Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.953
Filter
Add more filters

Publication year range
1.
Immunity ; 53(6): 1215-1229.e8, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33220234

ABSTRACT

Inflammation can support or restrain cancer progression and the response to therapy. Here, we searched for primary regulators of cancer-inhibitory inflammation through deep profiling of inflammatory tumor microenvironments (TMEs) linked to immune-dependent control in mice. We found that early intratumoral accumulation of interferon gamma (IFN-γ)-producing natural killer (NK) cells induced a profound remodeling of the TME and unleashed cytotoxic T cell (CTL)-mediated tumor eradication. Mechanistically, tumor-derived prostaglandin E2 (PGE2) acted selectively on EP2 and EP4 receptors on NK cells, hampered the TME switch, and enabled immune evasion. Analysis of patient datasets across human cancers revealed distinct inflammatory TME phenotypes resembling those associated with cancer immune control versus escape in mice. This allowed us to generate a gene-expression signature that integrated opposing inflammatory factors and predicted patient survival and response to immune checkpoint blockade. Our findings identify features of the tumor inflammatory milieu associated with immune control of cancer and establish a strategy to predict immunotherapy outcomes.


Subject(s)
Immune Checkpoint Inhibitors/therapeutic use , Inflammation/immunology , Neoplasms/immunology , Tumor Escape/immunology , Animals , Dinoprostone/metabolism , Humans , Immunotherapy , Inflammation/genetics , Interferon-gamma/metabolism , Killer Cells, Natural/immunology , Mice , Neoplasms/therapy , Phenotype , Prognosis , Prostaglandin-Endoperoxide Synthases/genetics , Receptors, Prostaglandin E, EP2 Subtype/metabolism , Receptors, Prostaglandin E, EP4 Subtype/metabolism , T-Lymphocytes, Cytotoxic/immunology , Tumor Microenvironment/immunology
2.
BMC Vet Res ; 20(1): 46, 2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38310284

ABSTRACT

BACKGROUND: Intrauterine devices (IUD) are used in the veterinary practice as the non-pharmacological method of oestrus suppression in mares. When placed in the uterus, IUD create a physical contact with the endometrium that mimics the presence of an equine embryo. However, the mechanism of their action has not been fully elucidated. The objective of the present study was to examine the effect of mechanical stimulation of IUD on mare`s endometrium in both in vitro and in vivo study. For this purpose, we demonstrated the effect of IUD on prostaglandin (PG) F2α and PGE2 secretion, and mRNA transcription of genes involved in PG synthesis pathway in equine endometrial cells in vitro. In the in vivo study, we aimed to compare short-term effect of IUD inserted on day 0 (oestrus) with day 5-6 post-ovulation (the specific time when embryo reaches uterus after fertilization) on PG secretion from equine endometrium. To determine the long-term effect on PG synthase mRNA transcription, a single endometrial biopsy was taken only once within each group of mares at certain time points of the estrous cycle from mares placement with IUD on days 0 or 5-6 post-ovualtion. RESULTS: We showed for the first time that the incubation of the endometrial cells with the presence of IUD altered the pattern of PG synthase mRNA transcription in equine epithelial and stromal endometrial cells. In vivo, in mares placement with IUD on day 0, PGE2 concentrations in blood plasma were upregulated between 1 and 6, and at 10 h after the IUD insertion, compared with the control mares (P < 0.05). Moreover, the decrease of PTGFS mRNA transcription on day 16- 18, associated with an elevation in PTGES mRNA transcription on day 20 -21 of the estrous cycle in endometrial biopsies collected from mares placement with IUD on days 5-6 suggest an antiluteolytic action of IUD during the estrous cycle. CONCLUSION: We conclude that the application of IUD may mimic the equine conceptus presence through the physical contact with the endometrium altering PG synthase transcription, and act as a potent modulator of endometrial PG secretion both in vitro and in vivo.


Subject(s)
Dinoprostone , Intrauterine Devices , Horses/genetics , Animals , Female , Dinoprostone/metabolism , Prostaglandin-Endoperoxide Synthases/genetics , Prostaglandins F/metabolism , Endometrium/metabolism , Intrauterine Devices/veterinary , RNA, Messenger/genetics , RNA, Messenger/metabolism
3.
Biotechnol Bioeng ; 118(7): 2734-2743, 2021 07.
Article in English | MEDLINE | ID: mdl-33851720

ABSTRACT

Prostaglandins (PGs) are the physiologically active compounds synthesized from C20 polyunsaturated fatty acids (PUFAs) by cyclooxygenase (COX) and a series of PG synthases, and are utilized as pharmaceuticals. Currently, commercialized PGs are mainly produced by chemical synthesis under harsh conditions. By contrast, bioproduction of PGs can be an alternative, environmental-friendly, and inexpensive process with genetic engineering of model plants, although these conventional host organisms contain a limited quantity of PG precursors. In this study, we established an efficient PG production process using the genetically engineered microalga Fistulifera solaris which is rich in C20 PUFAs. A cox gene derived from the red alga Agarophyton vermiculophyllum was introduced into F. solaris. As a result, a transformant clone with high cox expression produced PGs (i.e., PGD2 , PGE2 , PGF2α , and 15-ketoPGF2α derived from arachidonic acid, and PGD3 , PGE3 , and PGF3α derived from eicosapentaenoic acid) as revealed by liquid chromatography/mass spectrometry. The total content of PGs was 1290.4 ng/g of dry cell weight, which was higher than that produced in the transgenic plant reported previously. The results obtained in this study indicate that the C20 PUFA-rich microalga functionally expressing COX is a promising host for PG bioproduction.


Subject(s)
Microalgae , Prostaglandin-Endoperoxide Synthases , Prostaglandins , Rhodophyta/genetics , Microalgae/genetics , Microalgae/metabolism , Prostaglandin-Endoperoxide Synthases/biosynthesis , Prostaglandin-Endoperoxide Synthases/genetics , Prostaglandins/biosynthesis , Prostaglandins/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Rhodophyta/enzymology
4.
Am J Physiol Lung Cell Mol Physiol ; 318(5): L943-L952, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32233794

ABSTRACT

Transient receptor potential ankyrin-1 (TRPA1) is a ligand-gated cation channel that responds to endogenous and exogenous irritants. TRPA1 is expressed on multiple cell types throughout the lungs, but previous studies have primarily focused on TRPA1 stimulation of airway sensory nerves. We sought to understand the integrated physiological airway response to TRPA1 stimulation. The TRPA1 agonists allyl isothiocyanate (AITC) and cinnamaldehyde (CINN) were tested in sedated, mechanically ventilated guinea pigs in vivo. Reproducible bronchoconstrictions were induced by electrical stimulation of the vagus nerves. Animals were then treated with intravenous AITC or CINN. AITC and CINN were also tested on isolated guinea pig and mouse tracheas and postmortem human trachealis muscle strips in an organ bath. Tissues were contracted with methacholine, histamine, or potassium chloride and then treated with AITC or CINN. Some airways were pretreated with TRPA1 antagonists, the cyclooxygenase inhibitor indomethacin, the EP2 receptor antagonist PF 04418948, or tetrodotoxin. AITC and CINN blocked vagally mediated bronchoconstriction in guinea pigs. Pretreatment with indomethacin completely abolished the airway response to TRPA1 agonists. Similarly, AITC and CINN dose-dependently relaxed precontracted guinea pig, mouse, and human airways in the organ bath. AITC- and CINN-induced airway relaxation required TRPA1, prostaglandins, and PGE2 receptor activation. TRPA1-induced airway relaxation did not require epithelium or tetrodotoxin-sensitive nerves. Finally, AITC blocked airway hyperreactivity in two animal models of allergic asthma. These data demonstrate that stimulation of TRPA1 causes bronchodilation of intact airways and suggest that the TRPA1 pathway is a potential pharmacological target for bronchodilation.


Subject(s)
Dinoprostone/metabolism , Muscle, Smooth/metabolism , TRPA1 Cation Channel/genetics , Trachea/metabolism , Acrolein/analogs & derivatives , Acrolein/pharmacology , Animals , Bronchoconstriction/drug effects , Electric Stimulation , Gene Expression Regulation , Guinea Pigs , Histamine/pharmacology , Humans , Indomethacin/pharmacology , Isothiocyanates/pharmacology , Male , Methacholine Chloride/pharmacology , Mice , Muscle, Smooth/drug effects , Organ Culture Techniques , Potassium Chloride/pharmacology , Prostaglandin-Endoperoxide Synthases/genetics , Prostaglandin-Endoperoxide Synthases/metabolism , Respiration, Artificial , Signal Transduction , TRPA1 Cation Channel/agonists , TRPA1 Cation Channel/antagonists & inhibitors , TRPA1 Cation Channel/metabolism , Tetrodotoxin/pharmacology , Trachea/drug effects , Vagus Nerve/physiology
5.
Int J Mol Sci ; 21(24)2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33333756

ABSTRACT

Orthodontic tooth movement (OTM) creates compressive and tensile strain in the periodontal ligament, causing circulation disorders. Hypoxia-inducible factor 1α (HIF-1α) has been shown to be primarily stabilised by compression, but not hypoxia in periodontal ligament fibroblasts (PDLF) during mechanical strain, which are key regulators of OTM. This study aimed to elucidate the role of heparan sulfate integrin interaction and downstream kinase phosphorylation for HIF-1α stabilisation under compressive and tensile strain and to which extent downstream synthesis of VEGF and prostaglandins is HIF-1α-dependent in a model of simulated OTM in PDLF. PDLF were subjected to compressive or tensile strain for 48 h. In various setups HIF-1α was experimentally stabilised (DMOG) or destabilised (YC-1) and mechanotransduction was inhibited by surfen and genistein. We found that HIF-1α was not stabilised by tensile, but rather by compressive strain. HIF-1α stabilisation had an inductive effect on prostaglandin and VEGF synthesis. As expected, HIF-1α destabilisation reduced VEGF expression, whereas prostaglandin synthesis was increased. Inhibition of integrin mechanotransduction via surfen or genistein prevented stabilisation of HIF-1α. A decrease in VEGF expression was observed, but not in prostaglandin synthesis. Stabilisation of HIF-1α via integrin mechanotransduction and downstream phosphorylation of kinases seems to be essential for the induction of VEGF, but not prostaglandin synthesis by PDLF during compressive (but not tensile) orthodontic strain.


Subject(s)
Fibroblasts/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mechanotransduction, Cellular , Periodontal Ligament/metabolism , Adolescent , Adult , Cells, Cultured , Female , Fibroblasts/drug effects , Focal Adhesion Kinase 1/antagonists & inhibitors , Genistein/pharmacology , Glycine/analogs & derivatives , Glycine/pharmacology , Glycosaminoglycans/antagonists & inhibitors , Humans , Indazoles/pharmacology , Integrins/antagonists & inhibitors , Male , Mechanotransduction, Cellular/drug effects , Mechanotransduction, Cellular/genetics , Periodontal Ligament/cytology , Periodontal Ligament/drug effects , Phosphorylation , Prostaglandin-Endoperoxide Synthases/genetics , Prostaglandin-Endoperoxide Synthases/metabolism , Prostaglandins/biosynthesis , Prostaglandins/metabolism , Protein Stability/drug effects , Signal Transduction/drug effects , Stress, Mechanical , Tooth Movement Techniques , Urea/analogs & derivatives , Urea/pharmacology , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
6.
BMC Oral Health ; 20(1): 91, 2020 03 29.
Article in English | MEDLINE | ID: mdl-32223750

ABSTRACT

BACKGROUND: Pulpal inflammation is known to be mediated by multiple signaling pathways. However, whether melatonin plays regulatory roles in pulpal inflammation remains unclear. This study aimed at elucidating an in situ expression of melatonin and its receptors in human pulpal tissues, and the contribution of melatonin on the antagonism of lipopolysaccharide (LPS)-infected pulpal fibroblasts. METHODS: Melatonin expression in pulpal tissues harvested from healthy teeth was investigated by immunohistochemical staining. Its receptors, melatonin receptor 1 (MT1) and melatonin receptor 2 (MT2), were also immunostained in pulpal tissues isolated from healthy teeth and inflamed teeth diagnosed with irreversible pulpitis. Morphometric analysis was subsequently performed. After LPS infection of cultured pulpal fibroblasts, cyclo-oxygenase (COX) and interleukin-1 ß (IL-1 ß) transcripts were examined by using reverse transcription-polymerase chain reaction (RT-PCR). Analysis of mRNA expression was performed to investigate an antagonism of LPS stimulation by melatonin via COX and IL-1 ß induction. Mann-Whitney U test and One-way ANOVA were used for statistical analysis to determine a significance level. RESULTS: Melatonin was expressed in healthy pulpal tissue within the odontoblastic zone, cell-rich zone, and in the pulpal connective tissue. Furthermore, in health, strong MT1 and MT2 expression was distributed similarly in all 3 pulpal zones. In contrast, during disease, expression of MT2 was reduced in inflamed pulpal tissues (P-value< 0.001), but not MT1 (P-value = 0.559). Co-culturing of melatonin with LPS resulted in the reduction of COX-2 and IL-1 ß expression in primary pulpal fibroblasts, indicating that melatonin may play an antagonistic role to LPS infection in pulpal fibroblasts. CONCLUSIONS: Human dental pulp abundantly expressed melatonin and its receptors MT1 and MT2 in the odontoblastic layers and pulpal connective tissue layers. Melatonin exerted antagonistic activity against LPS-mediated COX-2 and IL-1 ß induction in pulpal fibroblasts, suggesting its therapeutic potential for pulpal inflammation and a possible role of pulpal melatonin in an immunomodulation via functional melatonin receptors expressed in dental pulp.


Subject(s)
Fibroblasts/metabolism , Lipopolysaccharides/adverse effects , Melatonin/pharmacology , Pulpitis , Humans , Inflammation , Interleukin-1beta/genetics , Prostaglandin-Endoperoxide Synthases/genetics , RNA, Messenger , Reverse Transcriptase Polymerase Chain Reaction
7.
J Cell Biochem ; 120(10): 17080-17097, 2019 10.
Article in English | MEDLINE | ID: mdl-31104317

ABSTRACT

Mangrove ecosystems generate the major biodiversity hotspots of actinobacteria. Among the actinobacteria, Streptomyces species are the prolific producers of bioactive natural products. In this study, with research efforts to discover biopotential compounds from marine actinobacteria, 41 actinobacterial strains were isolated from sediment soil sample of Indian mangrove regions. The phylogeny prediction using the 16S rRNA gene sequences revealed that the isolates were related to Streptomyces. Isolates were further screened based on a two-step process wherein the first step, around nine strains, unveiled the presence of type 1 polyketide synthase gene and dTDP-glucose 4,6-dehydratase gene through polymerase chain reaction. As the second step of the screening process, cell viability assay was performed in RAW264.7 cells to assess the toxicity of extracts. Among all the isolates, Streptomyces rochei strain VITGAP173 was subjected to further analysis. To explore the bioactivities, the organic solvent extraction method was utilized to extract the broth culture of VITGAP173. Inhibition of nitric oxide and cyclooxygenase enzymes upon lipopolysaccharide-induced inflammation were utilized to evaluate the anti-inflammatory efficacy, and the results showed the potency of VITGAP173 in a dose-dependent manner. The extract significantly suppressed the messenger RNA levels of the inflammatory mediators such as tumor necrosis factor-α and interleukin-6 induced by lipopolysaccharide in RAW264.7 macrophages. The presence of several chemical constituents was identified through gas chromatography-mass spectrometry analysis of VITGAP173 extract. To achieve the toxicity analysis, oral administration of VITGAP173 extract in Wistar albino rats was carried out to investigate the biochemical parameters, histopathology which revealed its nontoxic nature.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Edema/drug therapy , Gene Expression/drug effects , Streptomyces/chemistry , Animals , Anti-Inflammatory Agents/isolation & purification , Cell Survival/drug effects , Culture Media, Conditioned/chemistry , Edema/chemically induced , Edema/genetics , Edema/pathology , Female , Freund's Adjuvant/administration & dosage , Freund's Adjuvant/antagonists & inhibitors , Hindlimb , Interleukin-6/antagonists & inhibitors , Interleukin-6/genetics , Lipopolysaccharides/administration & dosage , Lipopolysaccharides/antagonists & inhibitors , Mice , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/biosynthesis , Phylogeny , Prostaglandin-Endoperoxide Synthases/genetics , Prostaglandin-Endoperoxide Synthases/metabolism , RAW 264.7 Cells , RNA, Ribosomal, 16S/genetics , Rats , Rats, Wistar , Soil Microbiology , Streptomyces/classification , Streptomyces/genetics , Streptomyces/metabolism , Toxicity Tests, Acute , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/biosynthesis , Tumor Necrosis Factor-alpha/genetics , Wetlands
8.
Cancer Metastasis Rev ; 37(2-3): 257-267, 2018 09.
Article in English | MEDLINE | ID: mdl-29858741

ABSTRACT

Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer-related death in the USA. It is of practical importance to identify novel therapeutic targets of CRC to develop new anti-cancer drugs and to discover novel biomarkers of CRC to develop new detection methods. Eicosanoids, which are metabolites of polyunsaturated fatty acids produced by cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) enzymes, are important lipid-signaling molecules involved in the regulation of inflammation and tumorigenesis. Substantial studies have shown that the profiles of eicosanoids are deregulated in CRC, and the enzymes, metabolites, and receptors in the eicosanoid signaling cascade play critical roles in regulating colonic inflammation and colon tumorigenesis. In this review, we discuss the roles of the COX, LOX, and CYP pathways in the carcinogenesis of CRC.


Subject(s)
Cell Transformation, Neoplastic/metabolism , Colorectal Neoplasms/etiology , Colorectal Neoplasms/metabolism , Eicosanoids/metabolism , Signal Transduction , Animals , Cell Transformation, Neoplastic/genetics , Colitis/complications , Colitis/metabolism , Colorectal Neoplasms/pathology , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Epoxide Hydrolases/genetics , Epoxide Hydrolases/metabolism , Humans , Lipid Metabolism , Lipoxygenase/genetics , Lipoxygenase/metabolism , Obesity/complications , Obesity/metabolism , Prostaglandin-Endoperoxide Synthases/genetics , Prostaglandin-Endoperoxide Synthases/metabolism
9.
Am J Physiol Gastrointest Liver Physiol ; 317(5): G716-G726, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31482734

ABSTRACT

Macrophage-based immune dysregulation plays a critical role in development of delayed gastric emptying in diabetic mice. Loss of anti-inflammatory macrophages and increased expression of genes associated with pro-inflammatory macrophages has been reported in full-thickness gastric biopsies from gastroparesis patients. We aimed to determine broader protein expression (proteomics) and protein-based signaling pathways in gastric biopsies of diabetic (DG) and idiopathic gastroparesis (IG) patients. Additionally, we determined correlations between protein expressions, gastric emptying, and symptoms. Full-thickness gastric antrum biopsies were obtained from nine DG patients, seven IG patients, and five nondiabetic controls. Aptamer-based SomaLogic tissue scan that quantitatively identifies 1,305 human proteins was used. Protein fold changes were computed, and differential expressions were calculated using Limma. Ingenuity pathway analysis and correlations were carried out. Multiple-testing corrected P < 0.05 was considered statistically significant. Seventy-three proteins were differentially expressed in DG, 132 proteins were differentially expressed in IG, and 40 proteins were common to DG and IG. In both DG and IG, "Role of Macrophages, Fibroblasts and Endothelial Cells" was the most statistically significant altered pathway [DG false discovery rate (FDR) = 7.9 × 10-9; IG FDR = 6.3 × 10-12]. In DG, properdin expression correlated with GCSI bloating (r = -0.99, FDR = 0.02) and expressions of prostaglandin G/H synthase 2, protein kinase C-ζ type, and complement C2 correlated with 4 h gastric retention (r = -0.97, FDR = 0.03 for all). No correlations were found between proteins and symptoms or gastric emptying in IG. Protein expression changes suggest a central role of macrophage-driven immune dysregulation in gastroparesis, specifically, complement activation in diabetic gastroparesis.NEW & NOTEWORTHY This study uses SOMAscan, a novel proteomics assay for determination of altered proteins and associated molecular pathways in human gastroparesis. Seventy-three proteins were changed in diabetic gastroparesis, 132 in idiopathic gastroparesis compared with controls. Forty proteins were common in both. Macrophage-based immune dysregulation pathway was most significantly affected in both diabetic and idiopathic gastroparesis. Proteins involved in the complement and prostaglandin synthesis pathway were associated with symptoms and gastric emptying delay in diabetic gastroparesis.


Subject(s)
Diabetes Complications/genetics , Gastroparesis/genetics , Proteome/genetics , Adult , Aged , Complement C2/genetics , Complement C2/metabolism , Diabetes Complications/metabolism , Diabetes Complications/physiopathology , Endothelial Cells/metabolism , Female , Fibroblasts/metabolism , Gastric Emptying , Gastroparesis/etiology , Gastroparesis/metabolism , Gastroparesis/physiopathology , Humans , Macrophages/metabolism , Male , Middle Aged , Prostaglandin-Endoperoxide Synthases/genetics , Prostaglandin-Endoperoxide Synthases/metabolism , Protein Kinase C/genetics , Protein Kinase C/metabolism , Proteome/metabolism
10.
BMC Vet Res ; 15(1): 203, 2019 Jun 14.
Article in English | MEDLINE | ID: mdl-31200703

ABSTRACT

BACKGROUND: Prostaglandin F2α (PGF2α) is an important component for the physiology of female reproductive processes. In the literature, the data pertaining to the synthesis and action of PGF2α in early embryonic bovine development are limited. In our study, we used the bovine in vitro culture model based on the time of first cleavage to determine the mRNA expression and immunolocalization of PGF2α synthase and its receptor in bovine embryos from the 2-cell stage to the hatched blastocyst stage. We also evaluated PGF2α production at 2, 5 and 7 days of in vitro culture. RESULTS: We found a significantly higher proportion of blastocysts obtained from the early-cleaved embryos than from the late-cleaved embryos (37.7% vs. 26.1% respectively, P < 0.05). The PGFS mRNA expression was significantly higher in the late-cleaved group than in the early-cleaved group at the 2-, 4- and 16-cell stages (P < 0.05). For PTGFR, we observed that within the late-cleaved group, the mRNA abundance was significantly higher in embryos at the 2- and 16-cell stages than in embryos at the 4- and 8-cell stages (P < 0.05). We observed that PTGFR mRNA expression was significantly higher in the 2- and 16-cell embryos in the late-cleaved group than that in the early-cleaved group embryos (P < 0.05). Among the blastocysts, the PGFS and PTGFR expression levels showed a trend towards higher mRNA expression in the late-cleaved group than in the early-cleaved group. Analysis of PGF2α production showed that within the early-cleaved group, the content of PGF2α in the in vitro culture medium was significantly higher on day 7 than it was on day 2 (P < 0.05). CONCLUSIONS: The mRNA expression levels of PGF2α synthase and its receptor depend on the developmental stage and the embryo quality. Analyses of PGFS and PTGFR expression in bovine blastocysts and of PGF2α embryo production suggest that prostaglandin F2α can act in an autocrine and paracrine manner in bovine in vitro-produced preimplantation embryos. Moreover, the tendency of PTGFR and PGFS mRNA expression to be upregulated in embryos with low developmental potential can indicate a compensation mechanism related to high PGFS and PTGFR mRNA expression levels in low-quality embryos.


Subject(s)
Blastocyst/physiology , Cattle/physiology , Prostaglandins F/metabolism , Receptors, Prostaglandin/metabolism , Animals , Blastocyst/metabolism , Embryo Culture Techniques , Embryonic Development/physiology , Prostaglandin-Endoperoxide Synthases/genetics , Prostaglandin-Endoperoxide Synthases/metabolism , RNA, Messenger/metabolism , Receptors, Prostaglandin/genetics
11.
Biosci Biotechnol Biochem ; 83(4): 774-780, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30585121

ABSTRACT

Cyclooxygenases are responsible for the production of prostaglandin H2 (PGH2) from arachidonic acid. PGH2 can be converted into some bioactive prostaglandins, including prostaglandin F2α (PGF2α), a potent chemical messenger used as a biological regulator in the fields of obstetrics and gynecology. The chemical messenger PGF2α has been industrially produced by chemical synthesis. To develop a biotechnological process, in which PGF2α can be produced by a microorganism, we transformed an oleaginous fungus, Mortierella alpina 1S-4, rich in triacylglycerol consisting of arachidonic acid using a cyclooxygenase gene from a red alga, Gracilaria vermiculophylla. PGF2α was accumulated not only in the mycelia of the transformants but also in the extracellular medium. After 12 days of cultivation approximately 860 ng/g and 6421 µg/L of PGF2α were accumulated in mycelia and the extracellular medium, respectively. The results could facilitate the development of novel fermentative methods for the production of prostanoids using an oleaginous fungus.


Subject(s)
Algal Proteins/genetics , Arachidonic Acid/metabolism , Dinoprost/biosynthesis , Gracilaria/chemistry , Metabolic Engineering/methods , Mortierella/genetics , Prostaglandin-Endoperoxide Synthases/genetics , Agrobacterium tumefaciens/genetics , Agrobacterium tumefaciens/metabolism , Algal Proteins/metabolism , Culture Media/chemistry , Gene Expression , Gracilaria/genetics , Hydroxyprostaglandin Dehydrogenases/genetics , Hydroxyprostaglandin Dehydrogenases/metabolism , Mortierella/metabolism , Mycelium/genetics , Mycelium/metabolism , Plasmids/chemistry , Plasmids/metabolism , Prostaglandin-Endoperoxide Synthases/metabolism , Transformation, Genetic , Transgenes
12.
J Dairy Sci ; 102(8): 7556-7569, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31229286

ABSTRACT

The aim of this study was to investigate whether the ruminal epithelium activates a local inflammatory response following a short-term subacute ruminal acidosis (SARA) challenge. Seven ruminally cannulated, nonpregnant, nonlactating beef heifers, fed a baseline total mixed ration (TMR) with 50:50 forage-to-concentrate ratio, were used in a crossover design with 2 periods and 2 treatments: SARA and control (CON). Induction of SARA included feed restriction (25% of dry matter intake [DMI] for 24 h) followed by a grain overload (30% of baseline DMI) and provision of the full TMR; whereas, the CON group received the TMR ad libitum. Ruminal pH was recorded using indwelling probes, and ruminal lipopolysaccharide (LPS) concentration was measured daily following the challenge until d 6. Biopsies of ruminal papillae from the ventral sac were collected on d 2 and 6 after the grain overload. Transcript abundance of genes associated with acute inflammation was measured by quantitative real-time PCR, normalized to the geometric mean of 3 stable housekeeping genes. Target genes included toll-like receptor-2 (TLR2), TLR4, TLR9, tumor necrosis factor-α (TNFA), prostaglandin endoperoxide synthase-1 (PTGS1), PTGS2 transforming growth factor ß-1 (TGFB1), and 4 intermediate enzymes of leukotriene synthesis (ALOX5, ALOX5AP, LTA4H, and LTC4S). Protein localization and expression of TLR4 were quantified by image analysis of fluorescence intensity. Statistical analysis was performed using as a crossover design with fixed effects of treatment, day, and the treatment × day interaction with the random effect of day within period. Ruminal pH was below 5.6 for 4.5 h/d and below 5.8 for 6.9 h/d in the SARA group compared with 22 and 72 min/d, respectively, for CON. Ruminal LPS concentration peaked on d 2 in SARA heifers at 51,481 endotoxin units (EU)/mL compared with 13,331 EU/mL in CON. Following grain overload, small but statistically significant decreases in the transcriptional abundance of TLR2, TLR4, TNF, PTGS2, ALOX5, and ALOX5AP were seen in SARA versus CON heifers. A functionally relevant decrease in TLR4 expression in SARA heifers compared with CON was confirmed by a decrease in fluorescence intensity of the corresponding protein following immunohistofluorescent staining of papillae. The study results indicate a suppression of the inflammatory response in the ruminal epithelium and suggest that the response is tightly regulated, allowing for tissue recovery and return to homeostasis following SARA.


Subject(s)
Acidosis/veterinary , Cattle Diseases/immunology , Epithelium/immunology , Rumen/immunology , Acidosis/chemically induced , Acidosis/genetics , Acidosis/immunology , Animals , Cattle , Cattle Diseases/chemically induced , Cattle Diseases/genetics , Diet/veterinary , Female , Hydrogen-Ion Concentration , Lipopolysaccharides/adverse effects , Lipopolysaccharides/immunology , Prostaglandin-Endoperoxide Synthases/genetics , Prostaglandin-Endoperoxide Synthases/immunology , Rumen/chemistry , Toll-Like Receptors/genetics , Toll-Like Receptors/immunology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology
13.
Int J Mol Sci ; 20(16)2019 Aug 13.
Article in English | MEDLINE | ID: mdl-31412584

ABSTRACT

Melatonin exerts oncostatic actions and sensitizes tumor cells to chemotherapeutics or radiation. In our study, we investigated the effects of docetaxel, vinorelbine, and radiation on human breast fibroblasts and its modulation by melatonin. Docetaxel or vinorelbine inhibits proliferation and stimulates the differentiation of breast preadipocytes, by increasing C/EBPα and PPARγ expression and by downregulating tumor necrosis factor α (TNFα), interleukin 6 (IL-6), and IL-11 expression. Radiation inhibits both proliferation and differentiation through the downregulation of C/EBPα and PPARγ and by stimulating TNFα expression. In addition, docetaxel and radiation decrease aromatase activity and expression by decreasing aromatase promoter II and cyclooxygenases 1 and 2 (COX-1 and COX-2) expression. Melatonin potentiates the stimulatory effect of docetaxel and vinorelbine on differentiation and their inhibitory effects on aromatase activity and expression, by increasing the stimulatory effect on C/EBPα and PPARγ expression and the downregulation of antiadipogenic cytokines and COX expression. Melatonin also counteracts the inhibitory effect of radiation on differentiation of preadipocytes, by increasing C/EBPα and PPARγ expression and by decreasing TNFα expression. Melatonin also potentiates the inhibitory effect exerted by radiation on aromatase activity and expression by increasing the downregulation of promoter II, and COX-1 and COX-2 expression. Our findings suggest that melatonin modulates regulatory effects induced by chemotherapeutic drugs or radiation on preadipocytes, which makes it a promising adjuvant for chemotherapy and radiotherapy sensibilization.


Subject(s)
Antineoplastic Agents/pharmacology , Cancer-Associated Fibroblasts/drug effects , Cancer-Associated Fibroblasts/radiation effects , Cell Differentiation/drug effects , Cell Differentiation/radiation effects , Melatonin/pharmacology , Radiation, Ionizing , Adipocytes/drug effects , Adipocytes/metabolism , Adipocytes/radiation effects , Aromatase/metabolism , Breast Neoplasms , CCAAT-Enhancer-Binding Protein-alpha/genetics , CCAAT-Enhancer-Binding Protein-alpha/metabolism , Cancer-Associated Fibroblasts/metabolism , Docetaxel/pharmacology , Enzyme Activation/drug effects , Female , Gene Expression Regulation/drug effects , Gene Expression Regulation/radiation effects , Humans , Mammary Glands, Human/cytology , PPAR gamma/genetics , PPAR gamma/metabolism , Prostaglandin-Endoperoxide Synthases/genetics , Prostaglandin-Endoperoxide Synthases/metabolism , Vinorelbine/pharmacology
14.
Molecules ; 24(19)2019 Sep 25.
Article in English | MEDLINE | ID: mdl-31557835

ABSTRACT

Pain is recognized as one of the main symptoms in knee osteoarthritis and is the main reason why patients seek medical attention. Scoparia dulcis has been popularly used to relieve discomfort caused by various painful conditions. The objective of the study is to evaluate the analgesic and anti-inflammatory effect of the crude extract of S. dulcis, in an experimental model of osteoarthritis. The experiment was performed with Wistar rats divided into 4 groups with 5 animals each: healthy, saline, crude extract, and meloxicam groups. Knee osteoarthritis was induced by intra-articular injection of sodium mono-iodoacetate. First, clinical parameters of pain were assessed at days 0, 5, 10, 15, and 20 after induction. Second, the potential cyclooxygenase inhibition was evaluated, and the cytokines of the synovial fluid were quantified. An in silico test and Molecular Docking tests were performed. A histopathological evaluation was made on articular cartilage with safranin O staining. The results showed that a 15-day treatment with crude extract reduced edema, spontaneous pain, peripheral nociceptive activity, and proinflammatory cytokines in the synovial fluid. The highest inhibition of cyclooxygenase 2 in the crude extract occurred at 50 µg/mL. The crude extract of S. dulcis presents therapeutic potential for the treatment of osteoarthritis due to its anti-inflammatory and anti-nociceptive action.


Subject(s)
Osteoarthritis, Knee/drug therapy , Osteoarthritis, Knee/pathology , Plant Extracts/pharmacology , Scoparia/chemistry , Animals , Biomarkers , Cartilage, Articular/drug effects , Cartilage, Articular/pathology , Chromatography, High Pressure Liquid , Cytokines/metabolism , Mice , Osteoarthritis, Knee/etiology , Osteoarthritis, Knee/metabolism , Plant Extracts/chemistry , Prostaglandin-Endoperoxide Synthases/genetics , Prostaglandin-Endoperoxide Synthases/metabolism , Rats , Spectrometry, Mass, Electrospray Ionization
15.
J Lipid Res ; 59(1): 89-101, 2018 01.
Article in English | MEDLINE | ID: mdl-29180445

ABSTRACT

Two prostaglandin (PG) H synthases encoded by Ptgs genes, colloquially known as cyclooxygenase (COX)-1 and COX-2, catalyze the formation of PG endoperoxide H2, the precursor of the major prostanoids. To address the functional interchangeability of these two isoforms and their distinct roles, we have generated COX-2>COX-1 mice whereby Ptgs2 is knocked in to the Ptgs1 locus. We then "flipped" Ptgs genes to successfully create the Reversa mouse strain, where knock-in COX-2 is expressed constitutively and knock-in COX-1 is lipopolysaccharide (LPS) inducible. In macrophages, flipping the two Ptgs genes has no obvious impact on COX protein subcellular localization. COX-1 was shown to compensate for PG synthesis at high concentrations of substrate, whereas elevated LPS-induced PG production was only observed for cells expressing endogenous COX-2. Differential tissue-specific patterns of expression of the knock-in proteins were evident. Thus, platelets from COX-2>COX-1 and Reversa mice failed to express knock-in COX-2 and, therefore, thromboxane (Tx) production in vitro and urinary Tx metabolite formation in COX-2>COX-1 and Reversa mice in vivo were substantially decreased relative to WT and COX-1>COX-2 mice. Manipulation of COXs revealed isoform-specific compensatory functions and variable degrees of interchangeability for PG biosynthesis in cells/tissues.


Subject(s)
Prostaglandin-Endoperoxide Synthases/genetics , Prostaglandin-Endoperoxide Synthases/metabolism , Animals , HEK293 Cells , Humans , Isoenzymes/genetics , Isoenzymes/metabolism , Mice , Mice, Inbred C57BL
16.
J Lipid Res ; 59(1): 102-112, 2018 01.
Article in English | MEDLINE | ID: mdl-29180443

ABSTRACT

Both cyclooxygenase (COX)-1 and COX-2, encoded by Ptgs1 and Ptgs2, function coordinately during inflammation. But the relative contributions and compensations of COX-1 and COX-2 to inflammatory responses remain unanswered. We used three engineered mouse lines where the Ptgs1 and Ptgs2 genes substitute for one another to discriminate the distinct roles and interchangeability of COX isoforms during systemic inflammation. In macrophages, kidneys, and lungs, "flipped" Ptgs genes generate a "reversed" COX expression pattern, where the knock-in COX-2 is expressed constitutively and the knock-in COX-1 is lipopolysaccharide inducible. A panel of eicosanoids detected in serum and kidney demonstrates that prostaglandin (PG) biosynthesis requires native COX-1 and cannot be rescued by the knock-in COX-2. Our data further reveal preferential compensation of COX isoforms for prostanoid production in macrophages and throughout the body, as reflected by urinary PG metabolites. NanoString analysis indicates that inflammatory networks can be maintained by isoform substitution in inflamed macrophages. However, COX-1>COX-2 macrophages show reduced activation of inflammatory signaling pathways, indicating that COX-1 may be replaced by COX-2 within this complex milieu, but not vice versa. Collectively, each COX isoform plays a distinct role subject to subcellular environment and tissue/cell-specific conditions, leading to subtle compensatory differences during systemic inflammation.


Subject(s)
Inflammation/enzymology , Lipids/analysis , Prostaglandin-Endoperoxide Synthases/genetics , Prostaglandin-Endoperoxide Synthases/metabolism , Animals , Inflammation/chemically induced , Isoenzymes/genetics , Isoenzymes/metabolism , Lipopolysaccharides/pharmacology , Mice , Mice, Inbred C57BL , Prostaglandin-Endoperoxide Synthases/chemistry
17.
J Cell Mol Med ; 22(12): 6401-6404, 2018 12.
Article in English | MEDLINE | ID: mdl-30320456

ABSTRACT

Oesophageal adenocarcinoma is one of the most fatal tumours to affect the digestive tract and is the eighth most common malignancy worldwide. Gastro-oesophageal reflux has an important role in the incidence of adenocarcinoma of the oesophagus. Gastro-oesophageal reflux disease (GERD) is a multifactorial, acid-peptic disorder that results from the reflux of noxious material from the stomach into the oesophagus. The refluxed material causes the occurrence of oesophageal inflammation which creates a condition that is called reflux oesophagitis. The prevalence of this disease has increased dramatically in recent decades, mostly in the western world, where it affects about 10% to 30% of the population. The aetiology of oesophageal mucosal damage is complicated. Many inflammatory mediators are produced within the gastrointestinal (GI) tract, but their contributions in pathophysiology and disease pathogenesis have not been well investigated. Despite the protective barrier provided by the oesophageal mucosa, refluxed materials can cause oxidative injury and in?ammatory responses that involve the epithelium and immune cells. The analysing cellular events in gastro- oesophageal reflux disease and physiological responses to such conditions are important and necessary for a better grasp of the pathogenesis of GERD and the expansion of new treatments. Therefore, we want to discuss some of the important and key factors of GERD disease in this article.


Subject(s)
Adenocarcinoma/genetics , Esophageal Neoplasms/genetics , Esophagus/pathology , Gastroesophageal Reflux/genetics , Adenocarcinoma/pathology , Epithelium/pathology , Esophageal Neoplasms/pathology , Esophagus/metabolism , Gastric Mucosa/metabolism , Gastric Mucosa/pathology , Gastroesophageal Reflux/pathology , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/pathology , Humans , Nitric Oxide Synthase/genetics , Peroxidase/genetics , Prostaglandin-Endoperoxide Synthases/genetics , Prostaglandin-Endoperoxide Synthases/metabolism , Reactive Nitrogen Species/metabolism , Reactive Oxygen Species/metabolism
18.
J Cell Mol Med ; 22(3): 1443-1451, 2018 03.
Article in English | MEDLINE | ID: mdl-29271063

ABSTRACT

The only Na-nutrient cotransporter described in mammalian small intestinal crypt cells is SN2/SNAT5, which facilitates glutamine uptake. In a rabbit model of chronic intestinal inflammation, SN2 stimulation is secondary to an increase in affinity of the cotransporter for glutamine. However, the immune regulation of SN2 in the crypt cells during chronic intestinal inflammation is unknown. We sought to determine the mechanism of regulation of Na-nutrient cotransporter SN2 by arachidonic acid metabolites in crypt cells. The small intestines of New Zealand white male rabbits were inflamed via inoculation with Eimeria magna oocytes. After 2-week incubation, control and inflamed rabbits were subjected to intramuscular injections of arachidonyl trifluoromethyl ketone (ATK), piroxicam and MK886 for 48 hrs. After injections, the rabbits were euthanized and crypt cells from small intestines were harvested and used. RESULTS: Treatment of rabbits with ATK prevented the release of AA and reversed stimulation of SN2. Inhibition of cyclooxygenase (COX) with piroxicam did not affect stimulation of SN2. However, inhibition of lipoxygenase (LOX) with MK886, thus reducing leukotriene formation during chronic enteritis, reversed the stimulation of SN2. Kinetic studies showed that the mechanism of restoration of SN2 by ATK or MK886 was secondary to the restoration of the affinity of the cotransporter for glutamine. For all treatment conditions, Western blot analysis revealed no change in SN2 protein levels. COX inhibition proved ineffective at reversing the stimulation of SN2. Thus, this study provides evidence that SN2 stimulation in crypt cells is mediated by the leukotriene pathway during chronic intestinal inflammation.


Subject(s)
Amino Acid Transport Systems, Neutral/metabolism , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Arachidonic Acids/pharmacology , Coccidiosis/metabolism , Enteritis/metabolism , Indoles/pharmacology , Lipoxygenase Inhibitors/pharmacology , Amino Acid Transport Systems, Neutral/genetics , Animals , Arachidonic Acid/metabolism , Chronic Disease , Coccidiosis/drug therapy , Coccidiosis/parasitology , Coccidiosis/pathology , Eimeria/drug effects , Eimeria/pathogenicity , Eimeria/physiology , Enteritis/drug therapy , Enteritis/parasitology , Enteritis/pathology , Enzyme Inhibitors/pharmacology , Gene Expression Regulation , Glutamine/metabolism , Ileum/drug effects , Ileum/metabolism , Ileum/parasitology , Ileum/pathology , Leukotrienes/metabolism , Lipoxygenase/genetics , Lipoxygenase/metabolism , Male , Prostaglandin-Endoperoxide Synthases/genetics , Prostaglandin-Endoperoxide Synthases/metabolism , Rabbits , Sodium/metabolism
19.
Am J Physiol Heart Circ Physiol ; 315(5): H1091-H1100, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30074834

ABSTRACT

Doxorubicin (DOX) is a widely used drug for cancer treatment as a chemotherapeutic agent. However, the cellular and integrative mechanism of DOX-induced immunometabolism is unclear. Two-month-old male C57BL/6J mice were divided into high- and low-dose DOX-treated groups with a maintained saline control group. The first group was injected with a high dose of DOX (H-DOX; 15 mg·kg-1·wk-1), and the second group was injected with 7.5 mg·kg-1·wk-1 as a latent low dose of DOX (LL-DOX). H-DOX treatment led to complete mortality in 2 wk and 70% survival in the LL-DOX group compared with the saline control group. Therefore, an additional group of mice was injected with an acute high dose of DOX (AH-DOX) and euthanized at 24 h to compare with LL-DOX and saline control groups. The LL-DOX and AH-DOX groups showed obvious apoptosis and dysfunctional and structural changes in cardiac tissue. Splenic contraction was evident in AH-DOX- and LL-DOX-treated mice, indicating the systems-wide impact of DOX on integrative organs of the spleen, which is essential for cardiac homeostasis and repair. DOX dysregulated splenic-enriched immune-sensitive lipoxygenase and cyclooxygenase in the spleen and left ventricle compared with the saline control group. As a result, lipoxygenase-dependent D- and E-series resolvin precursors, such as 16HDoHE, 4HDoHE, and 12-HEPE, as well as cyclooxygenase-mediated PG species (PGD2, PGE2, and 6-keto-PG2α) were decreased in the left ventricle, suggestive of defective immunometabolism. Both AH-DOX and LL-DOX induced splenic contraction and expansion of red pulp with decreased CD169+ metallophilic macrophages. AH-DOX intoxicated macrophages in the spleen by depleting CD169+ cells in the acute setting and sustained the splenic macrophage loss in the chronic phase in the LL-DOX group. Thus, DOX triggers a vicious cycle of splenocardiac cachexia to facilitate defective immunometabolism and irreversible macrophage toxicity and thereby impaired the inflammation-resolution program. NEW & NOTEWORTHY Doxorubicin (DOX) triggered splenic mass loss and decreased CD169 with germinal center contraction in acute and chronic exposure. Cardiac toxicity of DOX is marked with dysregulation of immunometabolism and thereby impaired resolution of inflammation. DOX suppressed physiological levels of cytokines and chemokines with signs of splenocardiac cachexia.


Subject(s)
Antibiotics, Antineoplastic/toxicity , Cachexia/chemically induced , Doxorubicin/toxicity , Heart Diseases/chemically induced , Heart Ventricles/drug effects , Lipoxygenase/metabolism , Macrophages/drug effects , Prostaglandin-Endoperoxide Synthases/metabolism , Spleen/drug effects , Splenic Diseases/chemically induced , Animals , Apoptosis/drug effects , Cachexia/enzymology , Cachexia/immunology , Cachexia/pathology , Cardiotoxicity , Cytokines/genetics , Cytokines/metabolism , Dose-Response Relationship, Drug , Fibrosis , Gene Expression Regulation, Enzymologic , Heart Diseases/enzymology , Heart Diseases/immunology , Heart Diseases/pathology , Heart Ventricles/enzymology , Heart Ventricles/immunology , Heart Ventricles/pathology , Lipoxygenase/genetics , Macrophages/enzymology , Macrophages/immunology , Macrophages/pathology , Male , Mice, Inbred C57BL , Myocardium/enzymology , Myocardium/immunology , Myocardium/pathology , Organ Size , Prostaglandin-Endoperoxide Synthases/genetics , Signal Transduction/drug effects , Spleen/enzymology , Spleen/immunology , Spleen/pathology , Splenic Diseases/enzymology , Splenic Diseases/immunology , Splenic Diseases/pathology , Time Factors , Ventricular Function, Left/drug effects , Ventricular Remodeling/drug effects
20.
Biol Reprod ; 99(2): 446-460, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29272338

ABSTRACT

Sexual behavior in teleost fish is highly plastic. It can be attributed to the relatively few sex differences found in adult brain transcriptomes. Environmental and hormonal factors can influence sex-specific behavior. Androgen treatment stimulates behavioral masculinization. Sex dimorphic gene expression in developing teleost brains and the molecular basis for androgen-induced behavioral masculinization are poorly understood. In this study, juvenile zebrafish (Danio rerio) were treated with 100 ng/L of 17 alpha-methyltestosterone (MT) during sexual development from 20 days post fertilization to 40 days and 60 days post fertilization. We compared brain gene expression patterns in MT-treated zebrafish with control males and females using RNA-Seq to shed light on the dynamic changes in brain gene expression during sexual development and how androgens affect brain gene expression leading to behavior masculinization. We found modest differences in gene expression between juvenile male and female zebrafish brains. Brain aromatase (cyp19a1b), prostaglandin 3a synthase (ptges3a), and prostaglandin reductase 1 (ptgr1) were among the genes with sexually dimorphic expression patterns. MT treatment significantly altered gene expression relative to both male and female brains. Fewer differences were found among MT-treated brains and male brains compared to female brains, particularly at 60 dpf. MT treatment upregulated the expression of hydroxysteroid 11-beta dehydrogenase 2 (hsd11b2), deiodinase, iodothyronine, type II (dio2), and gonadotrophin releasing hormones (GnRH) 2 and 3 (gnrh2 and gnrh3) suggesting local synthesis of 11-ketotestosterone, triiodothyronine, and GnRHs in zebrafish brains which are influenced by androgens. Androgen, estrogen, prostaglandin, thyroid hormone, and GnRH signaling pathways likely interact to modulate teleost sexual behavior.


Subject(s)
Brain/metabolism , Gene Expression , Methyltestosterone/pharmacology , Sex Characteristics , Sex Differentiation/physiology , Sexual Behavior, Animal/physiology , Zebrafish Proteins/metabolism , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Animals , Aromatase/genetics , Aromatase/metabolism , Brain/drug effects , Female , Male , Prostaglandin-Endoperoxide Synthases/genetics , Prostaglandin-Endoperoxide Synthases/metabolism , Sexual Behavior, Animal/drug effects , Zebrafish , Zebrafish Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL