Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 386
Filter
Add more filters

Publication year range
1.
J Cell Mol Med ; 28(12): e18487, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39031722

ABSTRACT

Premature ovarian insufficiency (POI) is one of the important causes of female infertility. Yet the aetiology for POI is still elusive. FBXW7 (F-box with 7 tandem WD) is one of the important components of the Skp1-Cullin1-F-box (SCF) E3 ubiquitin ligase. FBXW7 can regulate cell growth, survival and pluripotency through mediating ubiquitylation and degradation of target proteins via triggering the ubiquitin-proteasome system, and is associated with tumorigenesis, haematopoiesis and testis development. However, evidence establishing the function of FBXW7 in ovary is still lacking. Here, we showed that FBXW7 protein level was significantly decreased in the ovaries of the cisplatin-induced POI mouse model. We further showed that mice with oocyte-specific deletion of Fbxw7 demonstrated POI, characterized with folliculogenic defects, early depletion of follicle reserve, disordered hormonal secretion, ovarian dysfunction and female infertility. Impaired oocyte-GCs communication, manifested as down-regulation of connexin 37, may contribute to follicular development failure in the Fbxw7-mutant mice. Furthermore, single-cell RNA sequencing and in situ hybridization results indicated an accumulation of Clu and Ccl2 transcripts, which may alter follicle microenvironment deleterious to oocyte development and accelerate POI. Our results establish the important role of Fbxw7 in folliculogenesis and ovarian function, and might provide valuable information for understanding POI and female infertility.


Subject(s)
F-Box-WD Repeat-Containing Protein 7 , Oocytes , Ovarian Follicle , Primary Ovarian Insufficiency , Animals , Female , Primary Ovarian Insufficiency/genetics , Primary Ovarian Insufficiency/metabolism , Primary Ovarian Insufficiency/pathology , F-Box-WD Repeat-Containing Protein 7/metabolism , F-Box-WD Repeat-Containing Protein 7/genetics , Oocytes/metabolism , Mice , Ovarian Follicle/metabolism , Ovarian Follicle/growth & development , Ovarian Follicle/pathology , Disease Models, Animal , Gene Deletion , Mice, Knockout , Infertility, Female/genetics , Infertility, Female/metabolism , Infertility, Female/pathology , Cisplatin/adverse effects
2.
Toxicol Appl Pharmacol ; 488: 116989, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38825044

ABSTRACT

BACKGROUND AND AIM: Cyclophosphamide (CP) chemotherapy is a significant iatrogenic component of premature ovarian failure (POF). The aim of this work was to evaluate the potential protective effects of donepezil, a centrally acting acetylcholinesterase (AChE) inhibitor, on CP-induced POF in mice. METHODS: 40 female Swiss albino mice were split into 5 equal groups: group 1 (control), group 2 (CP-POF); induced by intraperitoneal injection of CP on 8th day of the experiment, and group (3-5); mice received oral donepezil daily (1, 2, or 4 mg/kg, respectively) 8 days before CP injection. Mice were euthanized after 24 h of CP injection, and blood samples were collected to assay serum anti-Mullerian hormone (AMH) levels. Ovarian tissues were dissected, and the right ovary was processed for further assays of nitric oxide (NO), tumor necrosis factor-α (TNF-α), interlukin-6 (IL-6), nucleotide-binding domain-like receptor family, the Pyrin domain-containing 3 (NLRP3) inflammasome, and Toll-like receptor 4 (TLR-4), while the left one was processed for histopathological and immunohistochemical examination of nuclear factor-Kappa beta (NF-κB) and caspase-3. RESULTS: Donepezil, in a dose-dependent manner particularly (4 mg/kg), has an inhibitory action on NO (40 ± 2.85 vs. 28.20 ± 2.23, P < 0.001), proinflammatory cytokines (P < 0.001), the TLR-4/ NF-κB / NLRP3 inflammasome pathway (P < 0.001), and apoptosis (P < 0.001), with a significant elevation in the AMH levels (4.57 ± 1.08 vs. 8.57 ± 0.97, P < 0.001) versus CP-POF group. CONCLUSION: Donepezil may be a potential protective agent against CP-induced POF in mice, but further research is needed to fully understand its therapeutic function experimentally and clinically.


Subject(s)
Cholinesterase Inhibitors , Cyclophosphamide , Cytokines , Donepezil , NF-kappa B , NLR Family, Pyrin Domain-Containing 3 Protein , Primary Ovarian Insufficiency , Toll-Like Receptor 4 , Animals , Female , Donepezil/pharmacology , Mice , Toll-Like Receptor 4/metabolism , Cyclophosphamide/toxicity , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Cytokines/metabolism , Primary Ovarian Insufficiency/chemically induced , Primary Ovarian Insufficiency/prevention & control , Primary Ovarian Insufficiency/pathology , Cholinesterase Inhibitors/pharmacology , Ovary/drug effects , Ovary/metabolism , Ovary/pathology , Signal Transduction/drug effects
3.
Reproduction ; 168(2)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38912966

ABSTRACT

In brief: This study reveals that orthotopic transplantation of 3D hUC-MSC spheroids is more effective than monolayer-cultured hUC-MSCs in improving POF and distinctly reducing oxidative stress through the paracrine effect, thereby preventing apoptosis and autophagy of GCs. Abstract: Premature ovarian failure (POF) is a common reproductive disease in women younger than 40 years old, and studies have demonstrated that the application of human umbilical cord mesenchymal stem cells (hUC-MSCs) is a promising therapy strategy for POF. Given the previously established therapeutic advantages of 3D MSC spheroids, and to evaluate their effectiveness, both 3D hUC-MSC spheroids and monolayer-cultured hUC-MSCs were employed to treat a cyclophosphamide-induced POF rat model through orthotopic transplantation. The effects of these two forms on POF were subsequently assessed by examining apoptosis, autophagy, and oxidative damage in ovarian granulosa cells (GCs). The results indicated that hUC-MSC spheroids exhibited superior treatment effects on resisting autophagy, apoptosis, and oxidative damage in GCs compared to monolayer-cultured hUC-MSCs. To further elucidate the impact of hUC-MSC spheroids in vitro, a H2O2-induced KGN cells model was established and co-cultured with both forms of hUC-MSCs. As expected, the hUC-MSC spheroids also exhibited superior effects in resisting apoptosis and autophagy caused by oxidative damage. Therefore, this study demonstrates that 3D hUC-MSC spheroids have potential advantages in POF therapy; however, the detailed mechanisms need to be further investigated. Furthermore, this study will provide a reference for the clinical treatment strategy of POF.


Subject(s)
Apoptosis , Autophagy , Disease Models, Animal , Granulosa Cells , Mesenchymal Stem Cells , Oxidative Stress , Primary Ovarian Insufficiency , Spheroids, Cellular , Female , Animals , Rats , Granulosa Cells/pathology , Granulosa Cells/cytology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Primary Ovarian Insufficiency/pathology , Primary Ovarian Insufficiency/therapy , Primary Ovarian Insufficiency/chemically induced , Humans , Mesenchymal Stem Cell Transplantation , Rats, Sprague-Dawley , Umbilical Cord/cytology , Cells, Cultured
4.
Mol Reprod Dev ; 91(2): e23731, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38404010

ABSTRACT

Premature ovarian insufficiency (POI) patients experience a decline in ovarian function and a reduction in serum reproductive hormones, leading to a significant impact on the outcomes of assisted reproductive technology. Despite the absence of an effective clinical treatment to restore fertility in POI patients, recent research has indicated that cord blood plasma (CBP) derived from human umbilical cord blood (hUCB) may offer therapeutic benefits for various degenerative diseases. The primary aim of this study is to explore approaches for enhancing ovarian function and serum reproductive hormones through the administration of CBP in a murine model. Initially, hUCB was utilized to obtain CBP (CBP), which was subsequently analyzed for cytokine and growth factor profiles in comparison to adult blood plasma (ABP) by use of flow cytometry. Subsequently, POI mouse models were established through the induction of 4-vinylcyclohexene diepoxide, followed by the injection of CBP into the tail. At 7, 14, and 21 days posttreatment, mouse ovaries and blood were collected, and their estrus cycle, body weight, and ovarian weights were evaluated using precise electronic balance. Finally, ovarian morphology and follicle number were assessed through HE staining, while serum levels of anti-Müllerian hormone (AMH), estradiol (E2) and follicle-stimulating hormone (FSH) were determined by ELISA. Our study revealed that individuals with CBP exhibited significantly lower concentrations of proinflammatory cytokines, including IL-ß (p < 0.01) and IL-2 (p < 0.05), while displaying elevated levels of anti-inflammatory cytokines and chemokines, such as IL-2, IL-4, IL-6, IL-8, IL-12P70, IL-17A, IP-10, interferon-γ, and tumor necrosis factor-α (p < 0.01). Furthermore, CBP demonstrated remarkably higher levels of growth factors, including transforming growth factor-ß1, vascular endothelial growth factor, and insulin-like growth factor-1 (p < 0.01) than ABP. Notably, our investigation also revealed that CBP restored the content of serum reproductive hormones, such as AMH, E2, and FSH (p < 0.05), and increased the number of primordial and primary follicles (p < 0.01) and decreased the number of luteal and atretic follicles (p < 0.01) in vivo. Our findings suggested that CBP-secreted cytokines and growth factors could be restored POI ovarian function, enhanced serum reproductive hormones and rescued follicular development in vivo. These findings further support the potential of CBP as a promising strategy in clinical applications for POI related infertility.


Subject(s)
Cytokines , Primary Ovarian Insufficiency , Female , Adult , Humans , Mice , Animals , Fetal Blood , Vascular Endothelial Growth Factor A , Interleukin-2 , Primary Ovarian Insufficiency/therapy , Primary Ovarian Insufficiency/pathology , Estradiol , Follicle Stimulating Hormone , Intercellular Signaling Peptides and Proteins , Plasma
5.
Bioorg Med Chem ; 110: 117834, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39029436

ABSTRACT

Currently, no effective treatment exists for premature ovarian failure (POF). To obtain compounds with protective effects against POF, we aimed to design and synthesize a series of spiroheterocyclic protective agents with a focus on minimizing toxicity while enhancing their protective effect against cisplatin-induced POF. This was achieved through systematic modifications of Michael receptors and linkers within the molecular structure of 1,5-diphenylpenta-1,4-dien-3-one analogs. To assess the cytotoxicity and activity of these compounds, we constructed quantitative conformational relationship models using an artificial intelligence random forest algorithm, resulting in R2 values exceeding 0.87. Among these compounds, j2 exhibited optimal protective activity. It significantly increased the survival of cisplatin-injured ovarian granulosa KGN cells, improved post-injury cell morphology, reduced apoptosis, and enhanced cellular estradiol (E2) levels. Subsequent investigations revealed that j2 may exert its protective effect via a novel mechanism involving the activation of the SIRT1/AKT signal pathway. Furthermore, in cisplatin-injured POF in rats, j2 was effective in increasing body, ovarian, and uterine weights, elevating the number of follicles at all levels in the ovary, improving ovarian and uterine structures, and increasing serum E2 levels in rats with cisplatin-injured POF. In conclusion, this study introduces a promising compound j2 and a novel target SIRT1 with substantial protective activity against cisplatin-induced POF.


Subject(s)
Cisplatin , Primary Ovarian Insufficiency , Sirtuin 1 , Female , Primary Ovarian Insufficiency/chemically induced , Primary Ovarian Insufficiency/drug therapy , Primary Ovarian Insufficiency/pathology , Primary Ovarian Insufficiency/metabolism , Sirtuin 1/metabolism , Sirtuin 1/antagonists & inhibitors , Cisplatin/pharmacology , Animals , Rats , Humans , Structure-Activity Relationship , Up-Regulation/drug effects , Rats, Sprague-Dawley , Molecular Structure , Protective Agents/pharmacology , Protective Agents/chemistry , Protective Agents/chemical synthesis , Drug Discovery , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Dose-Response Relationship, Drug , Apoptosis/drug effects , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/chemical synthesis
6.
J Assist Reprod Genet ; 41(8): 2011-2020, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38951359

ABSTRACT

PURPOSE: Oocytes from women presenting primary ovarian insufficiency (POI) generate viable embryos at a lower rate than non-POI women, but the mechanisms responsible for the lower oocyte quality remain elusive. Due to the scarcity of human oocytes for research, animal models provide a promising way forward. We aimed at investigating the molecular events characterizing final maturation in POI oocytes in a well-defined POI-like bovine model. METHODS: Single-cell RNA-sequencing of bovine control and POI-like, GV, and MII oocytes (n = 5 per group) was performed. DEseq2 was used to identify differentially expressed genes. Further, a Gene set enrichment analysis and a transcriptomic meta-analysis between bovine and human oocytes were performed. RESULTS: In control cows, we found 2223 differentially expressed genes between the GV and MII stages. Specifically, the affected genes were related to RNA processing and transport, protein synthesis, organelle remodeling and reorganization, and metabolism. The meta-analysis with a set of young human oocytes at different maturation stages revealed 315 conserved genes through the GV-MII transition in cows and humans, mostly related to meiotic progression and cell cycle. Gene expression analysis between GV and MII of POI-like oocytes showed no differences in terms of differentially expressed genes, pointing towards a substantial failure to properly remodel the transcriptome in the POI model, and with the clustering analysis indicating that the cow's genetic background had a higher impact than the oocyte's maturation stage. CONCLUSION: Overall, we have identified and characterized a valuable animal model of POI, paving the way to identifying new molecular mechanisms involved in POI.


Subject(s)
Meiosis , Oocytes , Primary Ovarian Insufficiency , Cattle , Female , Primary Ovarian Insufficiency/genetics , Primary Ovarian Insufficiency/pathology , Animals , Oocytes/growth & development , Oocytes/metabolism , Oocytes/pathology , Meiosis/genetics , Humans , Transcriptome/genetics , Disease Models, Animal , Oogenesis/genetics
7.
J Assist Reprod Genet ; 41(4): 989-998, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38315420

ABSTRACT

A systematic review and meta-analysis were performed to identify if there is a subset of patients with POI who are more likely to show follicular growth after ovarian fragmentation for follicular activation (OFFA) or in vitro activation (IVA). Five studies met inclusion criteria for meta-analysis with a total of 164 patients. Forty-three patients showed follicle development (26.21%). Of those, the pregnancy rate was 35.58% (11/43) and the live birth rate was 20.93% (9/43). Our meta-analysis showed that age was not associated with follicle growth. However, lower baseline FSH, lower duration of amenorrhea/diagnosis, and presence of follicles remaining in biopsy were statistically significant for follicle development. Patients with basal characteristics mentioned before may have more chances to show follicle growth after OFFA or IVA. Taking into account that approximately 20% of patients with follicle growth had live birth, these results are very promising. Given the overall certainty of evidence, future studies are needed to confirm said results.


Subject(s)
Fertilization in Vitro , Ovarian Follicle , Ovulation Induction , Pregnancy Rate , Humans , Female , Ovarian Follicle/growth & development , Ovarian Follicle/pathology , Pregnancy , Ovulation Induction/methods , Fertilization in Vitro/methods , Live Birth/epidemiology , Primary Ovarian Insufficiency/pathology , Follicle Stimulating Hormone
8.
J Assist Reprod Genet ; 41(6): 1619-1635, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38695984

ABSTRACT

PURPOSE: With advances in immunology, increasing evidence suggests that immunity is involved in premature ovarian insufficiency (POI) pathogenesis. This study investigated the roles of immune checkpoint genes and immune cell infiltration in POI pathogenesis and development. METHODS: The GSE39501 dataset and immune checkpoint genes were obtained from the Gene Expression Omnibus database and related literature. The two datasets were intersected to obtain immune checkpoint-related differentially expressed genes (ICRDEGs), which were analyzed using Gene Ontology and Kyoto Encyclopedia of Gene and Genomes enrichment analysis, weighted correlation network analysis, protein-protein interaction and related microRNAs, transcription factors, and RNA binding proteins. The immune cell infiltration of ICRDEGs was explored, and receiver operating characteristic curves were used to validate the diagnostic value of ICRDEGs in POI. RESULTS: We performed ICRDEG functional enrichment analysis and found that these genes were closely related to immune processes, such as T cell activation. Specifically, they are enriched in various biological processes and pathways, such as cell adhesion molecule and T cell receptor signaling pathways. Weighted correlation network analysis identified seven hub genes: Cd200, Cd274, Cd28, neurociliary protein-1, Cd276, Cd40lg, and Cd47. Furthermore, we identified 112 microRNAs, 17 RNA-binding proteins, and 101 transcription factors. Finally, immune infiltration analysis showed a clear positive correlation between hub genes and multiple immune cell types. CONCLUSION: Bioinformatic analysis identified seven potential ICRDEGs associated with POI, among which the immune checkpoint molecules CD200 and neurociliary protein-1 may be involved in the pathogenesis of POI.


Subject(s)
Computational Biology , Gene Regulatory Networks , Primary Ovarian Insufficiency , Humans , Female , Primary Ovarian Insufficiency/genetics , Primary Ovarian Insufficiency/immunology , Primary Ovarian Insufficiency/pathology , MicroRNAs/genetics , Protein Interaction Maps/genetics , Gene Ontology , Immune Checkpoint Proteins/genetics , Gene Expression Profiling , Databases, Genetic , Signal Transduction/genetics
9.
Int J Mol Sci ; 25(14)2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39062762

ABSTRACT

Female fertility depends on the ovarian reserve of follicles, which is determined at birth. Primordial follicle development and oocyte maturation are regulated by multiple factors and pathways and classified into gonadotropin-independent and gonadotropin-dependent phases, according to the response to gonadotropins. Folliculogenesis has always been considered to be gonadotropin-dependent only from the antral stage, but evidence from the literature highlights the role of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) during early folliculogenesis with a potential role in the progression of the pool of primordial follicles. Hormonal and molecular pathway alterations during the very earliest stages of folliculogenesis may be the root cause of anovulation in polycystic ovary syndrome (PCOS) and in PCOS-like phenotypes related to antiepileptic treatment. Excessive induction of primordial follicle activation can also lead to premature ovarian insufficiency (POI), a condition characterized by menopause in women before 40 years of age. Future treatments aiming to suppress initial recruitment or prevent the growth of resting follicles could help in prolonging female fertility, especially in women with PCOS or POI. This review will briefly introduce the impact of gonadotropins on early folliculogenesis. We will discuss the influence of LH on ovarian reserve and its potential role in PCOS and POI infertility.


Subject(s)
Gonadotropins , Ovarian Follicle , Polycystic Ovary Syndrome , Primary Ovarian Insufficiency , Animals , Female , Humans , Follicle Stimulating Hormone/metabolism , Gonadotropins/metabolism , Luteinizing Hormone/metabolism , Ovarian Follicle/metabolism , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/physiopathology , Primary Ovarian Insufficiency/metabolism , Primary Ovarian Insufficiency/etiology , Primary Ovarian Insufficiency/pathology
10.
Hum Mol Genet ; 30(10): 923-938, 2021 05 29.
Article in English | MEDLINE | ID: mdl-33856019

ABSTRACT

Women heterozygous for an expansion of CGG repeats in the 5'UTR of FMR1 risk developing fragile X-associated primary ovarian insufficiency (FXPOI) and/or tremor and ataxia syndrome (FXTAS). We show that expanded CGGs, independent of FMR1, are sufficient to drive ovarian insufficiency and that expression of CGG-containing mRNAs alone or in conjunction with a polyglycine-containing peptide translated from these RNAs contribute to dysfunction. Heterozygous females from two mouse lines expressing either CGG RNA-only (RNA-only) or CGG RNA and the polyglycine product FMRpolyG (FMRpolyG+RNA) were used to assess ovarian function in aging animals. The expression of FMRpolyG+RNA led to early cessation of breeding, ovulation and transcriptomic changes affecting cholesterol and steroid hormone biosynthesis. Females expressing CGG RNA-only did not exhibit decreased progeny during natural breeding, but their ovarian transcriptomes were enriched for alterations in cholesterol and lipid biosynthesis. The enrichment of CGG RNA-only ovaries for differentially expressed genes related to cholesterol processing provided a link to the ovarian cysts observed in both CGG-expressing lines. Early changes in transcriptome profiles led us to measure ovarian function in prepubertal females that revealed deficiencies in ovulatory responses to gonadotropins. These include impairments in cumulus expansion and resumption of oocyte meiosis, as well as reduced ovulated oocyte number. Cumulatively, we demonstrated the sufficiency of ectopically expressed CGG repeats to lead to ovarian insufficiency and that co-expression of CGG-RNA and FMRpolyG lead to premature cessation of breeding. However, the expression of CGG RNA-alone was sufficient to lead to ovarian dysfunction by impairing responses to hormonal stimulation.


Subject(s)
Ataxia/genetics , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/genetics , Primary Ovarian Insufficiency/genetics , Transcriptome/genetics , Tremor/genetics , Animals , Ataxia/pathology , Disease Models, Animal , Ectopic Gene Expression/genetics , Female , Fragile X Syndrome/pathology , Gonadotropins/metabolism , Humans , Mice , Oocytes/growth & development , Peptides/genetics , Primary Ovarian Insufficiency/pathology , Tremor/pathology , Trinucleotide Repeat Expansion/genetics
11.
Am J Pathol ; 192(3): 468-483, 2022 03.
Article in English | MEDLINE | ID: mdl-34971586

ABSTRACT

Premature ovarian failure (POF) is defined as deployment of amenorrhea due to the cessation of ovarian function in a woman younger than 40 years old. The pathologic mechanism of POF is not yet well understood, although genetic aberrations, autoimmune damage, and environmental factors have been identified. The current study demonstrated that NF-κB inactivation is closely associated with the development of POF based on the data from literature and cyclophosphamide (Cytoxan)-induced POF mouse model. In the successfully established NF-κB-inactivated mouse model, the results showed the reduced expression of nuclear p65 and the increased expression of IκBα in ovarian granulosa cells; the reduced numbers of antral follicles; the reduction of Ki-67/proliferating cell nuclear antigen-labeled cell proliferation and enhanced Fas/FasL-dependent apoptosis in granulosa cells; the reduced level of E2 and anti-Müllerian hormone; the decreased expression of follicle-stimulating hormone receptor and cytochrome P450 family 19 subfamily A member 1 (CYP19A1) in granulosa cells, which was reversed in the context of blocking NF-κB signaling with BAY 11-7082; and the decreased expressions of glucose-regulated protein 78 (GRP78), activating transcription factor 6, protein kinase R-like endoplasmic reticulum kinase, and inositol-requiring enzyme 1 in granulosa cells. Dual-luciferase reporter assay demonstrated that p50 stimulated the transcription of GRP78, and NF-κB affected the expression of follicle-stimulating hormone receptor and promoted granulosa cell proliferation through GRP78-mediated endoplasmic reticulum stress. Taken together, these data indicate, for the first time, that the inactivation of NF-κB signaling plays an important role in POF.


Subject(s)
NF-kappa B , Primary Ovarian Insufficiency , Animals , Apoptosis , Female , Granulosa Cells/metabolism , Granulosa Cells/pathology , Humans , Mice , NF-kappa B/metabolism , Ovarian Follicle/metabolism , Primary Ovarian Insufficiency/metabolism , Primary Ovarian Insufficiency/pathology , Receptors, FSH/metabolism
12.
Clin Genet ; 104(5): 516-527, 2023 11.
Article in English | MEDLINE | ID: mdl-37461298

ABSTRACT

Premature ovarian insufficiency (POI) is a clinical syndrome of ovarian dysfunction characterized by cessation of menstruation occurring before the age of 40 years. The genetic causes of idiopathic POI remain unclear. Here we recruited a POI patient from a consanguineous family to screen for potential pathogenic variants associated with POI. Genetic variants of the pedigree were screened using whole-exome sequencing analysis and validated through direct Sanger sequencing. A homozygous variant in TUFM (c.524G>C: p.Gly175Ala) was identified in this family. TUFM (Tu translation elongation factor, mitochondrial) is a nuclear-encoded mitochondrial protein translation elongation factor that plays a critical role in maintaining normal mitochondrial function. The variant position was highly conserved among species and predicted to be disease causing. Our in vitro functional studies demonstrated that this variant causes decreased TUFM protein expression, leading to mitochondrial dysfunction and impaired autophagy activation. Moreover, we found that mice with targeted Tufm variant recapitulated the phenotypes of human POI. Thus, this is the first report of a homozygous pathogenic TUFM variant in POI. Our findings highlighted the essential role of mitochondrial genes in folliculogenesis and ovarian function maintenance.


