Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 552
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 121(25): e2319903121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38870058

ABSTRACT

Biofilm formation and surface attachment in multiple Alphaproteobacteria is driven by unipolar polysaccharide (UPP) adhesins. The pathogen Agrobacterium tumefaciens produces a UPP adhesin, which is regulated by the intracellular second messenger cyclic diguanylate monophosphate (c-di-GMP). Prior studies revealed that DcpA, a diguanylate cyclase-phosphodiesterase, is crucial in control of UPP production and surface attachment. DcpA is regulated by PruR, a protein with distant similarity to enzymatic domains known to coordinate the molybdopterin cofactor (MoCo). Pterins are bicyclic nitrogen-rich compounds, several of which are produced via a nonessential branch of the folate biosynthesis pathway, distinct from MoCo. The pterin-binding protein PruR controls DcpA activity, fostering c-di-GMP breakdown and dampening its synthesis. Pterins are excreted, and we report here that PruR associates with these metabolites in the periplasm, promoting interaction with the DcpA periplasmic domain. The pteridine reductase PruA, which reduces specific dihydro-pterin molecules to their tetrahydro forms, imparts control over DcpA activity through PruR. Tetrahydromonapterin preferentially associates with PruR relative to other related pterins, and the PruR-DcpA interaction is decreased in a pruA mutant. PruR and DcpA are encoded in an operon with wide conservation among diverse Proteobacteria including mammalian pathogens. Crystal structures reveal that PruR and several orthologs adopt a conserved fold, with a pterin-specific binding cleft that coordinates the bicyclic pterin ring. These findings define a pterin-responsive regulatory mechanism that controls biofilm formation and related c-di-GMP-dependent phenotypes in A. tumefaciens and potentially acts more widely in multiple proteobacterial lineages.


Subject(s)
Agrobacterium tumefaciens , Bacterial Proteins , Biofilms , Cyclic GMP , Pterins , Biofilms/growth & development , Agrobacterium tumefaciens/metabolism , Agrobacterium tumefaciens/genetics , Pterins/metabolism , Cyclic GMP/metabolism , Cyclic GMP/analogs & derivatives , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Proteobacteria/metabolism , Proteobacteria/genetics , Molybdenum Cofactors , Periplasm/metabolism , Periplasmic Proteins/metabolism , Periplasmic Proteins/genetics , Periplasmic Binding Proteins/metabolism , Periplasmic Binding Proteins/genetics , Gene Expression Regulation, Bacterial
2.
Appl Environ Microbiol ; 90(7): e0081424, 2024 07 24.
Article in English | MEDLINE | ID: mdl-38888337

ABSTRACT

Tetrahydrofolate is a cofactor involved in C1 metabolism including biosynthesis pathways for adenine and serine. In the classical tetrahydrofolate biosynthesis pathway, the steps removing three phosphate groups from the precursor 7,8-dihydroneopterin triphosphate (DHNTP) remain unclear in many bacteria. DHNTP pyrophosphohydrolase hydrolyzes pyrophosphate from DHNTP and produces 7,8-dihydroneopterin monophosphate. Although two structurally distinct DHNTP pyrophosphohydrolases have been identified in the intestinal bacteria Lactococcus lactis and Escherichia coli, the distribution of their homologs is limited. Here, we aimed to identify a third DHNTP pyrophosphohydrolase gene in the intestinal lactic acid bacterium Limosilactobacillus reuteri. In a gene operon including genes involved in dihydrofolate biosynthesis, we focused on the lreu_1276 gene, annotated as Ham1 family protein or XTP/dITP diphosphohydrolase, as a candidate encoding DHNTP pyrophosphohydrolase. The Lreu_1276 recombinant protein was prepared using E. coli and purified. Biochemical analyses of the reaction product revealed that the Lreu_1276 protein displays significant pyrophosphohydrolase activity toward DHNTP. The optimal reaction temperature and pH were 35°C and around 7, respectively. Substrate specificity was relatively strict among 17 tested compounds. Although previously characterized DHNTP pyrophosphohydrolases prefer Mg2+, the Lreu_1276 protein exhibited maximum activity in the presence of Mn2+, with a specific activity of 28.2 ± 2.0 µmol min-1 mg-1 in the presence of 1 mM Mn2+. The three DHNTP pyrophosphohydrolases do not share structural similarity to one another, and the distribution of their homologs does not overlap, implying that the Lreu_1276 protein represents a third structurally novel DHNTP pyrophosphohydrolase in bacteria. IMPORTANCE: The identification of a structurally novel DHNTP pyrophosphohydrolase in L. reuteri provides valuable information in understanding tetrahydrofolate biosynthesis in bacteria that possess lreu_1276 homologs. Interestingly, however, even with the identification of a third family of DHNTP pyrophosphohydrolases, there are still a number of bacteria that do not harbor homologs for any of the three genes while possessing other genes involved in the biosynthesis of the pterin ring structure. This suggests the presence of an unrecognized DHNTP pyrophosphohydrolase gene in bacteria. As humans do not harbor DHNTP pyrophosphohydrolase, the high structural diversity of enzymes responsible for a reaction in tetrahydrofolate biosynthesis may provide an advantage in designing inhibitors targeting a specific group of bacteria in the intestinal microbiota.


Subject(s)
Bacterial Proteins , Limosilactobacillus reuteri , Pyrophosphatases , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Limosilactobacillus reuteri/genetics , Limosilactobacillus reuteri/enzymology , Limosilactobacillus reuteri/metabolism , Pyrophosphatases/genetics , Pyrophosphatases/metabolism , Pterins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Neopterin/analogs & derivatives
3.
Syst Biol ; 72(6): 1247-1261, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-37561391

ABSTRACT

Convergent evolution is defined as the independent evolution of similar phenotypes in different lineages. Its existence underscores the importance of external selection pressures in evolutionary history, revealing how functionally similar adaptations can evolve in response to persistent ecological challenges through a diversity of evolutionary routes. However, many examples of convergence, particularly among closely related species, involve parallel changes in the same genes or developmental pathways, raising the possibility that homology at deeper mechanistic levels is an important facilitator of phenotypic convergence. Using the genus Ranitomeya, a young, color-diverse radiation of Neotropical poison frogs, we set out to 1) provide a phylogenetic framework for this group, 2) leverage this framework to determine if color phenotypes are convergent, and 3) to characterize the underlying coloration mechanisms to test whether color convergence occurred through the same or different physical mechanisms. We generated a phylogeny for Ranitomeya using ultraconserved elements and investigated the physical mechanisms underlying bright coloration, focusing on skin pigments. Using phylogenetic comparative methods, we identified several instances of color convergence, involving several gains and losses of carotenoid and pterin pigments. We also found a compelling example of nonparallel convergence, where, in one lineage, red coloration evolved through the red pterin pigment drosopterin, and in another lineage through red ketocarotenoids. Additionally, in another lineage, "reddish" coloration evolved predominantly through structural color mechanisms. Our study demonstrates that, even within a radiation of closely related species, convergent evolution can occur through both parallel and nonparallel mechanisms, challenging the assumption that similar phenotypes among close relatives evolve through the same mechanisms.


Subject(s)
Poison Frogs , Poisons , Animals , Phylogeny , Pigmentation/genetics , Anura , Pterins/metabolism , Biological Evolution
4.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Article in English | MEDLINE | ID: mdl-33876764

ABSTRACT

The pterin-dependent nonheme iron enzymes hydroxylate aromatic amino acids to perform the biosynthesis of neurotransmitters to maintain proper brain function. These enzymes activate oxygen using a pterin cofactor and an aromatic amino acid substrate bound to the FeII active site to form a highly reactive FeIV = O species that initiates substrate oxidation. In this study, using tryptophan hydroxylase, we have kinetically generated a pre-FeIV = O intermediate and characterized its structure as a FeII-peroxy-pterin species using absorption, Mössbauer, resonance Raman, and nuclear resonance vibrational spectroscopies. From parallel characterization of the pterin cofactor and tryptophan substrate-bound ternary FeII active site before the O2 reaction (including magnetic circular dichroism spectroscopy), these studies both experimentally define the mechanism of FeIV = O formation and demonstrate that the carbonyl functional group on the pterin is directly coordinated to the FeII site in both the ternary complex and the peroxo intermediate. Reaction coordinate calculations predict a 14 kcal/mol reduction in the oxygen activation barrier due to the direct binding of the pterin carbonyl to the FeII site, as this interaction provides an orbital pathway for efficient electron transfer from the pterin cofactor to the iron center. This direct coordination of the pterin cofactor enables the biological function of the pterin-dependent hydroxylases and demonstrates a unified mechanism for oxygen activation by the cofactor-dependent nonheme iron enzymes.


Subject(s)
Iron/metabolism , Neurotransmitter Agents/biosynthesis , Nuclear Proteins/metabolism , Pterins/chemistry , Zinc Finger Protein Gli2/metabolism , Humans , Iron/chemistry , Nuclear Proteins/chemistry , Oxygen/metabolism , Pterins/metabolism , Tryptophan/chemistry , Tryptophan/metabolism , Zinc Finger Protein Gli2/chemistry
5.
Bull Exp Biol Med ; 176(6): 756-760, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38922549

ABSTRACT

The enzyme tryptophan hydroxylase 2 (TPH2) catalyzes the hydroxylation of L-tryptophan to L-5-hydroxytryptophan (5-HTP), the first and the key step in 5-HT synthesis in the mammalian brain. Mutations in the human Tph2 gene reducing enzyme activity increase the risk of psychopathology. Pharmacological chaperones are small molecules that can specifically bind to mutant protein molecules, restore their disturbed 3D structure to the native state, and increase their stability and functional activity. The chaperone activity of (R)-2-amino-6-(1R,2S)-1,2-dihydroxypropyl)-5,6,7,8-tetrahydropterin-4(3H)-one (BH4) is expressed by increasing the in vitro thermal stability of mutant tyrosine hydroxylase and phenylalanine hydroxylase molecules which are similar to TPH2 in their structure and characteristics. The P447R substitution in the mouse TPH2 molecule results in a 2-fold decrease in enzyme activity in their brains. We studied the effect of this mutation on the TPH2 thermal stability, as well as on the ability of BH4 and its 8 structural analogues to increase the thermal stability of the mutant TPH2 from midbrain extracts of BALB/C mice. Temperature stability was studied by the decrease in enzyme activity during its heating for 2 min at increasing temperatures and was evaluated by the T50 value that is the temperature at which the enzyme activity decreased by half. For the mutant TPH2, the T50 value was decreased compared to the wild type enzyme. BH4 and its closest structural analogue, 6-methyl-5,6,7,8-tetrahydropterin, increased the T50 value, i.e., exhibited chaperone activity. Other close BH4 analogs, 6,7-dimethyl-5,6,7,8-tetrahydropterin and folic acid, were not effective. It can be assumed that BH4 can be effective in the treatment of mental disorders caused by mutations in the Tph2 gene.


Subject(s)
Enzyme Stability , Tryptophan Hydroxylase , Tryptophan Hydroxylase/genetics , Tryptophan Hydroxylase/metabolism , Tryptophan Hydroxylase/chemistry , Animals , Mice , Humans , Mutation , Temperature , Brain/metabolism , Brain/drug effects , Pterins/chemistry , Pterins/metabolism , Pterins/pharmacology
6.
Chemistry ; 29(29): e202300519, 2023 May 22.
Article in English | MEDLINE | ID: mdl-36929221

ABSTRACT

Unconjugated pterins are ubiquitous molecules that participate in countless enzymatic processes and are potentially involved in the photosensitization of singlet oxygen, amino acids, and nucleotides. Following electronic excitation with UV-A light, some of these pterins degrade, producing hydrogen peroxide as the main side product. This process, which is known to take place in vivo, contributes to oxidative stress and melanocyte destruction in vitiligo. In this work, we present for the first time mechanistic insight into the formation of transient triplet species that simultaneously trigger Type I and Type II photosensitizing processes and the initiation of degradation processes. Our calculations reveal that photodegradation of 6-biopterin, which accumulates in the skin of vitiligo patients, leads to 6-formylpterin through a retro-aldol reaction, and subsequently to 6-carboxypterin through a water-mediated aldehyde oxidation. Additionally, we show that the changes in the photosensitizing potential of these systems with pH come from the modulation of their excited-state redox potentials.


Subject(s)
Vitiligo , Humans , Photolysis , Photosensitizing Agents/chemistry , Pterins/chemistry , Pterins/metabolism , Oxidation-Reduction
7.
Mol Microbiol ; 116(4): 1216-1231, 2021 10.
Article in English | MEDLINE | ID: mdl-34494331

ABSTRACT

Uropathogenic Escherichia coli (UPEC) is the primary causative agent of urinary tract infections (UTIs). Successful urinary tract colonization requires appropriate expression of virulence factors in response to host environmental cues, such as limited oxygen and iron availability. Hemolysin is a pore-forming toxin, and its expression correlates with the severity of UPEC infection. Previously, we showed that hemolysin expression is enhanced under anaerobic conditions; however, the genetic basis and regulatory mechanisms involved remain undefined. Here, a transposon-based forward screen identified bis-molybdopterin guanine dinucleotide cofactor (bis-MGD) biosynthesis as an important factor for a full transcription of hemolysin under anaerobiosis but not under aerobiosis. bis-MGD positively influences hemolysin transcription via c3566-c3568, an operon immediately upstream of and cotranscribed with hlyCABD. Furthermore, suppressor mutation analysis identified the nitrogen regulator NtrC as a direct repressor of c3566-c3568-hlyCABD expression, and intact bis-MGD biosynthesis downregulated ntrC expression, thus at least partially explaining the positive role of bis-MGD in modulating hemolysin expression. Finally, bis-MGD is involved in hemolysin-mediated uroepithelial cell death and contributes to the competitive fitness of UPEC in a murine model of UTI. Collectively, our data establish that bis-MGD biosynthesis plays a crucial role in UPEC fitness in vivo, thus providing a potential target for combatting UTIs.


Subject(s)
Escherichia coli Infections/microbiology , Guanine Nucleotides/metabolism , Hemolysin Proteins/genetics , Hemolysin Proteins/metabolism , Pterins/metabolism , Uropathogenic Escherichia coli/genetics , Uropathogenic Escherichia coli/metabolism , Anaerobiosis , Animals , Cell Death , Cell Line , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Expression Regulation, Bacterial , Humans , Mice , Mice, Inbred CBA , Mutagenesis, Insertional , Operon , PII Nitrogen Regulatory Proteins/metabolism , Transcription Factors/metabolism , Transcriptome , Virulence , Virulence Factors/genetics , Virulence Factors/metabolism
8.
Arch Biochem Biophys ; 729: 109378, 2022 Oct 30.
Article in English | MEDLINE | ID: mdl-35995215

ABSTRACT

Phenylalanine hydroxylase (PheH) is a pterin-dependent, mononuclear nonheme iron(II) oxygenase that uses the oxidative power of O2 to hydroxylate phenylalanine to form tyrosine. PheH is a member of a superfamily of O2-activating enzymes that utilizes a common metal binding motif: the 2-His-1-carboxylate facial triad. Like most members of this superfamily, binding of substrates to PheH results in a reorganization of its active site to allow O2 activation. Exploring the energetics of each step before O2 activation can provide mechanistic insight into the initial steps that support the highly specific O2 activation pathway carried out by this metalloenzyme. Here the thermal stability of PheH and its substrate complexes were investigated under an anaerobic environment by using differential scanning calorimetry. In context with known binding constants for PheH, a thermodynamic cycle associated with iron(II), tetrahydrobiopterin (BH4), and phenylalanine binding to the active site was generated, showing a distinctive cooperativity between the binding of BH4 and Phe. The addition of phenylalanine and BH4 to PheH·Fe increased the stability of this enzyme (ΔTm of 8.5 (±0.7) °C with an associated δΔH of 43.0 (±2.9) kcal/mol). The thermodynamic data presented here gives insight into the complicated interactions between metal center, cofactor, and substrate, and how this interplay sets the stage for highly specific, oxidative C-H activation in this enzyme.


Subject(s)
Metalloproteins , Phenylalanine Hydroxylase , Biopterins/analogs & derivatives , Chromobacterium , Ferrous Compounds , Iron/metabolism , Kinetics , Metalloproteins/metabolism , Phenylalanine/metabolism , Phenylalanine Hydroxylase/chemistry , Phenylalanine Hydroxylase/metabolism , Pterins/chemistry , Pterins/metabolism , Thermodynamics , Tyrosine
9.
Proc Natl Acad Sci U S A ; 116(12): 5633-5642, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30819892

ABSTRACT

Reptiles use pterin and carotenoid pigments to produce yellow, orange, and red colors. These conspicuous colors serve a diversity of signaling functions, but their molecular basis remains unresolved. Here, we show that the genomes of sympatric color morphs of the European common wall lizard (Podarcis muralis), which differ in orange and yellow pigmentation and in their ecology and behavior, are virtually undifferentiated. Genetic differences are restricted to two small regulatory regions near genes associated with pterin [sepiapterin reductase (SPR)] and carotenoid [beta-carotene oxygenase 2 (BCO2)] metabolism, demonstrating that a core gene in the housekeeping pathway of pterin biosynthesis has been coopted for bright coloration in reptiles and indicating that these loci exert pleiotropic effects on other aspects of physiology. Pigmentation differences are explained by extremely divergent alleles, and haplotype analysis revealed abundant transspecific allele sharing with other lacertids exhibiting color polymorphisms. The evolution of these conspicuous color ornaments is the result of ancient genetic variation and cross-species hybridization.


Subject(s)
Lizards/genetics , Skin Pigmentation/genetics , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/physiology , Animals , Carotenoids/genetics , Carotenoids/metabolism , Color , Dioxygenases/genetics , Lizards/metabolism , Pigmentation/genetics , Polymorphism, Genetic/genetics , Pterins/metabolism
10.
Int J Mol Sci ; 23(23)2022 Dec 03.
Article in English | MEDLINE | ID: mdl-36499560

ABSTRACT

Pterins are an inseparable part of living organisms. Pterins participate in metabolic reactions mostly as tetrahydropterins. Dihydropterins are usually intermediates of these reactions, whereas oxidized pterins can be biomarkers of diseases. In this review, we analyze the available data on the quantum chemistry of unconjugated pterins as well as their photonics. This gives a comprehensive overview about the electronic structure of pterins and offers some benefits for biomedicine applications: (1) one can affect the enzymatic reactions of aromatic amino acid hydroxylases, NO synthases, and alkylglycerol monooxygenase through UV irradiation of H4pterins since UV provokes electron donor reactions of H4pterins; (2) the emission properties of H2pterins and oxidized pterins can be used in fluorescence diagnostics; (3) two-photon absorption (TPA) should be used in such pterin-related infrared therapy because single-photon absorption in the UV range is inefficient and scatters in vivo; (4) one can affect pathogen organisms through TPA excitation of H4pterin cofactors, such as the molybdenum cofactor, leading to its detachment from proteins and subsequent oxidation; (5) metal nanostructures can be used for the UV-vis, fluorescence, and Raman spectroscopy detection of pterin biomarkers. Therefore, we investigated both the biochemistry and physical chemistry of pterins and suggested some potential prospects for pterin-related biomedicine.


Subject(s)
Metalloproteins , Pterins , Molecular Structure , Pterins/metabolism , Pteridines/chemistry , Coenzymes/metabolism , Metalloproteins/metabolism , Oxidation-Reduction
11.
Biochemistry ; 60(46): 3497-3506, 2021 11 23.
Article in English | MEDLINE | ID: mdl-34266238

ABSTRACT

Two major subclasses of mononuclear non-heme ferrous enzymes use two electron-donating organic cofactors (α-ketoglutarate or pterin) to activate O2 to form FeIV═O intermediates that further react with their substrates through hydrogen atom abstraction or electrophilic aromatic substitution. New spectroscopic methodologies have been developed, enabling the study of the active sites in these enzymes and their oxygen intermediates. Coupled to electronic structure calculations, the results of these spectroscopies provide fundamental insight into mechanism. This Perspective summarizes the results of these studies in elucidating the mechanism of dioxygen activation to form the FeIV═O intermediate and the geometric and electronic structure of this intermediate that enables its high reactivity and selectivity in product formation.


Subject(s)
Cysteine Dioxygenase/metabolism , Electron Transport Complex III/metabolism , Iron/metabolism , Ketoglutaric Acids/metabolism , Oxygen/metabolism , Catalytic Domain , Cysteine Dioxygenase/chemistry , Electron Transport Complex III/chemistry , Ketoglutaric Acids/chemistry , Pterins/metabolism , Superoxides/metabolism
12.
J Biol Chem ; 295(10): 3029-3039, 2020 03 06.
Article in English | MEDLINE | ID: mdl-31996372

ABSTRACT

Molybdenum cofactor (Moco) biosynthesis is a highly conserved multistep pathway. The first step, the conversion of GTP to cyclic pyranopterin monophosphate (cPMP), requires the bicistronic gene molybdenum cofactor synthesis 1 (MOCS1). Alternative splicing of MOCS1 within exons 1 and 9 produces four different N-terminal and three different C-terminal products (type I-III). Type I splicing results in bicistronic transcripts with two open reading frames, of which only the first, MOCS1A, is translated, whereas type II/III splicing produces MOCS1AB proteins. Here, we first report the cellular localization of alternatively spliced human MOCS1 proteins. Using fluorescence microscopy, fluorescence spectroscopy, and cell fractionation experiments, we found that depending on the alternative splicing of exon 1, type I splice variants (MOCS1A) either localize to the mitochondrial matrix (exon 1a) or remain cytosolic (exon 1b). MOCS1A proteins required exon 1a for mitochondrial translocation, but fluorescence microscopy of MOCS1AB variants (types II and III) revealed that they were targeted to mitochondria independently of exon 1 splicing. In the latter case, cell fractionation experiments displayed that mitochondrial matrix import was facilitated via an internal motif overriding the N-terminal targeting signal. Within mitochondria, MOCS1AB underwent proteolytic cleavage resulting in mitochondrial matrix localization of the MOCS1B domain. In conclusion, MOCS1 produces two functional proteins, MOCS1A and MOCS1B, which follow different translocation routes before mitochondrial matrix import for cPMP biosynthesis involving both proteins. MOCS1 protein maturation provides a novel alternative splicing mechanism that ensures the coordinated mitochondrial targeting of two functionally related proteins encoded by a single gene.


Subject(s)
Carbon-Carbon Lyases/metabolism , Mitochondria/metabolism , Alternative Splicing , Animals , COS Cells , Carbon-Carbon Lyases/genetics , Chlorocebus aethiops , Exons , Humans , Microscopy, Fluorescence , Mitochondrial Proteins/metabolism , Open Reading Frames/genetics , Organophosphorus Compounds/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Pterins/metabolism
13.
Bioorg Med Chem ; 29: 115847, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33199204

ABSTRACT

6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) is a key enzyme in the folate biosynthesis pathway. It catalyzes pyrophosphoryl transfer from ATP to 6-hydroxymethyl-7,8-dihydropterin (HP). HPPK is essential for microorganisms but absent in mammals; therefore, it is an attractive target for developing novel antimicrobial agents. Previously, based on our studies of the structure and mechanism of HPPK, we created first-generation bisubstrate inhibitors by linking 6-hydroxymethylpterin to adenosine through phosphate groups, and developed second-generation inhibitors by replacing the phosphate bridge with a linkage that contains a piperidine moiety. Here, we report third-generation inhibitors designed based on the piperidine-containing inhibitor, mimicking the transition state. We synthesized two such inhibitors, characterized their protein-binding and enzyme inhibition properties, and determined their crystal structures in complex with HPPK, advancing the development of such bisubstrate analog inhibitors.


Subject(s)
Enzyme Inhibitors/pharmacology , Piperidines/pharmacology , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Binding Sites/drug effects , Crystallography, X-Ray , Diphosphotransferases , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Escherichia coli/enzymology , Models, Molecular , Molecular Structure , Piperidines/chemical synthesis , Piperidines/chemistry , Pterins/chemistry , Pterins/metabolism , Structure-Activity Relationship
14.
J Biol Chem ; 294(4): 1420-1427, 2019 01 25.
Article in English | MEDLINE | ID: mdl-30514762

ABSTRACT

6-Pyruvoyl tetrahydropterin synthase (PTS) converts 7,8-dihydroneopterin triphosphate into 6-pyruvoyltetrahydropterin and is a critical enzyme for the de novo synthesis of tetrahydrobiopterin, an essential cofactor for aromatic amino acid hydroxylases and nitric-oxide synthases. Neopterin derived from 7,8-dihydroneopterin triphosphate is secreted by monocytes/macrophages, and is a well-known biomarker for cellular immunity. Because PTS activity in the cell can be a determinant of neopterin production, here we used recombinant human PTS protein to investigate how its activity is regulated, especially depending on redox conditions. Human PTS has two cysteines: Cys-43 at the catalytic site and Cys-10 at the N terminus. PTS can be oxidized and consequently inactivated by H2O2 treatment, oxidized GSH, or S-nitrosoglutathione, and determining the oxidized modifications of PTS induced by each oxidant by MALDI-TOF MS, we show that PTS is S-glutathionylated in the presence of GSH and H2O2S-Glutathionylation at Cys-43 protected PTS from H2O2-induced irreversible sulfinylation and sulfonylation. We also found that PTS expressed in HeLa and THP-1 cells is reversibly modified under oxidative stress conditions. Our findings suggest that PTS activity and S-glutathionylation is regulated by the cellular redox environment and that reversible S-glutathionylation protects PTS against oxidative stress.


Subject(s)
Cysteine/chemistry , Gene Expression Regulation, Enzymologic , Glutathione/chemistry , Phosphorus-Oxygen Lyases/metabolism , Pterins/metabolism , HeLa Cells , Humans , Oxidation-Reduction , Oxidative Stress , Phosphorus-Oxygen Lyases/chemistry , Protective Agents
15.
Photochem Photobiol Sci ; 19(11): 1538-1547, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33029609

ABSTRACT

Given the prevalence of fluorescence spectroscopy in biological systems, and the prevalence of pterin derivatives throughout biological systems, presented here is an assessment of the two-photon absorption spectroscopy as it applies to a range of the most commonly studied pterin derivatives. QR-CAMB3LYP//ccpVTZ calculations suggest that the use of two-photon spectroscopic methods would enable a more capable differentiation between closely related derivatives in comparison to the one-photon spectra, which show minimal qualitative deviation. Study of short tail derivatives shows that, in most cases, two-photon accessible states solely involve the π* LUMO as the particle orbital, with biopterin, neopterin, and 6-(hydroxymethyl)pterin presenting exceptional potential for targetting. Investigation of derivatives in which the tail contains an aromatic ring resulted in the observation of a series of two-photon accessible states involving charge transfer from the tail to the pterin moiety, the cross sections of which are highly dependent on the adoption of a planar geometry. The observation of these states presents a novel method for tracking the substitution of biologically important molecules such as folic acid and 5-methenyltetrahydrofolylpolyglutamate.


Subject(s)
Density Functional Theory , Photons , Pterins/metabolism , Humans , Molecular Structure , Pterins/chemistry , Spectrometry, Fluorescence
16.
Curr Microbiol ; 77(4): 578-587, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31111225

ABSTRACT

Cyanide is one of the most poisonous substances in the environment, which may have originated from natural and anthropogenic sources. There are many enzymes produced by microorganisms which can degrade and utilize cyanide. The major byproducts of cyanide degradation are alanine, glutamic acid, alpha-amino-butyric acid, beta-cyanoalanine, pterin etc. These products have many pharmaceutical and medicinal applications. For the degradation of cyanide, microbes produce necessary cofactors which catalyze the degradation pathways. Pterin is one of the cofactors for cyanide degradation. There are many pathways involved for the degradation of cyanide, cyanate, and thiocyanate. Some of the microorganisms possess resistance to cyanide, since they have developed adaptive alternative pathways for the production of ATP by utilization of cyanide as carbon and nitrogen sources. In this review, we summarized different enzymes, their mechanisms, and corresponding pathways for the degradation of cyanide and production of pterins during cyanide degradation. We aim to enlighten different types of pterin, its classification, and biological significance through this literature review.


Subject(s)
Bacteria/enzymology , Biodegradation, Environmental , Coenzymes/metabolism , Cyanides/metabolism , Pterins/metabolism , Carbon/metabolism , Cyanates/metabolism , Humans , Metabolic Networks and Pathways , Pterins/classification
17.
Biochemistry ; 58(17): 2228-2242, 2019 04 30.
Article in English | MEDLINE | ID: mdl-30945846

ABSTRACT

The oxidoreductase YdhV in Escherichia coli has been predicted to belong to the family of molybdenum/tungsten cofactor (Moco/Wco)-containing enzymes. In this study, we characterized the YdhV protein in detail, which shares amino acid sequence homology with a tungsten-containing benzoyl-CoA reductase binding the bis-W-MPT (for metal-binding pterin) cofactor. The cofactor was identified to be of a bis-Mo-MPT type with no guanine nucleotides present, which represents a form of Moco that has not been found previously in any molybdoenzyme. Our studies showed that YdhV has a preference for bis-Mo-MPT over bis-W-MPT to be inserted into the enzyme. In-depth characterization of YdhV by X-ray absorption and electron paramagnetic resonance spectroscopies revealed that the bis-Mo-MPT cofactor in YdhV is redox active. The bis-Mo-MPT and bis-W-MPT cofactors include metal centers that bind the four sulfurs from the two dithiolene groups in addition to a cysteine and likely a sulfido ligand. The unexpected presence of a bis-Mo-MPT cofactor opens an additional route for cofactor biosynthesis in E. coli and expands the canon of the structurally highly versatile molybdenum and tungsten cofactors.


Subject(s)
Coenzymes/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli/enzymology , Ferredoxins/chemistry , Metalloproteins/chemistry , Molybdenum/chemistry , Organometallic Compounds/chemistry , Oxidoreductases/chemistry , Pteridines/chemistry , Pterins/chemistry , Coenzymes/genetics , Coenzymes/metabolism , Electron Spin Resonance Spectroscopy , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Ferredoxins/genetics , Ferredoxins/metabolism , Guanine Nucleotides/chemistry , Guanine Nucleotides/genetics , Guanine Nucleotides/metabolism , Metalloproteins/genetics , Metalloproteins/metabolism , Molecular Structure , Molybdenum/metabolism , Molybdenum Cofactors , Organometallic Compounds/metabolism , Oxidation-Reduction , Oxidoreductases/genetics , Oxidoreductases/metabolism , Pteridines/metabolism , Pterins/metabolism
18.
Biochem J ; 475(2): 495-509, 2018 01 31.
Article in English | MEDLINE | ID: mdl-29247140

ABSTRACT

Mitochondria play a key role in the biosynthesis of two metal cofactors, iron-sulfur (FeS) clusters and molybdenum cofactor (Moco). The two pathways intersect at several points, but a scarcity of mutants has hindered studies to better understand these links. We screened a collection of sirtinol-resistant Arabidopsis thaliana mutants for lines with decreased activities of cytosolic FeS enzymes and Moco enzymes. We identified a new mutant allele of ATM3 (ABC transporter of the mitochondria 3), encoding the ATP-binding cassette transporter of the mitochondria 3 (systematic name ABCB25), confirming the previously reported role of ATM3 in both FeS cluster and Moco biosynthesis. We also identified a mutant allele in CNX2, cofactor of nitrate reductase and xanthine dehydrogenase 2, encoding GTP 3',8-cyclase, the first step in Moco biosynthesis which is localized in the mitochondria. A single-nucleotide polymorphism in cnx2-2 leads to substitution of Arg88 with Gln in the N-terminal FeS cluster-binding motif. cnx2-2 plants are small and chlorotic, with severely decreased Moco enzyme activities, but they performed better than a cnx2-1 knockout mutant, which could only survive with ammonia as a nitrogen source. Measurement of cyclic pyranopterin monophosphate (cPMP) levels by LC-MS/MS showed that this Moco intermediate was below the limit of detection in both cnx2-1 and cnx2-2, and accumulated more than 10-fold in seedlings mutated in the downstream gene CNX5 Interestingly, atm3-1 mutants had less cPMP than wild type, correlating with previous reports of a similar decrease in nitrate reductase activity. Taken together, our data functionally characterize CNX2 and suggest that ATM3 is indirectly required for cPMP synthesis.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Arabidopsis Proteins/genetics , Arabidopsis/genetics , Gene Expression Regulation, Plant , Mitochondria/metabolism , Organophosphorus Compounds/metabolism , Pterins/metabolism , ATP-Binding Cassette Transporters/metabolism , Amino Acid Sequence , Ammonia/pharmacology , Arabidopsis/drug effects , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Chromatography, Liquid , Coenzymes/biosynthesis , Gene Deletion , Metalloproteins/biosynthesis , Mitochondria/ultrastructure , Molybdenum Cofactors , Plant Cells/metabolism , Plant Cells/ultrastructure , Polymorphism, Single Nucleotide , Protein Isoforms/genetics , Protein Isoforms/metabolism , Pteridines , Seedlings/drug effects , Seedlings/genetics , Seedlings/growth & development , Seedlings/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Signal Transduction , Tandem Mass Spectrometry
19.
Biochemistry ; 57(7): 1130-1143, 2018 02 20.
Article in English | MEDLINE | ID: mdl-29334455

ABSTRACT

The well-studied enterobacterium Escherichia coli present in the human gut can reduce trimethylamine N-oxide (TMAO) to trimethylamine during anaerobic respiration. The TMAO reductase TorA is a monomeric, bis-molybdopterin guanine dinucleotide (bis-MGD) cofactor-containing enzyme that belongs to the dimethyl sulfoxide reductase family of molybdoenzymes. We report on a system for the in vitro reconstitution of TorA with molybdenum cofactors (Moco) from different sources. Higher TMAO reductase activities for TorA were obtained when using Moco sources containing a sulfido ligand at the molybdenum atom. For the first time, we were able to isolate functional bis-MGD from Rhodobacter capsulatus formate dehydrogenase (FDH), which remained intact in its isolated state and after insertion into apo-TorA yielded a highly active enzyme. Combined characterizations of the reconstituted TorA enzymes by electron paramagnetic resonance spectroscopy and direct electrochemistry emphasize that TorA activity can be modified by changes in the Mo coordination sphere. The combination of these results together with studies of amino acid exchanges at the active site led us to propose a novel model for binding of the substrate to the molybdenum atom of TorA.


Subject(s)
Coenzymes/metabolism , Cytochrome P-450 Enzyme System/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Metalloproteins/metabolism , Oxidoreductases, N-Demethylating/metabolism , Pteridines/metabolism , Guanine Nucleotides/metabolism , Humans , Models, Molecular , Molybdenum/metabolism , Molybdenum Cofactors , Pterins/metabolism , Sulfides/metabolism
20.
Biochemistry ; 57(4): 390-402, 2018 01 30.
Article in English | MEDLINE | ID: mdl-29072833

ABSTRACT

The radical SAM (S-adenosyl-l-methionine) superfamily is one of the largest group of enzymes with >113000 annotated sequences [Landgraf, B. J., et al. (2016) Annu. Rev. Biochem. 85, 485-514]. Members of this superfamily catalyze the reductive cleavage of SAM using an oxygen sensitive 4Fe-4S cluster to transiently generate 5'-deoxyadenosyl radical that is subsequently used to initiate diverse free radical-mediated reactions. Because of the unique reactivity of free radicals, radical SAM enzymes frequently catalyze chemically challenging reactions critical for the biosynthesis of unique structures of cofactors and natural products. In this Perspective, I will discuss the impact of characterizing novel functions in radical SAM enzymes on our understanding of biosynthetic pathways and use two recent examples from my own group with a particular emphasis on two radical SAM enzymes that are responsible for carbon skeleton formation during the biosynthesis of a cofactor and natural products.


Subject(s)
Biological Products , Coenzymes/biosynthesis , Escherichia coli Proteins/metabolism , Isomerases/metabolism , Metalloproteins/biosynthesis , Nuclear Proteins/metabolism , Organophosphorus Compounds/metabolism , Pterins/metabolism , Carbon-Carbon Lyases , Crystallography, X-Ray , Guanosine Triphosphate/metabolism , Humans , Models, Molecular , Molecular Structure , Molybdenum Cofactors , Protein Conformation , Pteridines , Recombinant Proteins/metabolism , S-Adenosylmethionine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL