Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46.090
Filter
Add more filters

Publication year range
1.
Annu Rev Biochem ; 93(1): 211-231, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38603556

ABSTRACT

Almost all outer membrane proteins (OMPs) in Gram-negative bacteria contain a ß-barrel domain that spans the outer membrane (OM). To reach the OM, OMPs must be translocated across the inner membrane by the Sec machinery, transported across the crowded periplasmic space through the assistance of molecular chaperones, and finally assembled (folded and inserted into the OM) by the ß-barrel assembly machine. In this review, we discuss how considerable new insights into the contributions of these factors to OMP biogenesis have emerged in recent years through the development of novel experimental, computational, and predictive methods. In addition, we describe recent evidence that molecular machines that were thought to function independently might interact to form dynamic intermembrane supercomplexes. Finally, we discuss new results that suggest that OMPs are inserted primarily near the middle of the cell and packed into supramolecular structures (OMP islands) that are distributed throughout the OM.


Subject(s)
Bacterial Outer Membrane Proteins , Molecular Chaperones , Bacterial Outer Membrane Proteins/metabolism , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/chemistry , Molecular Chaperones/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/chemistry , Protein Transport , Protein Folding , Gram-Negative Bacteria/metabolism , Gram-Negative Bacteria/genetics , Bacterial Outer Membrane/metabolism , Models, Molecular , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/chemistry , SEC Translocation Channels/metabolism , SEC Translocation Channels/genetics , SEC Translocation Channels/chemistry , Periplasm/metabolism
2.
Cell ; 186(5): 1039-1049.e17, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36764293

ABSTRACT

Hsp60 chaperonins and their Hsp10 cofactors assist protein folding in all living cells, constituting the paradigmatic example of molecular chaperones. Despite extensive investigations of their structure and mechanism, crucial questions regarding how these chaperonins promote folding remain unsolved. Here, we report that the bacterial Hsp60 chaperonin GroEL forms a stable, functionally relevant complex with the chaperedoxin CnoX, a protein combining a chaperone and a redox function. Binding of GroES (Hsp10 cofactor) to GroEL induces CnoX release. Cryoelectron microscopy provided crucial structural information on the GroEL-CnoX complex, showing that CnoX binds GroEL outside the substrate-binding site via a highly conserved C-terminal α-helix. Furthermore, we identified complexes in which CnoX, bound to GroEL, forms mixed disulfides with GroEL substrates, indicating that CnoX likely functions as a redox quality-control plugin for GroEL. Proteins sharing structural features with CnoX exist in eukaryotes, suggesting that Hsp60 molecular plugins have been conserved through evolution.


Subject(s)
Molecular Chaperones , Protein Folding , Cryoelectron Microscopy , Molecular Chaperones/metabolism , Oxidation-Reduction , Chaperonins/chemistry , Chaperonins/metabolism , Chaperonin 60/chemistry , Chaperonin 10/metabolism
3.
Annu Rev Biochem ; 91: 651-678, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35287476

ABSTRACT

The endoplasmic reticulum (ER) is the site of membrane protein insertion, folding, and assembly in eukaryotes. Over the past few years, a combination of genetic and biochemical studies have implicated an abundant factor termed the ER membrane protein complex (EMC) in several aspects of membrane protein biogenesis. This large nine-protein complex is built around a deeply conserved core formed by the EMC3-EMC6 subcomplex. EMC3 belongs to the universally conserved Oxa1 superfamily of membrane protein transporters, whereas EMC6 is an ancient, widely conserved obligate partner. EMC has an established role in the insertion of transmembrane domains (TMDs) and less understood roles during the later steps of membrane protein folding and assembly. Several recent structures suggest hypotheses about the mechanism(s) of TMD insertion by EMC, with various biochemical and proteomics studies beginning to reveal the range of EMC's membrane protein substrates.


Subject(s)
Endoplasmic Reticulum , Membrane Proteins , Endoplasmic Reticulum/metabolism , Membrane Proteins/metabolism , Protein Biosynthesis , Protein Domains , Protein Folding
4.
Cell ; 185(7): 1107-1109, 2022 03 31.
Article in English | MEDLINE | ID: mdl-35325591

ABSTRACT

How do bacteria assemble transmembrane ß-barrels into their outer membrane in the absence of an energy source? New structures and experiments from Doyle et al. suggest that the ß-barrel assembly machinery (BAM) co-opts the power of membrane elastic tension to help complete the folding of ß-barrel outer membrane proteins.


Subject(s)
Bacterial Outer Membrane Proteins , Escherichia coli Proteins , Bacteria/metabolism , Bacterial Outer Membrane Proteins/metabolism , Escherichia coli Proteins/metabolism , Protein Folding
5.
Cell ; 185(25): 4679-4681, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36493750

ABSTRACT

Chaperones are important for protein folding, but visualizing this process has proven to be exceptionally difficult. In this issue of Cell, Frydman and colleagues have succeeded in watching tubulin being folded by its chaperonin TRiC at near-atomic resolution.


Subject(s)
Chaperonin Containing TCP-1 , Protein Folding , Tubulin , Chaperonin Containing TCP-1/metabolism , Tubulin/metabolism
6.
Cell ; 185(7): 1143-1156.e13, 2022 03 31.
Article in English | MEDLINE | ID: mdl-35294859

ABSTRACT

Transmembrane ß barrel proteins are folded into the outer membrane (OM) of Gram-negative bacteria by the ß barrel assembly machinery (BAM) via a poorly understood process that occurs without known external energy sources. Here, we used single-particle cryo-EM to visualize the folding dynamics of a model ß barrel protein (EspP) by BAM. We found that BAM binds the highly conserved "ß signal" motif of EspP to correctly orient ß strands in the OM during folding. We also found that the folding of EspP proceeds via "hybrid-barrel" intermediates in which membrane integrated ß sheets are attached to the essential BAM subunit, BamA. The structures show an unprecedented deflection of the membrane surrounding the EspP intermediates and suggest that ß sheets progressively fold toward BamA to form a ß barrel. Along with in vivo experiments that tracked ß barrel folding while the OM tension was modified, our results support a model in which BAM harnesses OM elasticity to accelerate ß barrel folding.


Subject(s)
Bacterial Outer Membrane Proteins/ultrastructure , Protein Folding , Bacterial Outer Membrane Proteins/metabolism , Cryoelectron Microscopy , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism
7.
Cell ; 185(25): 4770-4787.e20, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36493755

ABSTRACT

The ATP-dependent ring-shaped chaperonin TRiC/CCT is essential for cellular proteostasis. To uncover why some eukaryotic proteins can only fold with TRiC assistance, we reconstituted the folding of ß-tubulin using human prefoldin and TRiC. We find unstructured ß-tubulin is delivered by prefoldin to the open TRiC chamber followed by ATP-dependent chamber closure. Cryo-EM resolves four near-atomic-resolution structures containing progressively folded ß-tubulin intermediates within the closed TRiC chamber, culminating in native tubulin. This substrate folding pathway appears closely guided by site-specific interactions with conserved regions in the TRiC chamber. Initial electrostatic interactions between the TRiC interior wall and both the folded tubulin N domain and its C-terminal E-hook tail establish the native substrate topology, thus enabling C-domain folding. Intrinsically disordered CCT C termini within the chamber promote subsequent folding of tubulin's core and middle domains and GTP-binding. Thus, TRiC's chamber provides chemical and topological directives that shape the folding landscape of its obligate substrates.


Subject(s)
Chaperonin Containing TCP-1 , Tubulin , Humans , Chaperonin Containing TCP-1/chemistry , Tubulin/metabolism , Protein Folding , Proteostasis , Adenosine Triphosphate/metabolism
8.
Cell ; 185(1): 158-168.e11, 2022 01 06.
Article in English | MEDLINE | ID: mdl-34995514

ABSTRACT

Small molecule chaperones have been exploited as therapeutics for the hundreds of diseases caused by protein misfolding. The most successful examples are the CFTR correctors, which transformed cystic fibrosis therapy. These molecules revert folding defects of the ΔF508 mutant and are widely used to treat patients. To investigate the molecular mechanism of their action, we determined cryo-electron microscopy structures of CFTR in complex with the FDA-approved correctors lumacaftor or tezacaftor. Both drugs insert into a hydrophobic pocket in the first transmembrane domain (TMD1), linking together four helices that are thermodynamically unstable. Mutating residues at the binding site rendered ΔF508-CFTR insensitive to lumacaftor and tezacaftor, underscoring the functional significance of the structural discovery. These results support a mechanism in which the correctors stabilize TMD1 at an early stage of biogenesis, prevent its premature degradation, and thereby allosterically rescuing many disease-causing mutations.