Subject(s)
Primary Ovarian Insufficiency , Adult , Animals , Female , Humans , Mice , Consanguinity , Homozygote , Mitochondria/genetics , Mitochondria/pathology , Mutation , Primary Ovarian Insufficiency/pathology
13.
Exp Cell Res ; 412(1): 113002, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34973261

ABSTRACT

The inflammatory microenvironment has been demonstrated to play a role in folliculogenesis, ovulation and premature ovarian failure (POF), as well as infertility. In this study, we aimed to explore the role of inflammation in modulating growth and apoptosis in granulosa cells (GCs), the main components of ovarian follicles. ELISA was used to analyze the levels of inflammatory factors (IL-1ß, IL-4, IL-6 and IL-10) in follicular fluid samples and GCs derived from POF patients and healthy normal individuals. CCK-8, flow cytometry and TUNEL assays were used to assess the effect of IL-4 on GC growth and apoptosis. Western blotting was used to examine the effect of IL-4 on the activation of PI3K/Akt, Erk1/2 and Jnk signaling. The results showed that IL-4, IL-1ß and IL-6 levels were increased in follicular fluid samples and GCs derived from POF patients compared with those from healthy individuals. GC growth was weakened when cells were treated with IL-4, while apoptosis was increased. In addition, IL-4 increased the level of p-Akt/Akt in GCs. In addition, LY294002, an inhibitor of PI3K, abolished the effect of IL-4 by inhibiting GC growth and promoting apoptosis. In summary, this study demonstrated that IL-4 levels were increased in POF samples and that IL-4 could inhibit GC growth and induce GC apoptosis by activating PI3K/Akt signaling.


Subject(s)
Granulosa Cells/metabolism , Granulosa Cells/pathology , Interleukin-4/metabolism , Primary Ovarian Insufficiency/metabolism , Primary Ovarian Insufficiency/pathology , Adult , Apoptosis/drug effects , Case-Control Studies , Cell Proliferation/drug effects , Cells, Cultured , Cellular Microenvironment , Chromones/pharmacology , Female , Follicular Fluid/metabolism , Granulosa Cells/drug effects , Humans , Interleukin-1beta/metabolism , Interleukin-4/pharmacology , Interleukin-6/metabolism , Morpholines/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects
14.
Gynecol Endocrinol ; 39(1): 2265507, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37839437

ABSTRACT

OBJECTIVE: This study aimed to identify novel pathogenic genes and variants in a Chinese family with premature ovarian insufficiency (POI). METHODS: A Chinese POI family was enrolled in this study. Whole exome sequencing was performed on the proband and her mother to identify the potential causative genes and variants and Sanger sequencing was used to confirm the finally identified potential pathogenic variant in the family. RESULTS: An assessment of the family pedigree suggested that POI was inherited in an autosomal dominant manner in this family. A novel missense variant of the laminin subunit gamma-1 gene (LAMC1; NM_002293.4: c.3281A > T, p.D1094V) was finally identified in the proband and her affected mother. This variant was not found in any public databases. In silico analysis indicated the amino acid encoded at the variant site was highly conserved among mammals and associated with decreased protein stability and disrupted protein function. Its presence in the POI family was confirmed by Sanger sequencing. CONCLUSIONS: This study firstly reported a novel missense variant of LAMC1 in a Chinese POI family, which was inherited in an autosomal dominant manner. This variant may result in the development of POI. Our results provide supporting evidence for a causative role for LAMC1 variants in POI.


Subject(s)
Menopause, Premature , Primary Ovarian Insufficiency , Humans , Female , Animals , Exome Sequencing , Primary Ovarian Insufficiency/genetics , Primary Ovarian Insufficiency/pathology , Menopause, Premature/genetics , Mutation, Missense , DNA-Binding Proteins , Pedigree , Mammals/genetics
15.
Chin J Physiol ; 66(4): 200-208, 2023.
Article in English | MEDLINE | ID: mdl-37635479

ABSTRACT

Premature ovarian failure (POF) affects many adult women less than 40 years of age and leads to infertility. This study was aimed at exploring the improving effects of miR-22-3p on the symptoms of POF in mice by inhibiting chemokine-like receptor 1 (CMKLR1) expression. Female mice were intraperitoneally injected with cyclophosphamide to construct POF mice models. Lentiviral vectors containing miR-22-3p, short hairpin RNA (sh)-CMKLR1, and overexpression (oe)-CMKLR1, respectively, or in combination, were injected into the ovaries of both sides of POF mice. miR-22-3p and CMKLR1 expression in ovarian tissues of mice was assessed, and the targeting relationship between miR-22-3p and CMKLR1 was predicted and verified. Serum estradiol (E2), anti-Mullerian hormone, and follicle-stimulating hormone levels were assessed. Ovarian weight was weighed, and pathological changes and the number of primordial follicles, primary follicles, secondary follicles, and atresia follicles were observed. Apoptosis of ovarian tissues was determined. In ovarian tissues of POF mice, miR-22-3p expression was decreased while CMKLR1 expression was increased. miR-22-3p up-regulation or CMKLR1 down-regulation restored sex hormone levels, improved ovarian weight and the number of primordial follicles, primary follicles, and secondary follicles, and reduced the number of atresia follicle and ovarian granulosa cell apoptosis in POF mice. miR-22-3p targeted CMKLR1, and overexpressing CMKLR1 reversed the ameliorative effects of miR-22-3p overexpression on POF mice. Our research highlights that overexpressed miR-22-3p down-regulates CMKLR1 to ameliorate the symptoms of POF in mice. Therefore, the miR-22-3p/CMKLR1 axis could improve the symptoms of POF.


Subject(s)
MicroRNAs , Primary Ovarian Insufficiency , Adult , Female , Mice , Humans , Animals , Primary Ovarian Insufficiency/pathology , Ovarian Follicle/metabolism , Ovarian Follicle/pathology , Cyclophosphamide/pharmacology , MicroRNAs/metabolism , Receptors, Chemokine
16.
Int J Mol Sci ; 24(5)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36901862

ABSTRACT

Primary ovarian insufficiency (POI) is a heterogeneous disease resulting from non-functional ovaries in women before the age of 40. It is characterized by primary amenorrhea or secondary amenorrhea. As regards its etiology, although many POI cases are idiopathic, menopausal age is a heritable trait and genetic factors play an important role in all POI cases with known causes, accounting for approximately 20% to 25% of cases. This paper reviews the selected genetic causes implicated in POI and examines their pathogenic mechanisms to show the crucial role of genetic effects on POI. The genetic factors that can be found in POI cases include chromosomal abnormalities (e.g., X chromosomal aneuploidies, structural X chromosomal abnormalities, X-autosome translocations, and autosomal variations), single gene mutations (e.g., newborn ovary homeobox gene (NOBOX), folliculogenesis specific bHLH transcription factor (FIGLA), follicle-stimulating hormone receptor (FSHR), forkhead box L2 (FOXL2), bone morphogenetic protein 15 (BMP15), etc., as well as defects in mitochondrial functions and non-coding RNAs (small ncRNAs and long ncRNAs). These findings are beneficial for doctors to diagnose idiopathic POI cases and predict the risk of POI in women.


Subject(s)
Primary Ovarian Insufficiency , Female , Humans , Infant, Newborn , Amenorrhea/genetics , Chromosome Aberrations , Mutation , Primary Ovarian Insufficiency/genetics , Primary Ovarian Insufficiency/pathology
17.
Int J Mol Sci ; 24(24)2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38139022

ABSTRACT

Young female cancer patients can develop chemotherapy-induced primary ovarian insufficiency (POI). Cyclophosphamide (Cy) is one of the most widely used chemotherapies and has the highest risk of damaging the ovaries. Recent studies elucidated the pivotal roles of cellular senescence, which is characterized by permanent cell growth arrest, in the pathologies of various diseases. Moreover, several promising senolytics, including dasatinib and quercetin (DQ), which remove senescent cells, are being developed. In the present study, we investigated whether cellular senescence is involved in Cy-induced POI and whether DQ treatment rescues Cy-induced ovarian damage. Expression of the cellular senescence markers p16, p21, p53, and γH2AX was upregulated in granulosa cells of POI mice and in human granulosa cells treated with Cy, which was abrogated by DQ treatment. The administration of Cy decreased the numbers of primordial and primary follicles, with a concomitant increase in the ratio of growing to dormant follicles, which was partially rescued by DQ. Moreover, DQ treatment significantly improved the response to ovulation induction and fertility in POI mice by extending reproductive life. Thus, cellular senescence plays critical roles in Cy-induced POI, and targeting senescent cells with senolytics, such as DQ, might be a promising strategy to protect against Cy-induced ovarian damage.


Subject(s)
Primary Ovarian Insufficiency , Humans , Mice , Female , Animals , Primary Ovarian Insufficiency/pathology , Senotherapeutics , Cyclophosphamide/toxicity , Dasatinib/adverse effects , Cellular Senescence
18.
Molecules ; 28(5)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36903358

ABSTRACT

Premature ovarian insufficiency (POI) is a complex disease which causes amenorrhea, hypergonadotropism and infertility in patients no more than 40 years old. Recently, several studies have reported that exosomes have the potential to protect ovarian function using a POI-like mouse model induced by chemotherapy drugs. In this study, the therapeutic potential of exosomes derived from human pluripotent stem cell-mesenchymal stem cells (hiMSC exosomes) was evaluated through a cyclophosphamide (CTX)-induced POI-like mouse model. POI-like pathological changes in mice were determined by serum sex-hormones levels and the available number of ovarian follicles. The expression levels of cellular proliferation proteins and apoptosis-related proteins in mouse ovarian granulosa cells were measured using immunofluorescence, immunohistochemistry and Western blotting. Notably, a positive effect on the preservation of ovarian function was evidenced, since the loss of follicles in the POI-like mouse ovaries was slowed. Additionally, hiMSC exosomes not only restored the levels of serum sex hormones, but also significantly promoted the proliferation of granulosa cells and inhibited cell apoptosis. The current study suggests that the administration of hiMSC exosomes in the ovaries can preserve female-mouse fertility.


Subject(s)
Exosomes , Mesenchymal Stem Cells , Primary Ovarian Insufficiency , Humans , Female , Mice , Animals , Adult , Exosomes/metabolism , Primary Ovarian Insufficiency/chemically induced , Primary Ovarian Insufficiency/pathology , Primary Ovarian Insufficiency/therapy , Cyclophosphamide/pharmacology , Granulosa Cells/metabolism , Apoptosis , Cell Proliferation , Mesenchymal Stem Cells/metabolism
19.
Reprod Biol Endocrinol ; 20(1): 84, 2022 May 24.
Article in English | MEDLINE | ID: mdl-35610622

ABSTRACT

BACKGROUND: Ubiquitin-like modifier 1 ligating enzyme 1 (UFL1), the ligase of the UFMylation system, has recently been reported to be involved in apoptosis and endoplasmic reticulum stress (ER stress) in a variety of diseases. Premature ovarian failure (POF) is a gynecological disease that severely reduces the fertility of women, especially in female cancer patients receiving chemotherapy drugs. Whether UFL1 is involved in protection against chemotherapy-induced POF and its mechanism remain unclear. METHODS: In this study, we examined the function of UFL1 in ovarian dysfunction and granulosa cell (GC) apoptosis induced by cisplatin through histological examination and cell viability analysis. We used western blotting, quantitative real-time PCR (qPCR) and immunofluorescence (IF) to detect the expression of UFL1 and the levels of ER stress specific markers. Enzyme linked immunosorbent assays were used to detect the levels of follicle-stimulating hormone (FSH) and estrogen (E2) in ovaries and GCs. In addition, we used infection with lentiviral particle suspensions to knock down and overexpress UFL1 in ovaries and GCs, respectively. RESULTS: Our data showed that the expression of UFL1 was reduced in POF model ovaries, accompanied by ER stress. In vitro, cisplatin induced a stress-related increase in UFL1 expression in GCs and enhanced ER stress, which was aggravated by UFL1 knockdown and alleviated by UFL1 overexpression. Furthermore, UFL1 knockdown resulted in a decrease in ovarian follicle number, an increase in atretic follicles, and decreased expression of AMH and FSHR. Conversely, the overexpression of UFL1 reduced cisplatin-induced damage to the ovary in vitro. CONCLUSIONS: Our research indicated that UFL1 regulates cisplatin-induced ER stress and apoptosis in GCs, and participates in protection against cisplatin-induced POF, providing a potential therapeutic target for the clinical prevention of chemotherapeutic drug-induced POF.


Subject(s)
Cisplatin , Endoplasmic Reticulum Stress , Primary Ovarian Insufficiency , Ubiquitin-Protein Ligases , Apoptosis , Cisplatin/adverse effects , Endoplasmic Reticulum Stress/drug effects , Female , Granulosa Cells/metabolism , Humans , Primary Ovarian Insufficiency/chemically induced , Primary Ovarian Insufficiency/metabolism , Primary Ovarian Insufficiency/pathology , Ubiquitin-Protein Ligases/metabolism , Ubiquitins/metabolism
20.
Reprod Biol Endocrinol ; 20(1): 39, 2022 Feb 26.
Article in English | MEDLINE | ID: mdl-35219326

ABSTRACT

BACKGROUND: Premature ovarian failure (POF) is a serious problem for young women who receive chemotherapy, and its pathophysiological basis is the dysfunction of granulosa cells. According to previous reports, menstrual-derived stem cells (MenSCs) can restore ovarian function and folliculogenesis in mice with chemotherapy-induced POF. Fat mass- and obesity-associated (FTO) was reported to be associated with oocyte development and maturation. FTO was decreased in POF and may be a biomarker for the occurrence of POF. Knockdown of FTO in granulosa cells promoted cell apoptosis and inhibited proliferation. But the relationship between FTO and ovarian repair was still unclear. This study was aimed at investigating the FTO expression level and the role of FTO in the MenSCs recovering the function of injured granulosa cells. METHOD: First, cisplatin was used to establish a granulosa cell injury model. Then, the MenSCs and injured granulosa cell coculture model and POF mouse model were established in this study to explore the role of FTO. Furthermore, gain- and loss-of-function studies, small interfering RNA transfection, and meclofenamic acid (MA), a highly selective inhibitor of FTO, studies were also conducted to clarify the regulatory mechanism of FTO in granulosa cells. RESULTS: MenSCs coculture could improve the function of injured granulosa cells by increasing the expression of FTO. MenSCs transplantation restored the expression of FTO in the ovaries of POF mice. Overexpression of FTO restored the injured cell proliferation and decreased apoptosis by regulating the expression of BNIP3. Down-regulation of FTO got the opposite results. CONCLUSIONS: In the treatment of MenSCs, FTO has a protective effect, which could improve the viability of granulosa cells after cisplatin treatment by decreasing the expression of BNIP3. Meanwhile, FTO may provide new insight into therapeutic targets for the chemotherapy-induced POF.


Subject(s)
Alpha-Ketoglutarate-Dependent Dioxygenase FTO/physiology , Antineoplastic Agents/adverse effects , Cytoprotection/genetics , Granulosa Cells/drug effects , Adult , Animals , Apoptosis/drug effects , Apoptosis/genetics , Cells, Cultured , Cisplatin/adverse effects , Disease Models, Animal , Female , Granulosa Cells/pathology , Granulosa Cells/physiology , Humans , Mice , Mice, Inbred C57BL , Primary Ovarian Insufficiency/chemically induced , Primary Ovarian Insufficiency/genetics , Primary Ovarian Insufficiency/pathology
SELECTION OF CITATIONS
SEARCH DETAIL