Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 9.491
Filter
Add more filters

Publication year range
1.
Cell ; 168(6): 1041-1052.e18, 2017 03 09.
Article in English | MEDLINE | ID: mdl-28283060

ABSTRACT

Most secreted growth factors and cytokines are functionally pleiotropic because their receptors are expressed on diverse cell types. While important for normal mammalian physiology, pleiotropy limits the efficacy of cytokines and growth factors as therapeutics. Stem cell factor (SCF) is a growth factor that acts through the c-Kit receptor tyrosine kinase to elicit hematopoietic progenitor expansion but can be toxic when administered in vivo because it concurrently activates mast cells. We engineered a mechanism-based SCF partial agonist that impaired c-Kit dimerization, truncating downstream signaling amplitude. This SCF variant elicited biased activation of hematopoietic progenitors over mast cells in vitro and in vivo. Mouse models of SCF-mediated anaphylaxis, radioprotection, and hematopoietic expansion revealed that this SCF partial agonist retained therapeutic efficacy while exhibiting virtually no anaphylactic off-target effects. The approach of biasing cell activation by tuning signaling thresholds and outputs has applications to many dimeric receptor-ligand systems.


Subject(s)
Anaphylaxis/metabolism , Hematopoietic Stem Cells/immunology , Mast Cells/metabolism , Proto-Oncogene Proteins c-kit/metabolism , Signal Transduction , Stem Cell Factor/metabolism , Anaphylaxis/immunology , Animals , Dimerization , Humans , Mast Cells/immunology , Mice , Mice, Inbred C57BL , Models, Molecular , Protein Engineering , Proto-Oncogene Proteins c-kit/agonists , Proto-Oncogene Proteins c-kit/chemistry , Stem Cell Factor/chemistry , Stem Cell Factor/genetics
2.
Cell ; 168(6): 1086-1100.e10, 2017 03 09.
Article in English | MEDLINE | ID: mdl-28283063

ABSTRACT

Innate lymphoid cells (ILCs) represent innate versions of T helper and cytotoxic T cells that differentiate from committed ILC precursors (ILCPs). How ILCPs give rise to mature tissue-resident ILCs remains unclear. Here, we identify circulating and tissue ILCPs in humans that fail to express the transcription factors and cytokine outputs of mature ILCs but have these signature loci in an epigenetically poised configuration. Human ILCPs robustly generate all ILC subsets in vitro and in vivo. While human ILCPs express low levels of retinoic acid receptor (RAR)-related orphan receptor C (RORC) transcripts, these cells are found in RORC-deficient patients and retain potential for EOMES+ natural killer (NK) cells, interferon gamma-positive (IFN-γ+) ILC1s, interleukin (IL)-13+ ILC2s, and for IL-22+, but not for IL-17A+ ILC3s. Our results support a model of tissue ILC differentiation ("ILC-poiesis"), whereby diverse ILC subsets are generated in situ from systemically distributed ILCPs in response to local environmental signals.


Subject(s)
Lymphocytes/cytology , Stem Cells/cytology , Animals , Antigens, CD34/analysis , Cell Differentiation , Cell Lineage , Fetal Blood/cytology , Fetus/cytology , Humans , Immunity, Innate , Interleukin-17 , Liver/cytology , Lung/cytology , Lymphocytes/immunology , Lymphoid Tissue/cytology , Mice , Proto-Oncogene Proteins c-kit/analysis , Transcription, Genetic
3.
Nat Immunol ; 20(8): 992-1003, 2019 08.
Article in English | MEDLINE | ID: mdl-31263279

ABSTRACT

Here we identify a group 2 innate lymphoid cell (ILC2) subpopulation that can convert into interleukin-17 (IL-17)-producing NKp44- ILC3-like cells. c-Kit and CCR6 define this ILC2 subpopulation that exhibits ILC3 features, including RORγt, enabling the conversion into IL-17-producing cells in response to IL-1ß and IL-23. We also report a role for transforming growth factor-ß in promoting the conversion of c-Kit- ILC2s into RORγt-expressing cells by inducing the upregulation of IL23R, CCR6 and KIT messenger RNA in these cells. This switch was dependent on RORγt and the downregulation of GATA-3. IL-4 was able to reverse this event, supporting a role for this cytokine in maintaining ILC2 identity. Notably, this plasticity has physiological relevance because a subset of RORγt+ ILC2s express the skin-homing receptor CCR10, and the frequencies of IL-17-producing ILC3s are increased at the expense of ILC2s within the lesional skin of patients with psoriasis.


Subject(s)
Interleukin-17/immunology , Lymphocytes/immunology , Psoriasis/pathology , Skin/pathology , Cells, Cultured , Humans , Interleukin-1beta/immunology , Interleukin-23 Subunit p19/immunology , Interleukin-4/immunology , Lymphocytes/cytology , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Proto-Oncogene Proteins c-kit/metabolism , Psoriasis/immunology , Receptors, CCR10/metabolism , Skin/immunology , Transforming Growth Factor beta/metabolism
4.
Cell ; 161(6): 1248-51, 2015 Jun 04.
Article in English | MEDLINE | ID: mdl-26046435

ABSTRACT

Epigenetic reprogramming in the germline resets genomic potential and erases epigenetic memory. Three studies by Gkountela et al., Guo et al., and Tang et al. analyze the transcriptional and epigenetic landscape of human primordial germ cells, revealing a unique transcriptional network and progressive and conserved global erasure of DNA methylation.


Subject(s)
Cell Differentiation , Genomic Imprinting , Germ Cells/metabolism , Germ Cells/physiology , Proto-Oncogene Proteins c-kit/metabolism , Female , Humans , Male
5.
Immunity ; 53(2): 319-334.e6, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32814027

ABSTRACT

Neutrophils are the most abundant peripheral immune cells and thus, are continually replenished by bone marrow-derived progenitors. Still, how newly identified neutrophil subsets fit into the bone marrow neutrophil lineage remains unclear. Here, we use mass cytometry to show that two recently defined human neutrophil progenitor populations contain a homogeneous progenitor subset we term "early neutrophil progenitors" (eNePs) (Lin-CD66b+CD117+CD71+). Surface marker- and RNA-expression analyses, together with in vitro colony formation and in vivo adoptive humanized mouse transfers, indicate that eNePs are the earliest human neutrophil progenitors. Furthermore, we identified CD71 as a marker associated with the earliest neutrophil developmental stages. Expression of CD71 marks proliferating neutrophils, which were expanded in the blood of melanoma patients and detectable in blood and tumors from lung cancer patients. In summary, we establish CD117+CD71+ eNeP as the inceptive human neutrophil progenitor and propose a refined model of the neutrophil developmental lineage in bone marrow.


Subject(s)
Antigens, CD/metabolism , Bone Marrow Cells/cytology , Myeloid Progenitor Cells/metabolism , Neutrophils/cytology , Proto-Oncogene Proteins c-kit/metabolism , Receptors, Transferrin/metabolism , Adoptive Transfer , Animals , Bone Marrow/metabolism , Cell Lineage , Humans , Male , Melanoma/blood , Mice , Mice, Inbred NOD , Myeloid Progenitor Cells/cytology
6.
Immunity ; 49(3): 464-476.e4, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30193847

ABSTRACT

According to the established model of murine innate lymphoid cell (ILC) development, helper ILCs develop separately from natural killer (NK) cells. However, it is unclear how helper ILCs and NK cells develop in humans. Here we elucidated key steps of NK cell, ILC2, and ILC3 development within human tonsils using ex vivo molecular and functional profiling and lineage differentiation assays. We demonstrated that while tonsillar NK cells, ILC2s, and ILC3s originated from a common CD34-CD117+ ILC precursor pool, final steps of ILC2 development deviated independently and became mutually exclusive from those of NK cells and ILC3s, whose developmental pathways overlapped. Moreover, we identified a CD34-CD117+ ILC precursor population that expressed CD56 and gave rise to NK cells and ILC3s but not to ILC2s. These data support a model of human ILC development distinct from the mouse, whereby human NK cells and ILC3s share a common developmental pathway separate from ILC2s.


Subject(s)
Killer Cells, Natural/immunology , Lymphocytes/immunology , Palatine Tonsil/immunology , Animals , Antigens, CD34/metabolism , CD56 Antigen/metabolism , Cell Differentiation , Cell Lineage , Cells, Cultured , Gene Expression Profiling , Humans , Immunity, Innate , Lymphocyte Activation , Mice , Proto-Oncogene Proteins c-kit/metabolism
7.
Mol Cell ; 72(3): 413-425.e5, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30293784

ABSTRACT

c-Kit is a classic proto-oncogene either mutated or upregulated in cancer cells, and this leads to its constitutive kinase activation and, thus, to uncontrolled proliferation. Although the pro-oncogenic role of c-Kit is of no doubt, some observations do not fit well with c-Kit solely as a tumor-promoting moiety. We show here that c-Kit actively triggers cell death in various cancer cell lines unless engaged by its ligand stem cell factor (SCF). This pro-death activity is enhanced when the kinase activation of c-Kit is silenced and is due to c-Kit intracellular cleavage by caspase-like protease at D816. Moreover, in vivo, overexpression of a c-Kit kinase-dead mutant inhibits tumor growth, and this intrinsic c-Kit tumor-suppressive activity is dependent on the D816 cleavage. Thus, c-Kit acts both as a proto-oncogene via its kinase activity and as a tumor suppressor via its dependence receptor activity.


Subject(s)
Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/physiology , Animals , Apoptosis , Cell Division , Cell Line, Tumor , Female , Humans , Mice , Mice, SCID , Phosphorylation , Proto-Oncogene Mas , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-kit/metabolism , Proto-Oncogenes , Stem Cell Factor/metabolism
8.
Proc Natl Acad Sci U S A ; 120(13): e2300054120, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36943885

ABSTRACT

The receptor tyrosine kinase KIT and its ligand stem cell factor (SCF) are required for the development of hematopoietic stem cells, germ cells, and other cells. A variety of human cancers, such as acute myeloid leukemia, gastrointestinal stromal tumor, and mast cell leukemia, are driven by somatic gain-of-function KIT mutations. Here, we report cryo electron microscopy (cryo-EM) structural analyses of full-length wild-type and two oncogenic KIT mutants, which show that the overall symmetric arrangement of the extracellular domain of ligand-occupied KIT dimers contains asymmetric D5 homotypic contacts juxtaposing the plasma membrane. Mutational analysis of KIT reveals in D5 region an "Achilles heel" for therapeutic intervention. A ligand-sensitized oncogenic KIT mutant exhibits a more comprehensive and stable D5 asymmetric conformation. A constitutively active ligand-independent oncogenic KIT mutant adopts a V-shaped conformation solely held by D5-mediated contacts. Binding of SCF to this mutant fully restores the conformation of wild-type KIT dimers, including the formation of salt bridges responsible for D4 homotypic contacts and other hallmarks of SCF-induced KIT dimerization. These experiments reveal an unexpected structural plasticity of oncogenic KIT mutants and a therapeutic target in D5.


Subject(s)
Neoplasms , Proto-Oncogene Proteins c-kit , Humans , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/metabolism , Ligands , Cryoelectron Microscopy , Receptor Protein-Tyrosine Kinases/metabolism , Stem Cell Factor/genetics , Stem Cell Factor/metabolism , Phosphorylation
9.
Nature ; 575(7781): 229-233, 2019 11.
Article in English | MEDLINE | ID: mdl-31666694

ABSTRACT

Epigenetic aberrations are widespread in cancer, yet the underlying mechanisms and causality remain poorly understood1-3. A subset of gastrointestinal stromal tumours (GISTs) lack canonical kinase mutations but instead have succinate dehydrogenase (SDH) deficiency and global DNA hyper-methylation4,5. Here, we associate this hyper-methylation with changes in genome topology that activate oncogenic programs. To investigate epigenetic alterations systematically, we mapped DNA methylation, CTCF insulators, enhancers, and chromosome topology in KIT-mutant, PDGFRA-mutant and SDH-deficient GISTs. Although these respective subtypes shared similar enhancer landscapes, we identified hundreds of putative insulators where DNA methylation replaced CTCF binding in SDH-deficient GISTs. We focused on a disrupted insulator that normally partitions a core GIST super-enhancer from the FGF4 oncogene. Recurrent loss of this insulator alters locus topology in SDH-deficient GISTs, allowing aberrant physical interaction between enhancer and oncogene. CRISPR-mediated excision of the corresponding CTCF motifs in an SDH-intact GIST model disrupted the boundary between enhancer and oncogene, and strongly upregulated FGF4 expression. We also identified a second recurrent insulator loss event near the KIT oncogene, which is also highly expressed across SDH-deficient GISTs. Finally, we established a patient-derived xenograft (PDX) from an SDH-deficient GIST that faithfully maintains the epigenetics of the parental tumour, including hypermethylation and insulator defects. This PDX model is highly sensitive to FGF receptor (FGFR) inhibition, and more so to combined FGFR and KIT inhibition, validating the functional significance of the underlying epigenetic lesions. Our study reveals how epigenetic alterations can drive oncogenic programs in the absence of canonical kinase mutations, with implications for mechanistic targeting of aberrant pathways in cancers.


Subject(s)
Carcinogenesis/genetics , Chromosome Aberrations , Gastrointestinal Stromal Tumors/genetics , Gastrointestinal Stromal Tumors/pathology , Oncogenes/genetics , Succinate Dehydrogenase/deficiency , Animals , CRISPR-Cas Systems/genetics , DNA Methylation , Enhancer Elements, Genetic/genetics , Epigenesis, Genetic , Fibroblast Growth Factor 4/genetics , Gastrointestinal Stromal Tumors/enzymology , Humans , Mice , Mutation , Proto-Oncogene Proteins c-kit/antagonists & inhibitors , Receptors, Fibroblast Growth Factor/antagonists & inhibitors , Succinate Dehydrogenase/genetics
10.
Genes Dev ; 31(8): 721-723, 2017 04 15.
Article in English | MEDLINE | ID: mdl-28512235

ABSTRACT

Melanocytes present in hair follicles are responsible for their pigmentation. Melanocyte differentiation and hair pigmentation depend on the stem cell factor (SCF)/c-Kit signaling pathway, but the niche that regulates melanocyte differentiation is not well characterized. In this issue of Genes & Development, Liao and colleagues (pp. 744-756) identify Krox20+-derived cells of the hair shaft as the niche and the essential source of SCF required for melanocyte maturation. This study delineates the niche factors regulating melanocyte differentiation and hair pigmentation and opens up new avenues to further characterize the cross-talk between the hair follicle and melanocytes that controls melanocyte maintenance and differentiation.


Subject(s)
Cell Differentiation , Hair Follicle/cytology , Melanocytes/cytology , Animals , Melanocytes/metabolism , Pigmentation/genetics , Pigmentation/physiology , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/metabolism , Signal Transduction , Stem Cell Factor/genetics , Stem Cell Factor/metabolism
11.
Proteomics ; 24(9): e2300309, 2024 May.
Article in English | MEDLINE | ID: mdl-38334196

ABSTRACT

The CD117 mast/stem cell growth factor receptor tyrosine kinase (KIT) is critical for haematopoiesis, melanogenesis and stem cell maintenance. KIT is commonly activated by mutation in cancers including acute myeloid leukaemia, melanoma and gastrointestinal stromal tumours (GISTs). The kinase and the juxtamembrane domains of KIT are mutation hotspots; with the kinase domain mutation D816V common in leukaemia and the juxtamembrane domain mutation V560G common in GISTs. Given the importance of mutant KIT signalling in cancer, we have conducted a proteomic and phosphoproteomic analysis of myeloid progenitor cells expressing D816V- and V560G-KIT mutants, using an FDCP1 isogenic cell line model. Proteomic analysis revealed increased abundance of proteases and growth signalling proteins in KIT-mutant cells compared to empty vector (EV) controls. Pathway analysis identified increased oxidative phosphorylation in D816V- and V560G-mutant KIT cells, which was targetable using the inhibitor IACS010759. Dysregulation of RNA metabolism and cytoskeleton/adhesion pathways was identified in both the proteome and phosphoproteome of KIT-mutant cells. Phosphoproteome analysis further revealed active kinases such as EGFR, ERK and PKC, which were targetable using pharmacological inhibitors. This study provides a pharmaco-phosphoproteomic profile of D816V- and V560G-mutant KIT cells, which reveals novel therapeutic strategies that may be applicable to a range of cancers.


Subject(s)
Mutation , Proteomics , Proto-Oncogene Proteins c-kit , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/metabolism , Humans , Proteomics/methods , Cell Line, Tumor , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Phosphoproteins/genetics , Phosphoproteins/metabolism , Signal Transduction/genetics , Phosphorylation , Proteome/genetics , Proteome/metabolism , Proteome/analysis
12.
Cancer Sci ; 115(3): 894-904, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38178783

ABSTRACT

Approximately 10% of gastrointestinal stromal tumors (GISTs) harbor reportedly no KIT and PDGFRA mutations (wild-type GISTs). The clinicopathological features and oncologic outcomes of wild-type GISTs based on molecular profiles are unknown. We recruited 35 wild-type GIST patients from the two registry studies of high-risk GISTs between 2012 and 2015 and primary GISTs between 2003 and 2014. Molecular profiling of wild-type GISTs was performed by targeted next-generation sequencing (NGS) using formalin-fixed paraffin-embedded tumor samples. Among 35 wild-type GISTs, targeted NGS analysis detected NF1, SDH, or BRAF mutation: 16 NF1-GISTs with various NF1 mutations, 12 SDH-GISTs (4 with SDHA mutations, 4 with SDHB mutations, and 4 with SDHB-negative staining), and 5 BRAF-GISTs with the V600E mutation. Two GISTs showed no mutations based on our targeted NGS analysis. Additional gene mutations were infrequent in primary wild-type GISTs and found in TP53, CREBBP, CDKN2A, and CHEK2. Most NF1-GISTs were located in the small intestine (N = 12; 75%) and showed spindle cell features (N = 15; 94%) and multiple tumors (N = 6, 38%) with modest proliferation activities. In contrast, SDH-GISTs were predominantly found in the stomach (N = 11; 92%), exhibiting epithelioid cell (N = 6; 50%) and multiple (N = 6, 50%) features. The overall survival of patients with SDH-GISTs appeared to be better than that of BRAF-GISTs (p = 0.0107) or NF1-GISTs (p = 0.0754), respectively. In conclusion, major molecular changes in wild-type GISTs include NF1, SDH, and BRAF. NF1-GISTs involved multifocal spindle cell tumors in the small intestine. SDH-GISTs occurred in young patients and were multifocal in the stomach and clinically indolent.


Subject(s)
Gastrointestinal Stromal Tumors , Humans , Gastrointestinal Stromal Tumors/genetics , Gastrointestinal Stromal Tumors/pathology , Mutation , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/metabolism , Receptor Protein-Tyrosine Kinases/genetics , Receptor, Platelet-Derived Growth Factor alpha/genetics , Succinate Dehydrogenase/genetics
13.
Br J Cancer ; 130(4): 526-541, 2024 03.
Article in English | MEDLINE | ID: mdl-38182686

ABSTRACT

BACKGROUND: Imatinib has become an exceptionally effective targeted drug for treating gastrointestinal stromal tumors (GISTs). Despite its efficacy, the resistance to imatinib is common in GIST patients, posing a significant challenge to the effective treatment. METHODS: The expression profiling of TRIM21, USP15, and ACSL4 in GIST patients was evaluated using Western blot and immunohistochemistry. To silence gene expression, shRNA was utilized. Biological function of TRIM21, USP15, and ACSL4 was examined through various methods, including resistance index calculation, colony formation, shRNA interference, and xenograft mouse model. The molecular mechanism of TRIM21 and USP15 in GIST was determined by conducting Western blot, co-immunoprecipitation, and quantitative real-time PCR (qPCR) analyses. RESULTS: Here we demonstrated that downregulation of ACSL4 is associated with imatinib (IM) resistance in GIST. Moreover, clinical data showed that higher levels of ACSL4 expression are positively correlated with favorable clinical outcomes. Mechanistic investigations further indicated that the reduced expression of ACSL4 in GIST is attributed to excessive protein degradation mediated by the E3 ligase TRIM21 and the deubiquitinase USP15. CONCLUSION: These findings demonstrate that the TRIM21 and USP15 control ACSL4 stability to maintain the IM sensitive/resistant status of GIST.


Subject(s)
Antineoplastic Agents , Gastrointestinal Neoplasms , Gastrointestinal Stromal Tumors , Humans , Animals , Mice , Imatinib Mesylate/pharmacology , Imatinib Mesylate/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Gastrointestinal Stromal Tumors/drug therapy , Gastrointestinal Stromal Tumors/genetics , Gastrointestinal Stromal Tumors/pathology , Drug Resistance, Neoplasm/genetics , RNA, Small Interfering/pharmacology , Proto-Oncogene Proteins c-kit/metabolism , Cell Line, Tumor , Gastrointestinal Neoplasms/drug therapy , Gastrointestinal Neoplasms/genetics , Gastrointestinal Neoplasms/metabolism , Ubiquitin-Specific Proteases/pharmacology
14.
Am J Hum Genet ; 108(2): 284-294, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33421400

ABSTRACT

Mastocytosis is a rare myeloid neoplasm characterized by uncontrolled expansion of mast cells, driven in >80% of affected individuals by acquisition of the KIT D816V mutation. To explore the hypothesis that inherited variation predisposes to mastocytosis, we performed a two-stage genome-wide association study, analyzing 1,035 individuals with KIT D816V positive disease and 17,960 healthy control individuals from five European populations. After quality control, we tested 592,007 SNPs at stage 1 and 75 SNPs at stage 2 for association by using logistic regression and performed a fixed effects meta-analysis to combine evidence across the two stages. From the meta-analysis, we identified three intergenic SNPs associated with mastocytosis that achieved genome-wide significance without heterogeneity between cohorts: rs4616402 (pmeta = 1.37 × 10-15, OR = 1.52), rs4662380 (pmeta = 2.11 × 10-12, OR = 1.46), and rs13077541 (pmeta = 2.10 × 10-9, OR = 1.33). Expression quantitative trait analyses demonstrated that rs4616402 is associated with the expression of CEBPA (peQTL = 2.3 × 10-14), a gene encoding a transcription factor known to play a critical role in myelopoiesis. The role of the other two SNPs is less clear: rs4662380 is associated with expression of the long non-coding RNA gene TEX41 (peQTL = 2.55 × 10-11), whereas rs13077541 is associated with the expression of TBL1XR1, which encodes transducin (ß)-like 1 X-linked receptor 1 (peQTL = 5.70 × 10-8). In individuals with available data and non-advanced disease, rs4616402 was associated with age at presentation (p = 0.009; beta = 4.41; n = 422). Additional focused analysis identified suggestive associations between mastocytosis and genetic variation at TERT, TPSAB1/TPSB2, and IL13. These findings demonstrate that multiple germline variants predispose to KIT D816V positive mastocytosis and provide novel avenues for functional investigation.


Subject(s)
Genetic Predisposition to Disease , Genome-Wide Association Study , Mastocytosis/genetics , Polymorphism, Single Nucleotide , Proto-Oncogene Proteins c-kit/genetics , Amino Acid Transport System y+/genetics , CCAAT-Enhancer-Binding Proteins/genetics , DNA, Intergenic , Female , Humans , Interleukin-13/genetics , Introns , Male , RNA, Long Noncoding/genetics , Receptors, Cytoplasmic and Nuclear/genetics , Repressor Proteins/genetics , Telomerase/genetics , Tryptases/genetics
15.
Br J Haematol ; 204(2): 402-414, 2024 02.
Article in English | MEDLINE | ID: mdl-38054381

ABSTRACT

Mastocytosis constitutes the neoplastic proliferation of mast cells and is broadly classified into systemic mastocytosis (SM), cutaneous mastocytosis and mast cell sarcoma. SM is further partitioned into advanced (AdvSM) and non-advanced (SM-non-Adv) subcategories. AdvSM includes aggressive SM (ASM), SM with an associated haematological neoplasm (SM-AHN) and mast cell leukaemia (MCL). In 2022, two separate expert committees representing the 5th edition of the World Health Organization (WHO5) and the International Consensus (ICC) classification systems submitted revised classification criteria for SM, highlighted by the ICC-proposed incorporation of mast cell cytomorphology in the diagnostic criteria for MCL and myeloid-lineage restriction for the AHN component in SM-AHN. Recent developments in SM also include the introduction of KIT-targeting tyrosine kinase inhibitors (KITi), including midostaurin and avapritinib, both drugs have shown potent activity in reducing mast cell and mutant KIT burden and alleviating mast cell-associated organopathy and mediator symptoms; however, their overall impact on survival or superiority over pre-KITi era treatment options (e.g. cladribine) has not been studied in a controlled setting. In the current review, we provide a summary of recent changes in disease classification and an analysis of recent clinical trials and their impact on our current treatment approach in AdvSM.


Subject(s)
Leukemia, Mast-Cell , Mastocytosis, Systemic , Mastocytosis , Humans , Mastocytosis, Systemic/diagnosis , Mast Cells/metabolism , Leukemia, Mast-Cell/drug therapy , Cladribine/therapeutic use , Mastocytosis/metabolism , Proto-Oncogene Proteins c-kit/metabolism
16.
Oncologist ; 29(1): e141-e151, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37463014

ABSTRACT

BACKGROUND: The patient selection for optimal adjuvant therapy in gastrointestinal stromal tumors (GISTs) is provided by nomogram based on tumor size, mitotic index, tumor location, and tumor rupture. Although mutational status is not currently used to risk assessment, tumor genotype showed a prognostic influence on natural history and tumor relapse. Innovative measures, such as KIT/PDGFRA-mutant-specific variant allele frequency (VAF) levels detection from next-generation sequencing (NGS), may act as a surrogate of tumor burden and correlate with prognosis and overall survival of patients with GIST, helping the choice for adjuvant treatment. PATIENTS AND METHODS: This was a multicenter, hospital-based, retrospective/prospective cohort study to investigate the prognostic role of KIT or PDGFRA-VAF of GIST in patients with radically resected localized disease. In the current manuscript, we present the results from the retrospective phase of the study. RESULTS: Two-hundred (200) patients with GIST between 2015 and 2022 afferent to 6 Italian Oncologic Centers in the EURACAN Network were included in the study. The receiver operating characteristic (ROC) curves analysis was used to classify "low" vs. "high" VAF values, further normalized on neoplastic cellularity (nVAF). When RFS between the low and high nVAF groups were compared, patients with GIST with KIT/PDGFRA nVAF > 50% showed less favorable RFS than patients in the group of nVAF ≤ 50% (2-year RFS, 72.6% vs. 93%, respectively; P = .003). The multivariable Cox regression model confirmed these results. In the homogeneous sub-population of intermediate-risk, patients with KIT-mutated GIST, the presence of nVAF >50% was statistically associated with higher disease recurrence. CONCLUSION: In our study, we demonstrated that higher nVAF levels were independent predictors of GIST prognosis and survival in localized GIST patients with tumors harboring KIT or PDGFRA mutations. In the cohort of intermediate-risk patients, nVAF could be helpful to improve prognostication and the use of adjuvant imatinib.


Subject(s)
Antineoplastic Agents , Gastrointestinal Stromal Tumors , Humans , Antineoplastic Agents/therapeutic use , Gastrointestinal Stromal Tumors/drug therapy , Prognosis , Retrospective Studies , Prospective Studies , Proto-Oncogene Proteins c-kit/genetics , Neoplasm Recurrence, Local , Receptor Protein-Tyrosine Kinases/genetics , Mutation , Gene Frequency
17.
Mol Carcinog ; 63(7): 1334-1348, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38629424

ABSTRACT

Gastrointestinal stromal tumors (GISTs) are predominately induced by KIT mutants. In this study, we found that four and a half LIM domains 2 (FHL2) was highly expressed in GISTs and KIT signaling dramatically increased FHL2 transcription while FHL2 inhibited KIT transcription. In addition, our results showed that FHL2 associated with KIT and increased the ubiquitination of both wild-type KIT and primary KIT mutants in GISTs, leading to decreased expression and activation of KIT although primary KIT mutants were less inhibited by FHL2 than wild-type KIT. In the animal experiments, loss of FHL2 expression in mice carrying germline KIT/V558A mutation which can develop GISTs resulted in increased tumor growth, but increased sensitivity of GISTs to imatinib treatment which is used as the first-line targeted therapy of GISTs, suggesting that FHL2 plays a role in the response of GISTs to KIT inhibitor. Unlike wild-type KIT and primary KIT mutants, we further found that FHL2 didn't alter the expression and activation of drug-resistant secondary KIT mutants. Taken together, our results indicated that FHL2 acts as the negative feedback of KIT signaling in GISTs while primary KIT mutants are less sensitive and secondary KIT mutants are resistant to the inhibition of FHL2.


Subject(s)
Gastrointestinal Stromal Tumors , LIM-Homeodomain Proteins , Muscle Proteins , Proto-Oncogene Proteins c-kit , Signal Transduction , Transcription Factors , Gastrointestinal Stromal Tumors/genetics , Gastrointestinal Stromal Tumors/pathology , Gastrointestinal Stromal Tumors/metabolism , Animals , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/metabolism , LIM-Homeodomain Proteins/genetics , LIM-Homeodomain Proteins/metabolism , Humans , Muscle Proteins/genetics , Muscle Proteins/metabolism , Mice , Transcription Factors/genetics , Transcription Factors/metabolism , Mutation , Carcinogenesis/genetics , Gene Expression Regulation, Neoplastic , Imatinib Mesylate/pharmacology , Gastrointestinal Neoplasms/genetics , Gastrointestinal Neoplasms/pathology , Gastrointestinal Neoplasms/metabolism , Cell Line, Tumor , Ubiquitination
18.
Blood ; 140(15): 1667-1673, 2022 10 13.
Article in English | MEDLINE | ID: mdl-35877999

ABSTRACT

Avapritinib, a highly selective inhibitor of KIT D816V, was approved by the Food and Drug Administration in 2021 for treatment of advanced systemic mastocytosis (AdvSM) and by the European Medicines Agency in 2022 for AdvSM after prior systemic therapy. The phase 1 EXPLORER and phase 2 PATHFINDER trials demonstrated that avapritinib can elicit complete and durable clinical responses and molecular remission of KIT D816V. Key management challenges relate to the complex mutational landscape of AdvSM, often found with an associated hematologic neoplasm.


Subject(s)
Mastocytosis, Systemic , Mastocytosis , Humans , Mastocytosis/drug therapy , Mastocytosis, Systemic/drug therapy , Mastocytosis, Systemic/genetics , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-kit/genetics , Pyrazoles/therapeutic use , Pyrroles , Triazines
19.
Exp Dermatol ; 33(5): e15091, 2024 May.
Article in English | MEDLINE | ID: mdl-38711220

ABSTRACT

KIT ligand and its associated receptor KIT serve as a master regulatory system for both melanocytes and mast cells controlling survival, migration, proliferation and activation. Blockade of this pathway results in cell depletion, while overactivation leads to mastocytosis or melanoma. Expression defects are associated with pigmentary and mast cell disorders. KIT ligand regulation is complex but efficient targeting of this system would be of significant benefit to those suffering from melanocytic or mast cell disorders. Herein, we review the known associations of this pathway with cutaneous diseases and the regulators of this system both in skin and in the more well-studied germ cell system. Exogenous agents modulating this pathway will also be presented. Ultimately, we will review potential therapeutic opportunities to help our patients with melanocytic and mast cell disease processes potentially including vitiligo, hair greying, melasma, urticaria, mastocytosis and melanoma.


Subject(s)
Mast Cells , Mastocytosis , Melanocytes , Proto-Oncogene Proteins c-kit , Stem Cell Factor , Humans , Stem Cell Factor/metabolism , Melanocytes/metabolism , Mast Cells/metabolism , Mastocytosis/drug therapy , Mastocytosis/metabolism , Proto-Oncogene Proteins c-kit/metabolism , Melanoma/metabolism , Melanoma/drug therapy , Vitiligo/metabolism , Vitiligo/drug therapy , Vitiligo/therapy , Pigmentation Disorders/drug therapy , Skin Neoplasms/metabolism , Skin Neoplasms/drug therapy , Animals
20.
Allergy ; 79(3): 629-642, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38186079

ABSTRACT

BACKGROUND: Sialic acid-binding immunoglobulin-like lectin (Siglec)-6 and Siglec-8 are closely related mast cell (MC) receptors with broad inhibitory activity, but whose functional differences are incompletely understood. METHODS: Proteomic profiling using quantitative mass spectrometry was performed on primary mouse MCs to identify proteins associated with Siglec-6 and Siglec-8. For functional characterization, each receptor was evaluated biochemically and in ex vivo and in vivo inhibition models of IgE and non-IgE-mediated MC activation in Siglec-6- or Siglec-8-expressing transgenic mice. RESULTS: Siglec-6 and Siglec-8 were found in MCs within large complexes, interacting with 66 and 86 proteins, respectively. Strikingly, Siglec-6 and Siglec-8 interacted with a large cluster of proteins involved in IgE and non-IgE-mediated MC activation, including the high affinity IgE receptor, stem cell factor (SCF) receptor KIT/CD117, IL-4 and IL-33 receptors, and intracellular kinases LYN and JAK1. Protein interaction networks revealed Siglec-6 and Siglec-8 had overlapping yet distinct MC functions, with a potentially broader regulatory role for Siglec-6. Indeed, Siglec-6 preferentially interacted with the mature form of KIT at the cell surface, and treatment with an anti-Siglec-6 antibody significantly inhibited SCF-mediated MC activation more in comparison to targeting Siglec-8. CONCLUSION: These data demonstrate a central role for Siglec-6 and Siglec-8 in controlling MC activation through interactions with multiple activating receptors and key signaling molecules. Our findings suggest that Siglec-6 has a role distinct from that of Siglec-8 in regulating MC function and represents a distinct potential therapeutic target in mast cell-driven diseases.


Subject(s)
Antigens, CD , Mast Cells , Mice , Animals , Antigens, CD/metabolism , Proteomics , Mice, Transgenic , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism , Proto-Oncogene Proteins c-kit/metabolism , Immunoglobulin E/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL