ALL-2009 regimen, the CCCG-ALL-2015 regimen reduced the frequency of high-dose methotrexate chemotherapy and the incidence rate of severe infections (P<0.05). CONCLUSIONS: The ALL regimen is safe and effective in children with T-LBL. Children with B systemic symptoms, platelet count >400×109/L, and involvement of both mediastinum and lymph nodes at initial diagnosis tend to have a poor prognosis. Reduction in the frequency of high-dose methotrexate chemotherapy can reduce the incidence rate of severe infections, but it does not affect prognosis.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Male , Female , Child , Child, Preschool , Prognosis , Retrospective Studies , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/mortality , Adolescent , Infant , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/mortality
20.
Mol Cancer ; 22(1): 12, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36650499

ABSTRACT

The acquisition of genetic abnormalities engendering oncogene dysregulation underpins cancer development. Certain proto-oncogenes possess several dysregulation mechanisms, yet how each mechanism impacts clinical outcome is unclear. Using T-cell acute lymphoblastic leukemia (T-ALL) as an example, we show that patients harboring 5'super-enhancer (5'SE) mutations of the TAL1 oncogene identifies a specific patient subgroup with poor prognosis irrespective of the level of oncogene dysregulation. Remarkably, the MYB dependent oncogenic 5'SE can be targeted using Mebendazole to induce MYB protein degradation and T-ALL cell death. Of note Mebendazole treatment demonstrated efficacy in vivo in T-ALL preclinical models. Our work provides proof of concept that within a specific oncogene driven cancer, the mechanism of oncogene dysregulation rather than the oncogene itself can identify clinically distinct patient subgroups and pave the way for future super-enhancer targeting therapy.


Subject(s)
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , T-Cell Acute Lymphocytic Leukemia Protein 1/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Mebendazole
SELECTION OF CITATIONS
SEARCH DETAIL