Subject(s)
Aminopyridines/metabolism , Benzodioxoles/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Indoles/metabolism , Protein Folding , Aminopyridines/chemistry , Aminopyridines/therapeutic use , Animals , Benzodioxoles/chemistry , Benzodioxoles/therapeutic use , Binding Sites , CHO Cells , Cell Membrane/chemistry , Cell Membrane/metabolism , Cricetulus , Cryoelectron Microscopy , Cystic Fibrosis/drug therapy , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/chemistry , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , HEK293 Cells , Humans , Hydrophobic and Hydrophilic Interactions , Indoles/chemistry , Indoles/therapeutic use , Molecular Chaperones/chemistry , Molecular Chaperones/metabolism , Molecular Chaperones/therapeutic use , Mutation , Protein Domains/genetics , Sf9 Cells , Transfection
9.
Annu Rev Biochem ; 90: 375-401, 2021 06 20.
Article in English | MEDLINE | ID: mdl-33441035

ABSTRACT

Codon usage bias, the preference for certain synonymous codons, is found in all genomes. Although synonymous mutations were previously thought to be silent, a large body of evidence has demonstrated that codon usage can play major roles in determining gene expression levels and protein structures. Codon usage influences translation elongation speed and regulates translation efficiency and accuracy. Adaptation of codon usage to tRNA expression determines the proteome landscape. In addition, codon usage biases result in nonuniform ribosome decoding rates on mRNAs, which in turn influence the cotranslational protein folding process that is critical for protein function in diverse biological processes. Conserved genome-wide correlations have also been found between codon usage and protein structures. Furthermore, codon usage is a major determinant of mRNA levels through translation-dependent effects on mRNA decay and translation-independent effects on transcriptional and posttranscriptional processes. Here, we discuss the multifaceted roles and mechanisms of codon usage in different gene regulatory processes.


Subject(s)
Codon Usage , Gene Expression , Protein Biosynthesis , Protein Folding , Animals , Eukaryota/genetics , Humans , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism , Ribosomes/genetics , Ribosomes/metabolism
10.
Annu Rev Biochem ; 90: 349-373, 2021 06 20.
Article in English | MEDLINE | ID: mdl-33781075

ABSTRACT

Codon-dependent translation underlies genetics and phylogenetic inferences, but its origins pose two challenges. Prevailing narratives cannot account for the fact that aminoacyl-tRNA synthetases (aaRSs), which translate the genetic code, must collectively enforce the rules used to assemble themselves. Nor can they explain how specific assignments arose from rudimentary differentiation between ancestral aaRSs and corresponding transfer RNAs (tRNAs). Experimental deconstruction of the two aaRS superfamilies created new experimental tools with which to analyze the emergence of the code. Amino acid and tRNA substrate recognition are linked to phase transfer free energies of amino acids and arise largely from aaRS class-specific differences in secondary structure. Sensitivity to protein folding rules endowed ancestral aaRS-tRNA pairs with the feedback necessary to rapidly compare alternative genetic codes and coding sequences. These and other experimental data suggest that the aaRS bidirectional genetic ancestry stabilized the differentiation and interdependence required to initiate and elaborate the genetic coding table.


Subject(s)
Amino Acyl-tRNA Synthetases/genetics , Amino Acyl-tRNA Synthetases/metabolism , Evolution, Molecular , Genetic Code , Selection, Genetic , Amino Acids/metabolism , Amino Acyl-tRNA Synthetases/chemistry , Catalysis , Genotype , Phenotype , Phylogeny , Protein Biosynthesis , Protein Folding , Protein Structure, Secondary , RNA, Transfer/genetics , Thermodynamics
11.
Annu Rev Biochem ; 90: 631-658, 2021 06 20.
Article in English | MEDLINE | ID: mdl-33823651

ABSTRACT

Collagen is the most abundant protein in mammals. A unique feature of collagen is its triple-helical structure formed by the Gly-Xaa-Yaa repeats. Three single chains of procollagen make a trimer, and the triple-helical structure is then folded in the endoplasmic reticulum (ER). This unique structure is essential for collagen's functions in vivo, including imparting bone strength, allowing signal transduction, and forming basement membranes. The triple-helical structure of procollagen is stabilized by posttranslational modifications and intermolecular interactions, but collagen is labile even at normal body temperature. Heat shock protein 47 (Hsp47) is a collagen-specific molecular chaperone residing in the ER that plays a pivotal role in collagen biosynthesis and quality control of procollagen in the ER. Mutations that affect the triple-helical structure or result in loss of Hsp47 activity cause the destabilization of procollagen, which is then degraded by autophagy. In this review, we present the current state of the field regarding quality control of procollagen.


Subject(s)
Collagen/chemistry , Fibrosis/metabolism , HSP47 Heat-Shock Proteins/metabolism , Procollagen/chemistry , Procollagen/metabolism , Animals , Collagen/metabolism , Endoplasmic Reticulum/metabolism , Fibrosis/genetics , HSP47 Heat-Shock Proteins/chemistry , HSP47 Heat-Shock Proteins/genetics , Humans , Hydroxylation , Molecular Chaperones/metabolism , Proline/chemistry , Proline/metabolism , Protein Conformation , Protein Folding , Protein Processing, Post-Translational
12.
Annu Rev Biochem ; 90: 581-603, 2021 06 20.
Article in English | MEDLINE | ID: mdl-33823650

ABSTRACT

SNARE proteins and Sec1/Munc18 (SM) proteins constitute the core molecular engine that drives nearly all intracellular membrane fusion and exocytosis. While SNAREs are known to couple their folding and assembly to membrane fusion, the physiological pathways of SNARE assembly and the mechanistic roles of SM proteins have long been enigmatic. Here, we review recent advances in understanding the SNARE-SM fusion machinery with an emphasis on biochemical and biophysical studies of proteins that mediate synaptic vesicle fusion. We begin by discussing the energetics, pathways, and kinetics of SNARE folding and assembly in vitro. Then, we describe diverse interactions between SM and SNARE proteins and their potential impact on SNARE assembly in vivo. Recent work provides strong support for the idea that SM proteins function as chaperones, their essential role being to enable fast, accurate SNARE assembly. Finally, we review the evidence that SM proteins collaborate with other SNARE chaperones, especially Munc13-1, and briefly discuss some roles of SNARE and SM protein deficiencies in human disease.


Subject(s)
SNARE Proteins/chemistry , SNARE Proteins/metabolism , Disease/genetics , Humans , Membrane Fusion , Molecular Chaperones/chemistry , Molecular Chaperones/metabolism , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Munc18 Proteins/chemistry , Munc18 Proteins/metabolism , Mutation , Optical Tweezers , Phosphorylation , Protein Domains , Protein Folding , SNARE Proteins/genetics
13.
Cell ; 184(19): 4857-4873, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34534463

ABSTRACT

The hidden world of amyloid biology has suddenly snapped into atomic-level focus, revealing over 80 amyloid protein fibrils, both pathogenic and functional. Unlike globular proteins, amyloid proteins flatten and stack into unbranched fibrils. Stranger still, a single protein sequence can adopt wildly different two-dimensional conformations, yielding distinct fibril polymorphs. Thus, an amyloid protein may define distinct diseases depending on its conformation. At the heart of this conformational variability lies structural frustrations. In functional amyloids, evolution tunes frustration levels to achieve either stability or sensitivity according to the fibril's biological function, accounting for the vast versatility of the amyloid fibril scaffold.


Subject(s)
Amyloidogenic Proteins/chemistry , Amyloidogenic Proteins/metabolism , Amyloidogenic Proteins/genetics , Animals , Disease/genetics , Evolution, Molecular , Humans , Polymorphism, Genetic , Protein Folding , Protein Stability
14.
Annu Rev Biochem ; 89: 443-470, 2020 06 20.
Article in English | MEDLINE | ID: mdl-32569525

ABSTRACT

Manipulation of individual molecules with optical tweezers provides a powerful means of interrogating the structure and folding of proteins. Mechanical force is not only a relevant quantity in cellular protein folding and function, but also a convenient parameter for biophysical folding studies. Optical tweezers offer precise control in the force range relevant for protein folding and unfolding, from which single-molecule kinetic and thermodynamic information about these processes can be extracted. In this review, we describe both physical principles and practical aspects of optical tweezers measurements and discuss recent advances in the use of this technique for the study of protein folding. In particular, we describe the characterization of folding energy landscapes at high resolution, studies of structurally complex multidomain proteins, folding in the presence of chaperones, and the ability to investigate real-time cotranslational folding of a polypeptide.


Subject(s)
Escherichia coli/genetics , Molecular Chaperones/genetics , Optical Tweezers , Protein Biosynthesis , Proteome/chemistry , Ribosomes/genetics , Escherichia coli/metabolism , Humans , Kinetics , Microscopy, Atomic Force , Models, Molecular , Molecular Chaperones/chemistry , Molecular Chaperones/metabolism , Protein Binding , Protein Folding , Protein Interaction Domains and Motifs , Proteome/biosynthesis , Proteome/genetics , Proteostasis/genetics , Ribosomes/metabolism , Ribosomes/ultrastructure , Thermodynamics
15.
Annu Rev Biochem ; 89: 389-415, 2020 06 20.
Article in English | MEDLINE | ID: mdl-32569518

ABSTRACT

Folding of polypeptides begins during their synthesis on ribosomes. This process has evolved as a means for the cell to maintain proteostasis, by mitigating the risk of protein misfolding and aggregation. The capacity to now depict this cellular feat at increasingly higher resolution is providing insight into the mechanistic determinants that promote successful folding. Emerging from these studies is the intimate interplay between protein translation and folding, and within this the ribosome particle is the key player. Its unique structural properties provide a specialized scaffold against which nascent polypeptides can begin to form structure in a highly coordinated, co-translational manner. Here, we examine how, as a macromolecular machine, the ribosome modulates the intrinsic dynamic properties of emerging nascent polypeptide chains and guides them toward their biologically active structures.


Subject(s)
Escherichia coli/genetics , Molecular Chaperones/genetics , Protein Biosynthesis , Proteome/chemistry , Ribosomes/genetics , Cryoelectron Microscopy , Escherichia coli/metabolism , Humans , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Chaperones/chemistry , Molecular Chaperones/metabolism , Protein Binding , Protein Folding , Protein Interaction Domains and Motifs , Proteome/biosynthesis , Proteome/genetics , Proteostasis/genetics , Proteostasis Deficiencies/genetics , Proteostasis Deficiencies/metabolism , Proteostasis Deficiencies/pathology , Ribosomes/metabolism , Ribosomes/ultrastructure
16.
Annu Rev Biochem ; 89: 21-43, 2020 06 20.
Article in English | MEDLINE | ID: mdl-32569520

ABSTRACT

My coworkers and I have used animal viruses and their interaction with host cells to investigate cellular processes difficult to study by other means. This approach has allowed us to branch out in many directions, including membrane protein characterization, endocytosis, secretion, protein folding, quality control, and glycobiology. At the same time, our aim has been to employ cell biological approaches to expand the fundamental understanding of animal viruses and their pathogenic lifestyles. We have studied mechanisms of host cell entry and the uncoating of incoming viruses as well as the synthesis, folding, maturation, and intracellular movement of viral proteins and molecular assemblies. I have had the privilege to work in institutions in four different countries. The early years in Finland (the University of Helsinki) were followed by 6 years in Germany (European Molecular Biology Laboratory), 16 years in the United States (Yale School of Medicine), and 16 years in Switzerland (ETH Zurich).


Subject(s)
Calnexin/genetics , Calreticulin/genetics , Host-Pathogen Interactions/genetics , Influenza A virus/genetics , Picornaviridae/genetics , Viral Proteins/genetics , Virology/history , Animals , Calnexin/chemistry , Calnexin/metabolism , Calreticulin/chemistry , Calreticulin/metabolism , Cell Line , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/virology , Endosomes/metabolism , Endosomes/virology , Gene Expression Regulation , History, 20th Century , History, 21st Century , Humans , Influenza A virus/metabolism , Picornaviridae/metabolism , Protein Folding , Semliki forest virus/genetics , Semliki forest virus/metabolism , Vesiculovirus/genetics , Vesiculovirus/metabolism , Viral Proteins/chemistry , Viral Proteins/metabolism , Virus Internalization
17.
Annu Rev Biochem ; 89: 529-555, 2020 06 20.
Article in English | MEDLINE | ID: mdl-32097570

ABSTRACT

Protein folding in the cell is mediated by an extensive network of >1,000 chaperones, quality control factors, and trafficking mechanisms collectively termed the proteostasis network. While the components and organization of this network are generally well established, our understanding of how protein-folding problems are identified, how the network components integrate to successfully address challenges, and what types of biophysical issues each proteostasis network component is capable of addressing remains immature. We describe a chemical biology-informed framework for studying cellular proteostasis that relies on selection of interesting protein-folding problems and precise researcher control of proteostasis network composition and activities. By combining these methods with multifaceted strategies to monitor protein folding, degradation, trafficking, and aggregation in cells, researchers continue to rapidly generate new insights into cellular proteostasis.


Subject(s)
Molecular Chaperones/genetics , Molecular Probe Techniques , Proteome/genetics , Proteostasis Deficiencies/genetics , Proteostasis/genetics , Animals , CRISPR-Cas Systems , Gene Expression Regulation , Half-Life , Heat-Shock Response/drug effects , Humans , Molecular Chaperones/metabolism , Protein Aggregates , Protein Engineering/methods , Protein Folding/drug effects , Protein Transport/drug effects , Proteome/chemistry , Proteome/metabolism , Proteostasis/drug effects , Proteostasis Deficiencies/metabolism , Proteostasis Deficiencies/pathology , Signal Transduction , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/pharmacology , Unfolded Protein Response/drug effects
18.
Annu Rev Immunol ; 31: 529-61, 2013.
Article in English | MEDLINE | ID: mdl-23298204

ABSTRACT

The MHC fold is found in proteins that have a range of functions in the maintenance of an organism's health, from immune regulation to fat metabolism. Well adapted for antigen presentation, as seen for peptides in the classical MHC molecules and for lipids in CD1 molecules, the MHC fold has also been modified to perform Fc-receptor activity (e.g., FcRn) and for roles in host homeostasis (e.g., with HFE and ZAG). The more divergent MHC-like molecules, such as some of those that interact with the NKG2D receptor, represent the minimal MHC fold, doing away with the α3 domain and ß2m while maintaining the α1/α2 platform domain for receptor engagement. Viruses have also co-opted the MHC fold for immune-evasive functions. The variations on the theme of a ß-sheet topped by two semiparallel α-helices are discussed in this review, highlighting the fantastic adaptability of this fold for good and for bad.


Subject(s)
Antigen Presentation/immunology , Histocompatibility Antigens Class I/chemistry , Histocompatibility Antigens Class I/physiology , Immunity, Innate , Animals , HLA-G Antigens/metabolism , Histocompatibility Antigens Class I/metabolism , Humans , Mice , Protein Folding , Structure-Activity Relationship , HLA-E Antigens
19.
Nat Rev Mol Cell Biol ; 24(11): 797-815, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37524848

ABSTRACT

Heat shock protein 90 (HSP90) is a chaperone with vital roles in regulating proteostasis, long recognized for its function in protein folding and maturation. A view is emerging that identifies HSP90 not as one protein that is structurally and functionally homogeneous but, rather, as a protein that is shaped by its environment. In this Review, we discuss evidence of multiple structural forms of HSP90 in health and disease, including homo-oligomers and hetero-oligomers, also termed epichaperomes, and examine the impact of stress, post-translational modifications and co-chaperones on their formation. We describe how these variations influence context-dependent functions of HSP90 as well as its interaction with other chaperones, co-chaperones and proteins, and how this structural complexity of HSP90 impacts and is impacted by its interaction with small molecule modulators. We close by discussing recent developments regarding the use of HSP90 inhibitors in cancer and how our new appreciation of the structural and functional heterogeneity of HSP90 invites a re-evaluation of how we discover and implement HSP90 therapeutics for disease treatment.


Subject(s)
HSP90 Heat-Shock Proteins , Molecular Chaperones , HSP90 Heat-Shock Proteins/metabolism , Molecular Chaperones/metabolism , Protein Folding , Proteostasis , Homeostasis
20.
Nat Rev Mol Cell Biol ; 24(12): 912-933, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37684425

ABSTRACT

Despite advances in machine learning-based protein structure prediction, we are still far from fully understanding how proteins fold into their native conformation. The conventional notion that polypeptides fold spontaneously to their biologically active states has gradually been replaced by our understanding that cellular protein folding often requires context-dependent guidance from molecular chaperones in order to avoid misfolding. Misfolded proteins can aggregate into larger structures, such as amyloid fibrils, which perpetuate the misfolding process, creating a self-reinforcing cascade. A surge in amyloid fibril structures has deepened our comprehension of how a single polypeptide sequence can exhibit multiple amyloid conformations, known as polymorphism. The assembly of these polymorphs is not a random process but is influenced by the specific conditions and tissues in which they originate. This observation suggests that, similar to the folding of native proteins, the kinetics of pathological amyloid assembly are modulated by interactions specific to cells and tissues. Here, we review the current understanding of how intrinsic protein conformational propensities are modulated by physiological and pathological interactions in the cell to shape protein misfolding and aggregation pathology.


Subject(s)
Amyloid , Protein Folding , Protein Conformation , Amyloid/metabolism , Peptides , Molecular Chaperones/genetics , Molecular Chaperones/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL