Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 790
Filter
Add more filters

Publication year range
1.
Ren Fail ; 46(2): 2394637, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39189638

ABSTRACT

BACKGROUND: Recent studies have reported that helix B surface polypeptide (HBSP), an erythropoietin derivative, exhibits strong tissue protective effects, independent of erythropoietic effects, in a renal ischemia-reperfusion (IR) injury model. Meanwhile, the transforming growth factor-ß (TGF-ß) superfamily member glial cell line-derived neurotrophic factor (GDNF) demonstrated protective effect on podocytes in vitro. Using a rat puromycin aminonucleoside nephropathy (PAN) model, this study observed the renal protective effect of HBSP and investigated its renal protective effect on podocytes and mechanism related to GDNF. METHODS: Rats nephropathy model was induced by injection of 60 mg/kg of PAN via the tail vein. Rats in the PAN + HBSP group were injected intraperitoneally with HBSP (8 nmol/kg) 4 h before the model was induced, followed by intraperitoneal injections of HBSP once every 24 h for 7 consecutive days. The 24-hour urinary protein level was measured once every other day, and blood and renal tissue samples were collected on the 7th day for the examination of renal function, complete blood count, renal pathological changes and the expression levels of GDNF. RESULTS: Compared with the control group, the PAN nephropathy rat model showed a large amount of urinary protein. The pathological manifestations were mainly extensive fusion and disappearance of foot processes, along with vacuolar degeneration of podocytes and their separation from the glomerular basement membrane. GDNF expression was upregulated. Compared with the PAN + vehicle group, the PAN + HBSP group showed decreased urinary protein (p < 0.05). Pathological examination revealed ameliorated glomerular injury and vacuolar degeneration of podocytes. The expression of GDNF in the PAN nephropathy group was increased, when compared with the control group. The greatest expression of GDNF observed in the PAN + HBSP group (p < 0.05). CONCLUSIONS: The expression of GDNF in the kidney of PAN rat model was increased. HBSP reduced urinary protein, ameliorated pathological changes in renal podocytes, increased the expression of GDNF in the PAN rat model. HBSP is likely to exert its protective effects on podocytes through upregulation of GDNF expression.


Subject(s)
Disease Models, Animal , Glial Cell Line-Derived Neurotrophic Factor , Kidney Diseases , Podocytes , Puromycin Aminonucleoside , Rats, Sprague-Dawley , Animals , Rats , Podocytes/drug effects , Podocytes/pathology , Podocytes/metabolism , Male , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Kidney Diseases/chemically induced , Kidney Diseases/prevention & control , Kidney Diseases/pathology , Kidney/pathology , Kidney/drug effects , Reperfusion Injury/prevention & control , Reperfusion Injury/metabolism , Erythropoietin , Peptide Fragments
2.
Am J Physiol Renal Physiol ; 324(2): F168-F178, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36454699

ABSTRACT

Nephrotic syndrome, characterized by proteinuria and hypoalbuminemia, results from the dysregulation of glomerular podocytes and is a significant cause of end-stage kidney disease. Patients with idiopathic nephrotic syndrome are generally treated with immunosuppressive agents; however, these agents produce various adverse effects. Previously, we reported the renoprotective effects of a stimulator of the mitochondrial ATP-dependent K+ channel (MitKATP), nicorandil, in a remnant kidney model. Nonetheless, the cellular targets of these effects remain unknown. Here, we examined the effect of nicorandil on puromycin aminonucleoside-induced nephrosis (PAN) rats, a well-established model of podocyte injury and human nephrotic syndrome. PAN was induced using a single intraperitoneal injection. Nicorandil was administered orally at 30 mg/kg/day. We found that proteinuria and hypoalbuminemia in PAN rats were significantly ameliorated following nicorandil treatment. Immunostaining and ultrastructural analysis under electron microscopy demonstrated that podocyte injury in PAN rats showed a significant partial attenuation following nicorandil treatment. Nicorandil ameliorated the increase in the oxidative stress markers nitrotyrosine and 8-hydroxy-2-deoxyguanosine in glomeruli. Conversely, nicorandil prevented the decrease in levels of the antioxidant enzyme manganese superoxide dismutase in PAN rats. We found that mitochondrial Ca2+ uniporter levels in glomeruli were higher in PAN rats than in control rats, and this increase was significantly attenuated by nicorandil. We conclude that stimulation of MitKATP by nicorandil reduces proteinuria by attenuating podocyte injury in PAN nephrosis, which restores mitochondrial antioxidative capacity, possibly through mitochondrial Ca2+ uniporter modulation. These data indicate that MitKATP may represent a novel target for podocyte injury and nephrotic syndrome.NEW & NOTEWORTHY Our findings suggest that the mitochondrial Ca2+ uniporter may be an upstream regulator of manganese superoxide dismutase and indicate a biochemical basis for the interaction between the ATP-sensitive K+ channel and Ca2+ signaling. We believe that our study makes a significant contribution to the literature because our results indicate that the ATP-sensitive K+ channel may be a potential therapeutic target for podocyte injury and nephrotic syndrome.


Subject(s)
Hypoalbuminemia , Nephrosis , Nephrotic Syndrome , Nicorandil , Podocytes , Animals , Rats , Adenosine Triphosphate/metabolism , Antioxidants/metabolism , Nephrosis/chemically induced , Nephrosis/prevention & control , Nephrotic Syndrome/chemically induced , Nephrotic Syndrome/drug therapy , Nephrotic Syndrome/prevention & control , Nicorandil/therapeutic use , Proteinuria/chemically induced , Proteinuria/prevention & control , Puromycin Aminonucleoside/toxicity , Superoxide Dismutase
3.
BMC Nephrol ; 24(1): 309, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37880610

ABSTRACT

INTRODUCTION: Nephrotic syndrome (NS) is characterized by renal sodium and water retention. The mechanisms are not fully elucidated. METHODS: The NS rat model was established by single intraperitoneal injection of 100 mg/kg puromycin aminonucleoside (PAN). The plasma electrolyte level and urinary sodium excretion were monitored dynamically. The changes of some sodium transporters, including epithelial Na+ channel (ENaC), Na+/H+ exchanger 3 (NHE3), Na+-K+-2Cl- cotransporter 2 (NKCC2) and Na+-Cl- cotransporter (NCC) in renal cortex at different time points and the level of peripheral circulation factors were detected. RESULTS: The urinary sodium excretion of the model group increased significantly on the first day, then decreased compared with the control group, and there was no significant difference between the model group and the control group on the 12th day. The changes of peripheral circulation factors were not obvious. Some sodium transporters in renal cortex increased in varying degrees, while NKCC2 decreased significantly compared with the control group. CONCLUSIONS: The occurrence of NS edema may not be related to the angiotensin system. The decrease of urinary sodium excretion is independent of the development of albuminuria. During the 18 days of observation, it can be divided into three stages: sodium retention, sodium compensation, and simple water retention. The mechanism is related to the increased expression of α-ENaC, γ-ENaC, NHE3 and NCC in a certain period of time, the compensatory decrease of NKCC2 expression and the continuous increase of aquaporin 2 (AQP2) expression.


Subject(s)
Nephrotic Syndrome , Rats , Animals , Nephrotic Syndrome/metabolism , Puromycin Aminonucleoside/toxicity , Sodium/urine , Sodium-Hydrogen Exchanger 3/metabolism , Aquaporin 2/metabolism , Epithelial Sodium Channels , Kidney/metabolism , Membrane Transport Proteins/metabolism , Solute Carrier Family 12, Member 3 , Water/metabolism
4.
Zhongguo Zhong Yao Za Zhi ; 48(21): 5898-5907, 2023 Nov.
Article in Zh | MEDLINE | ID: mdl-38114186

ABSTRACT

This study aims to reveal the endogenous metabolic characteristics of acteoside in the young rat model of purinomycin aminonucleoside nephropathy(PAN) by non-targeted urine metabolomics and decipher the potential mechanism of action. Biochemical indicators in the urine of rats from each group were determined by an automatic biochemical analyzer. The potential biomarkers and related core metabolic pathways were identified by ultra-high performance liquid chromatography coupled with linear ion trap-Orbitrap mass spectrometry(UHPLC-LTQ-Orbitrap MS) combined with principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA). MetaboAnalyst 5.0 was used to establish the receiver operating characteristic(ROC) curve for evaluating the clinical diagnostic performance of core metabolites. The results showed that acteoside significantly decreased urinary protein-to-creatinine ratio in PAN young rats. A total of 17 differential metabolites were screened out by non-targeted urine metabolomics in PAN young rats and they were involved in phenylalanine metabolism and phenylalanine, tyrosine and tryptophan biosynthesis. Thirtten differential metabolites were screened by acteoside intervention in PAN young rats, and they were involved in phenylalanine metabolism and arginine and proline metabolism. Among them, leucylproline and acetophenone were the differential metabolites that were significantly recovered after acteoside treatment. These pathways suggest that acteoside treats PAN in young rats by regulating amino acid metabolism. The area under the curve of two core biomarkers, leucylproline and acetophenone, were both greater than 0.9. In summary, acteoside may restore amino acid metabolism by regulating endogenous differential metabolites in PAN young rats, which will help to clarify the mechanism of acteoside in treating chronic glomerulonephritis in children. The characteristic biomarkers screened out have a high diagnostic value for evaluating the treatment of chronic glomerulonephritis in children with acteoside.


Subject(s)
Glomerulonephritis , Puromycin Aminonucleoside , Humans , Child , Rats , Animals , Metabolomics/methods , Biomarkers/urine , Chromatography, High Pressure Liquid/methods , Acetophenones , Phenylalanine , Amino Acids
5.
Chembiochem ; 23(18): e202200352, 2022 09 16.
Article in English | MEDLINE | ID: mdl-35867587

ABSTRACT

Peptidoyl RNAs are the products of ribosome-free, single-nucleotide translation. They contain a peptide in the backbone of the oligoribonucleotide and are interesting from a synthetic and a bioorganic point of view. A synthesis of a stabilized version of peptidoyl RNA, with an amide bond between the C-terminus of a peptide and a 3'-amino-2',3'-dideoxynucleoside in the RNA chain was developed. The preferred synthetic route used an N-Teoc-protected aminonucleoside support and involved a solution-phase coupling of the amino-terminal oligonucleotide to a dipeptido dinucleotide. Exploratory UV-melting and NMR analysis of the hairpin 5'-UUGGCGAAAGCdC-LeuLeu-AA-3' indicated that the peptide-linked RNA segments do not fold in a cooperative fashion. The synthetic access to doubly RNA-linked peptides on a scale sufficient for structural biology opens the door to the exploration of their structural and biochemical properties.


Subject(s)
Puromycin Aminonucleoside , RNA , Amides/chemistry , Dideoxynucleosides , Oligonucleotides/chemistry , Oligoribonucleotides , Peptides/chemistry
6.
Exp Cell Res ; 407(2): 112753, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34499887

ABSTRACT

Peroxisome proliferator-activated receptor α (PPARα) activation has been reported to exert protective effects on podocytes, whereas angiopoietin-like 3 (ANGPTL3) has been shown to exert significant pathogenic effects on these cells. This study aimed to investigate the link between the protective effects of PPARα activation and the pathogenic effects of ANGPTL3 in podocytes. Both PPARα and ANGPTL3 were expressed in cultured podocytes. PPARα mRNA and protein levels decreased whereas ANGPTL3 mRNA and protein levels increased in a time-dependent manner in podocytes treated with puromycin aminonucleoside (PAN). Gemfibrozil, a pharmacological agonist of PPARα, increased PPARα levels and activity in podocytes. The drug also decreased ANGPTL3 levels by potentially weakening ANGPTL3 promoter activity in both normal and PAN-treated podocytes. Furthermore, gemfibrozil significantly decreased PAN-induced apoptosis and F-actin rearrangement. Primary podocytes from Angptl3-knockout mice were cultured. There was no significant difference between Angptl3-/- podocytes treated with or without gemfibrozil in the lamellipodia numbers after PAN treatment. The results suggested that the protective effects of gemfibrozil on podocytes were not exerted following knockout of the Angptl3 gene. This study identified a novel mechanism of the PPARα agonist gemfibrozil that exerts its protective effects by inhibiting PAN-induced apoptosis and cytoskeleton rearrangements through inhibition of ANGPTL3 expression.


Subject(s)
Actin Cytoskeleton/drug effects , Angiopoietin-like Proteins/physiology , Gemfibrozil/pharmacology , PPAR alpha/agonists , Podocytes/drug effects , Pseudopodia/drug effects , Puromycin Aminonucleoside/pharmacology , Angiopoietin-Like Protein 3 , Animals , Apoptosis , Hypolipidemic Agents/pharmacology , Mice , Mice, Knockout , Podocytes/metabolism , Podocytes/pathology , Protective Factors , Pseudopodia/metabolism
7.
Int J Med Sci ; 19(9): 1451-1459, 2022.
Article in English | MEDLINE | ID: mdl-36035365

ABSTRACT

Podocytes are specialized cells of the glomerulus that play important structural and functional roles in maintaining the filtration barrier. Loss and injury of podocytes are leading factors of glomerular disease and kidney failure. Recent studies found that phosphatase and tensin homolog (PTEN) may play a critical role in maintaining the normal structure and function in podocytes. However, we still understand very little about how PTEN is regulated under podocyte injury conditions. In this study, We therefore investigated whether PTEN could play a role in podocyte injury induced by puromycin aminonucleoside (PAN), and whether dexamethasone (DEX) alleviates podocyte injury by PTEN/PI3K/Akt signaling. Our results showed that PI3K/Akt pathway was activated in podocytes exposed to PAN conditions, accompanied by down-regulation of the PTEN and microtubule-associated light chain 3 (LC3) expression.podocyte-specific knockout of PTEN significantly promoted podocyte injury, The potential renoprotection of overexpressed PTEN in podocytes was partly attributed with an improvement in autophagy and the inhibition of apoptosis.These novel findings also suggest that targeting PTEN might be a novel and promising therapeutic strategy against podocyte injury.


Subject(s)
Podocytes , Puromycin Aminonucleoside , Autophagy , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt
8.
Drug Dev Res ; 83(4): 1047-1056, 2022 06.
Article in English | MEDLINE | ID: mdl-35277865

ABSTRACT

Damage to podocytes is an important determinant of renal pathology. The puromycin aminonucleoside (PAN) mice nephropathy model is commonly used in the study of renal disease with podocyte injury. Hirudin has a broad nephroprotective effect and has been shown to treat renal interstitial fibrosis in previous studies. Mice were given PAN by gavage to prepare animal models, and MPC5 cells were incubated with PAN in vitro. Twenty-four hours urine was collected for analysis of urinary protein levels. Renal pathological changes were observed by hematoxylin and eosin staining. Immunofluorescence detection of nephrin in kidney tissues and cells. Apoptosis was analyzed with over TUNEL. Cytoskeleton, endoplasmic reticulum stress (ERS), p38 MAPK signaling, and apoptosis-related proteins were assessed by western blot analysis. The data suggested that hirudin attenuated reduced renal injury and increased urine protein in PAN mice. Hirudin also attenuated cytoskeletal protein (synaptopodin, nephrin, and podocin) disruption, ERS activation, and apoptosis in PAN mice and PAN-induced podocytes. In addition, hirudin inhibited the expression of p38 MAPK signaling key proteins upregulated by PAN, thereby suppressing ERS. The p38 MAPK agonist was able to partially antagonize the inhibition of p38 MAPK signaling by hirudin in PAN-induced podocytes, thereby reactivating the ERS inhibited by hirudin, promoting cytoskeletal protein degradation and increasing the level of apoptosis. In conclusion, hirudin could decrease podocyte injury by inhibiting p38 MAPK signaling-mediated ERS, resulting in the protection of the kidney from PAN damage. These findings may provide an experimental basis for hirudin treatment of podocyte injury diseases.


Subject(s)
Endoplasmic Reticulum Stress , Hirudins , Kidney Diseases , Podocytes , p38 Mitogen-Activated Protein Kinases , Animals , Cytoskeletal Proteins/metabolism , Disease Models, Animal , Hirudins/pharmacology , Kidney Diseases/metabolism , Mice , Podocytes/metabolism , Podocytes/pathology , Puromycin Aminonucleoside , p38 Mitogen-Activated Protein Kinases/metabolism
9.
Int J Mol Sci ; 23(3)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35163352

ABSTRACT

Lymphatic vessels are highly responsive to changes in the interstitial environment. Previously, we showed renal lymphatics express the Na-K-2Cl cotransporter. Since interstitial sodium retention is a hallmark of proteinuric injury, we examined whether renal sodium affects NKCC1 expression and the dynamic pumping function of renal lymphatic vessels. Puromycin aminonucleoside (PAN)-injected rats served as a model of proteinuric kidney injury. Sodium 23Na/1H-MRI was used to measure renal sodium and water content in live animals. Renal lymph, which reflects the interstitial composition, was collected, and the sodium analyzed. The contractile dynamics of isolated renal lymphatic vessels were studied in a perfusion chamber. Cultured lymphatic endothelial cells (LECs) were used to assess direct sodium effects on NKCC1. MRI showed elevation in renal sodium and water in PAN. In addition, renal lymph contained higher sodium, although the plasma sodium showed no difference between PAN and controls. High sodium decreased contractility of renal collecting lymphatic vessels. In LECs, high sodium reduced phosphorylated NKCC1 and SPAK, an upstream activating kinase of NKCC1, and eNOS, a downstream effector of lymphatic contractility. The NKCC1 inhibitor furosemide showed a weaker effect on ejection fraction in isolated renal lymphatics of PAN vs controls. High sodium within the renal interstitium following proteinuric injury is associated with impaired renal lymphatic pumping that may, in part, involve the SPAK-NKCC1-eNOS pathway, which may contribute to sodium retention and reduce lymphatic responsiveness to furosemide. We propose that this lymphatic vessel dysfunction is a novel mechanism of impaired interstitial clearance and edema in proteinuric kidney disease.


Subject(s)
Acute Kidney Injury/metabolism , Endothelium, Lymphatic/cytology , Kidney/chemistry , Nitric Oxide Synthase Type III/metabolism , Protein Serine-Threonine Kinases/metabolism , Puromycin Aminonucleoside/adverse effects , Sodium/analysis , Solute Carrier Family 12, Member 2/metabolism , Acute Kidney Injury/chemically induced , Animals , Cells, Cultured , Endothelium, Lymphatic/drug effects , Endothelium, Lymphatic/metabolism , Gene Expression Regulation/drug effects , Magnetic Resonance Imaging , Male , Phosphorylation/drug effects , Rats , Water/analysis
10.
Biochem Biophys Res Commun ; 557: 90-96, 2021 06 11.
Article in English | MEDLINE | ID: mdl-33862465

ABSTRACT

Klotho deficiency was observed in virtually all kinds of kidney disease and is thought to play a critical role in podocyte injury. However, the underline mechanisms involved in podocyte injury remain unknown. miRNAs have diverse regulatory roles, and miR-30 family members were essential for podocyte homeostasis. Our study revealed that Klotho and miR-30s were downregulated in PAN-treated podocytes. The ectopic expression of Klotho ameliorates PAN induced podocyte apoptosis through upregulating miR-30a and downregulating Ppp3ca, Ppp3cb, Ppp3r1, and Nfact3 expression, which are the known targets of miR-30s. We also found that Klotho regulates TRPC6 via miR-30a to activate calcium/calcineurin signaling. Further, glucocorticoid (Dexamethasone, DEX) was found to sustain Klotho and miR-30a levels during PAN treatment in vitro. Eventually, in rats, PAN treatment substantially downregulated Klotho and miR-30a levels, lead to podocyte injury and increased proteinuria. The transfer of exogenous Klotho to podocytes of PAN-treated rats could increase miR-30a expression, reduce TRPC6 expression, and also ameliorated podocyte injury and proteinuria. In conclusion, Klotho, acting on miR-30s, which directly regulates its target genes, contributes to podocyte apoptosis induced by PAN. It is a novel mechanism underlying PAN-induced podocyte injury.


Subject(s)
Glucuronidase/metabolism , Kidney Diseases/metabolism , MicroRNAs/metabolism , Podocytes/metabolism , TRPC6 Cation Channel/metabolism , Animals , Calcium Signaling , Cells, Cultured , Dexamethasone/pharmacology , Disease Models, Animal , Down-Regulation , Humans , Kidney Diseases/genetics , Kidney Diseases/pathology , Klotho Proteins , Male , MicroRNAs/genetics , Podocytes/drug effects , Podocytes/pathology , Puromycin Aminonucleoside/pharmacology , Rats , Rats, Wistar
11.
FASEB J ; 34(12): 16191-16204, 2020 12.
Article in English | MEDLINE | ID: mdl-33070369

ABSTRACT

Urinary plasminogen/plasmin, or plasmin (ogen) uria, has been demonstrated in proteinuric patients and exposure of cultured podocytes to plasminogen results in injury via oxidative stress pathways. A causative role for plasmin (ogen) as a "second hit" in kidney disease progression has yet to have been demonstrated in vivo. Additionally, association between plasmin (ogen) uria and kidney function in glomerular diseases remains unclear. We performed comparative studies in a puromycin aminonucleoside (PAN) nephropathy rat model treated with amiloride, an inhibitor of plasminogen activation, and measured changes in plasmin (ogen) uria. In a glomerular disease biorepository cohort (n = 128), we measured time-of-biopsy albuminuria, proteinuria, and plasmin (ogen) uria for correlations with kidney outcomes. In cultured human podocytes, plasminogen treatment was associated with decreased focal adhesion marker expression with rescue by amiloride. Increased glomerular plasmin (ogen) was found in PAN rats and focal segmental glomerulosclerosis (FSGS) patients. PAN nephropathy was associated with increases in plasmin (ogen) uria and proteinuria. Amiloride was protective against PAN-induced glomerular injury, reducing CD36 scavenger receptor expression and oxidative stress. In patients, we found associations between plasmin (ogen) uria and edema status as well as eGFR. Our study demonstrates a role for plasmin (ogen)-induced podocyte injury in the PAN nephropathy model, with amiloride having podocyte-protective properties. In one of the largest glomerular disease cohorts to study plasminogen, we validated previous findings while suggesting a potentially novel relationship between plasmin (ogen) uria and estimated glomerular filtration rate (eGFR). Together, these findings suggest a role for plasmin (ogen) in mediating glomerular injury and as a viable targetable biomarker for podocyte-sparing treatments.


Subject(s)
Edema/pathology , Kidney Diseases/pathology , Kidney Glomerulus/pathology , Plasminogen/urine , Podocytes/pathology , Proteinuria/pathology , Amiloride/pharmacology , Animals , Biomarkers/metabolism , Biomarkers/urine , Edema/metabolism , Glomerulosclerosis, Focal Segmental/metabolism , Glomerulosclerosis, Focal Segmental/pathology , Humans , Kidney Diseases/metabolism , Kidney Glomerulus/drug effects , Kidney Glomerulus/metabolism , Male , Oxidative Stress/drug effects , Podocytes/drug effects , Podocytes/metabolism , Proteinuria/metabolism , Puromycin Aminonucleoside/metabolism , Rats , Rats, Wistar , Renal Insufficiency/metabolism , Renal Insufficiency/pathology
12.
J Pathol ; 252(3): 227-238, 2020 11.
Article in English | MEDLINE | ID: mdl-32686149

ABSTRACT

Podocyte injury plays a vital role in proteinuria and nephrotic syndrome. Calcineurin (CaN) inhibitors are effective in reducing proteinuria. However, their molecular mechanism is still not fully understood. Angiopoietin-like-4 (ANGPTL4) is a secreted protein that mediates proteinuria in podocyte-related nephropathy. In this study, we established a puromycin aminonucleoside (PAN)-induced minimal-change disease (MCD) rat model and a cultured podocyte injury model. We found that CaN inhibitors protected against PAN-induced podocyte injury, accompanied by an inhibition of Nfatc1 and Angptl4 both in vivo and in vitro. Nfatc1 overexpression and knockdown experiments indicated that Angptl4 was regulated by Nfatc1 in podocytes. ChIP assays further demonstrated that Nfatc1 increased Angptl4 expression by binding to the Angptl4 promoter. In addition, overexpression and knockdown of Angptl4 revealed that Angptl4 directly induced rearrangement of the cytoskeleton of podocytes, reduced the expression of synaptopodin, and enhanced PAN-induced podocyte apoptosis. Furthermore, in a cohort of 83 MCD and 94 membranous nephropathy (MN) patients, we found increased expression of serum ANGPTL4 compared to 120 healthy controls, and there were close correlations between serum ANGPTL4 and Alb, urinary protein, urinary Alb, eGFR, Scr, and BUN in MCD patients. No obvious correlation was found in MN patients. Immunofluorescence studies indicated that increased ANGPTL4 in MCD and MN patients was located mostly in podocytes. In conclusion, our results demonstrate that CaN inhibitors ameliorate PAN-induced podocyte injury by targeting Angptl4 through the NFAT pathway, and Angptl4 plays a vital role in podocyte injury and is involved in human podocyte-related nephropathy. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Angiopoietin-Like Protein 4/metabolism , Calcineurin Inhibitors/pharmacology , Glomerulonephritis, Membranous/drug therapy , NFATC Transcription Factors/metabolism , Nephrosis, Lipoid/drug therapy , Podocytes/drug effects , Proteinuria/drug therapy , Animals , Calcineurin Inhibitors/therapeutic use , Case-Control Studies , Cells, Cultured , Glomerulonephritis, Membranous/metabolism , Glomerulonephritis, Membranous/pathology , Humans , Male , Mice , Nephrosis, Lipoid/chemically induced , Nephrosis, Lipoid/metabolism , Nephrosis, Lipoid/pathology , Podocytes/metabolism , Podocytes/pathology , Proteinuria/metabolism , Proteinuria/pathology , Puromycin Aminonucleoside , Rats , Signal Transduction/drug effects
13.
Int J Mol Sci ; 22(24)2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34948207

ABSTRACT

In minimal change nephrotic syndrome, podocyte vesicle transport is enhanced. Adenomatous polyposis coli (APC) anchors microtubules to cell membranes and plays an important role in vesicle transport. To clarify the role of APC in vesicle transport in podocytes, nephrotic syndrome was induced by puromycin amino nucleoside (PAN) injection in mice expressing APC1638T lacking the C-terminal of microtubule-binding site (APC1638T mouse); this was examined in renal tissue changes. The kidney size and glomerular area of APC1638T mice were reduced (p = 0.014); however, the number of podocytes was same between wild-type (WT) mice and APC1638T mice. The ultrastructure of podocyte foot process was normal by electron microscopy. When nephrotic syndrome was induced, the kidneys of WT+PAN mice became swollen with many hyaline casts, whereas these changes were inhibited in the kidneys of APC1638T+PAN mice. Electron microscopy showed foot process effacement in both groups; however, APC1638T+PAN mice had fewer vesicles in the basal area of podocytes than WT+PAN mice. Cytoplasmic dynein-1, a motor protein for vesicle transport, and α-tubulin were significantly reduced in APC1638T+PAN mice associated with suppressed urinary albumin excretion compared to WT+PAN mice. In conclusion, APC1638T mice showed reduced albuminuria associated with suppressed podocyte vesicle transport when minimal change nephrotic syndrome was induced.


Subject(s)
Adenomatous Polyposis Coli/pathology , Albuminuria/pathology , Nephrotic Syndrome/pathology , Podocytes/pathology , Transcytosis/physiology , Adenomatous Polyposis Coli/metabolism , Albuminuria/metabolism , Animals , Disease Models, Animal , Kidney Glomerulus/metabolism , Kidney Glomerulus/pathology , Male , Mice , Mice, Inbred C57BL , Nephrotic Syndrome/chemically induced , Nephrotic Syndrome/metabolism , Podocytes/metabolism , Puromycin/pharmacology , Puromycin Aminonucleoside/pharmacology
14.
Zhongguo Dang Dai Er Ke Za Zhi ; 23(9): 951-958, 2021.
Article in English, Zh | MEDLINE | ID: mdl-34535212

ABSTRACT

OBJECTIVES: To study the effect of puromycin aminonucleoside (PAN) on the apoptosis of mouse podocyte clone 5 (MPC-5) and the expression of recombinant human Parkinson's disease 7 (Park7) and to study the protective mechanism of tacrolimus (FK506) against MPC-5 injury. METHODS: MPC-5 cells were cultured in vitro and then divided into three groups: blank control (control), PAN, and FK506. The cells in the PAN group were added with PAN (with a concentration of 50 mg/L) to establish a model of MPC-5 injury, and those in the FK506 group were added with PAN (with a concentration of 50 mg/L) and FK506 (with a concentration of 5 mg/L). An inverted microscope was used to observe the morphology and structure of MPC-5 cells at 12, 24, and 48 hours after treatment. Flow cytometry was used to measure cell apoptosis rate. Quantitative real-time PCR was used to measure the mRNA expression of Park7. Western blot and immunofluorescent staining were used to measure the protein expression of Park7. RESULTS: The control group had a large number of foot processes of the cell body at all time points, with tight connections between cells and a normal morphology. Compared with the control group, the PAN group had a significantly smaller cell volume at all time points, with loose connections between cells and the presence of ruptured cells. Compared with the PAN group, the FK506 group had an increased cell volume at all time points, with tighter connections between cells and a better morphology. The PAN group had a significantly higher apoptosis rate than the control group at all time points. Compared with the PAN group, the FK506 group had a significant reduction in the apoptosis rate at all time points (P<0.01). The PAN group had a significantly higher mRNA expression level of Park7 than the control group at all time points. Compared with the PAN group, the FK506 group had a significant reduction in the mRNA expression level of Park7 at all time points (P<0.01). Western blot showed that the PAN group had a significantly higher protein expression level of Park7 than the control group at all time points. Compared with the PAN group, the FK506 group had a significant reduction in the protein expression level of Park7 at all time points (P<0.01). Immunofluorescent staining showed that in the PAN group, there was a significantly lower expression of Park7 protein in cell membrane and cytoplasm, with a dense cluster distribution and increased fluorescence intensity. Compared with the PAN group, the FK506 group had a significant improvement in the distribution of Park7 protein. CONCLUSIONS: PAN can act on MPC-5 cells and cause morphological and structural damage and apoptosis of MPC-5 cells, as well as upregulated mRNA and protein expression of Park7. FK506 can downregulate the mRNA and protein expression of Park7 in the model of MPC-5 injury, maintain cellular homeostasis, reduce proteinuria, and delay glomerulosclerosis.


Subject(s)
Parkinson Disease , Podocytes , Animals , Mice , Protein Deglycase DJ-1 , Puromycin Aminonucleoside/toxicity , Tacrolimus/pharmacology
15.
J Recept Signal Transduct Res ; 40(3): 273-280, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32102592

ABSTRACT

Objective: The aim of our study is to investigate the relationship between podocyte autophagy and apoptosis induced by Puromycin Aminonucleoside (PAN) and to clarify its mechanism.Methods: Podocytes were cultured in vitro. The apoptosis rates of each group were detected using flow cytometry. The expression of LC3-II protein and changes in distribution were detected through laser scanning confocal microscope, and the western blot protocol was employed for detection of protein expression of LC3-II. The autophagosomes were detected by transmission electron microscopy.Results: In this study, We found that autophagosome increased followed by apoptosis after podocyte injury. Furthermore, we conformed that the activation of autophagy could inhibit the apoptosis to alleviate the injury of podocyte at an early stage.Conclusions: Autophagy occurred earlier before apoptosis and autophagy mediated podocyte apoptosis induced by PAN. These findings indicate that autophagy may become a novel therapeutic target for the treatment of podocyte injury and proteinuria in the future.


Subject(s)
Apoptosis/drug effects , Autophagy/drug effects , Podocytes/pathology , Puromycin Aminonucleoside/pharmacology , Animals , Autophagosomes/drug effects , Autophagosomes/metabolism , Autophagosomes/ultrastructure , Blotting, Western , Cell Shape/drug effects , Cells, Cultured , Mice , Podocytes/drug effects , Podocytes/ultrastructure , Time Factors
16.
BMC Nephrol ; 21(1): 226, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32539845

ABSTRACT

BACKGROUND: Focal segmental glomerulosclerosis (FSGS) causes renal fibrosis and may lead to kidney failure. FSGS and its common complication, proteinuria, are challenging to treat. Corticosteroids are ineffective in many patients with FSGS, and alternative treatments often yield suboptimal responses. Repository corticotropin injection (RCI; Acthar® Gel), a naturally sourced complex mixture of purified adrenocorticotropic hormone analogs and other pituitary peptides, may have beneficial effects on idiopathic FSGS via melanocortin receptor activation. METHODS: Two studies in a preclinical (female Sprague-Dawley rats) puromycin aminonucleoside FSGS model assessed the effect of RCI on renal function and morphology: an 8-week comparison of a single RCI dose with methylprednisolone (N = 27), and a 12-week chronic RCI dose range study (N = 34). Primary outcomes were proteinuria and renal pathology improvements for measures of renal fibrosis, tubular damage, glomerular injury, and total kidney injury score. Impact of RCI treatment was also determined by assessing urinary biomarkers for renal injury, podocyte expression of podoplanin (a biomarker for injury), podocyte effacement by electron microscopy, and histological staining for fibrosis biomarkers. RESULTS: Compared with saline treatment, RCI 30 IU/kg significantly reduced proteinuria, with a 38% reduction in peak mean urine protein levels on day 28 in the 8-week model, and RCI 10 IU/kg, 30 IU/kg, and 60 IU/kg reduced peak mean urine protein in the 12-week model by 18, 47, and 44%, respectively. RCI also showed significant dose-dependent improvements in fibrosis, interstitial inflammation, tubular injury, and glomerular changes. Total kidney injury score (calculated from histopathological evaluations) demonstrated statistically significant improvements with RCI 30 IU/kg in the 8-week study and RCI 60 IU/kg in the 12-week study. RCI treatment improved levels of urinary biomarkers of kidney injury (KIM-1 and OPN), expression of podoplanin, and podocyte morphology. RCI also reduced levels of desmin and fibrosis-associated collagen deposition staining. Methylprednisolone did not improve renal function or pathology in this model. CONCLUSIONS: These results provide evidence supporting the improvement of FSGS with RCI, which was superior to corticosteroid treatment in this experimental model. To the authors' knowledge, this is the first evidence that a drug for the treatment of FSGS supports podocyte recovery after repeated injury.


Subject(s)
Adrenal Cortex Hormones/therapeutic use , Adrenocorticotropic Hormone/administration & dosage , Glomerulosclerosis, Focal Segmental/drug therapy , Kidney/pathology , Animals , Biomarkers/urine , Disease Models, Animal , Female , Fibrosis , Glomerulosclerosis, Focal Segmental/pathology , Glomerulosclerosis, Focal Segmental/physiopathology , Injections , Kidney/drug effects , Kidney/metabolism , Membrane Glycoproteins/metabolism , Podocytes/pathology , Proteinuria/prevention & control , Puromycin Aminonucleoside/pharmacology , Rats , Rats, Sprague-Dawley
17.
J Am Soc Nephrol ; 30(1): 96-108, 2019 01.
Article in English | MEDLINE | ID: mdl-30514724

ABSTRACT

BACKGROUND: Foot process effacement is one of the pathologic indicators of podocyte injury. However, the morphologic changes associated with it remain unclear. METHODS: To clarify the developmental process, we analyzed puromycin nephrotic podocytes reconstructed from serial focused-ion beam/scanning electron microscopy (FIB/SEM) images. RESULTS: Intact podocytes consisted of four subcellular compartments: cell body, primary process, ridge-like prominence (RLP), and foot process. The RLP, a longitudinal protrusion from the basal surface of the cell body and primary process, served as an adhesive apparatus for the cell body and primary process to attach to the glomerular basement membrane. Foot processes protruded from both sides of the RLP. In puromycin nephrotic podocytes, foot process effacement occurred in two ways: by type-1 retraction, where the foot processes retracted while maintaining their rounded tips; or type-2 retraction, where they narrowed across their entire lengths, tapering toward the tips. Puromycin nephrotic podocytes also exhibited several alterations associated with foot process effacement, such as deformation of the cell body, retraction of RLPs, and cytoplasmic fragmentation. Finally, podocytes were reorganized into a broad, flattened shape. CONCLUSIONS: The three-dimensional reconstruction of podocytes by serial FIB/SEM images revealed the morphologic changes involved in foot process effacement in greater detail than previously described.


Subject(s)
Glomerular Basement Membrane/pathology , Imaging, Three-Dimensional , Nephrosis/pathology , Podocytes/pathology , Puromycin Aminonucleoside/pharmacology , Tomography, X-Ray Computed/methods , Animals , Cells, Cultured , Disease Models, Animal , Injections, Intraperitoneal , Male , Microscopy, Electron, Scanning/methods , Nephrosis/chemically induced , Podocytes/cytology , Podocytes/drug effects , Random Allocation , Rats , Rats, Wistar , Reference Values
18.
Int J Mol Sci ; 21(12)2020 Jun 16.
Article in English | MEDLINE | ID: mdl-32560242

ABSTRACT

Urinary exosomes, small extracellular vesicles present in urine, are secreted from all types of renal epithelial cells. Aquaporin-2 (AQP2), a vasopressin-regulated water channel protein, is known to be selectively excreted into the urine through exosomes (UE-AQP2), and its renal expression is decreased in nephrotic syndrome. However, it is still unclear whether excretion of UE-AQP2 is altered in nephrotic syndrome. In this study, we examined the excretion of UE-AQP2 in an experimental rat model of nephrotic syndrome induced by the administration of puromycin aminonucleoside (PAN). Rats were assigned to two groups: a control group administered saline and a PAN group given a single intraperitoneal injection of PAN (125 mg/kg) at day 0. The experiment was continued for 8 days, and samples of urine, blood, and tissue were collected on days 2, 5, and 8. The blood and urine parameters revealed that PAN induced nephrotic syndrome on days 5 and 8, and decreases in the excretion of UE-AQP2 were detected on days 2 through 8 in the PAN group. Immunohistochemistry showed that the renal expression of AQP2 was decreased on days 5 and 8. The release of exosomal marker proteins into the urine through UEs was decreased on day 5 and increased on day 8. These data suggest that UE-AQP2 is decreased in PAN-induced nephrotic syndrome and that this reflects its renal expression in the marked proteinuria phase after PAN treatment.


Subject(s)
Aquaporin 2/urine , Exosomes/metabolism , Nephrotic Syndrome/urine , Puromycin Aminonucleoside/adverse effects , Animals , Aquaporin 2/blood , Biomarkers/blood , Biomarkers/urine , Disease Models, Animal , Down-Regulation , Injections, Intraperitoneal , Male , Nephrotic Syndrome/blood , Nephrotic Syndrome/chemically induced , Puromycin Aminonucleoside/administration & dosage , Rats
19.
Am J Physiol Renal Physiol ; 316(5): F906-F913, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30698047

ABSTRACT

Glomerular diseases are the leading cause of chronic kidney disease, and mesangial cells (MCs) have been demonstrated to be involved in the pathogenesis. Puromycin aminonucleoside (PAN) is a nephrotoxic drug that induces glomerular injury with elusive mechanisms. The present study was undertaken to investigate the role of PAN in MC apoptosis, as well as the underlying mechanism. Here we found that PAN induced MC apoptosis accompanied by declined cell viability and enhanced inflammatory response. The apoptosis was further evidenced by increments of apoptosis regulator BAX (BAX) and caspase-3 expression. In line with the apoptotic response in MCs following PAN treatment, we also found a remarkable induction of estrogen-related receptor-α (ERRα), an orphan nuclear receptor, at both mRNA and protein levels. Interestingly, ERRα silencing by an siRNA approach resulted in an attenuation of the apoptosis and inflammatory response caused by PAN. More importantly, overexpression of ERRα in MCs significantly triggered MC apoptosis in line with increased BAX and caspase-3 expression. In PAN-treated MCs, ERRα overexpression further aggravated PAN-induced apoptosis. In agreement with the in vitro study, we also observed increased ERRα expression in line with enhanced apoptotic response in renal cortex from PAN-treated rats. These data suggest a detrimental effect of ERRα on PAN-induced MC apoptosis and inflammatory response, which could help us to better understand the pathogenic mechanism of MC injury in PAN nephropathy.


Subject(s)
Apoptosis , Estrogen Receptor alpha/metabolism , Nephrosis/metabolism , Podocytes/metabolism , Puromycin Aminonucleoside , Animals , Apoptosis Regulatory Proteins/metabolism , Cell Line , Disease Models, Animal , Estrogen Receptor alpha/genetics , Male , Mice , Nephrosis/chemically induced , Nephrosis/pathology , Podocytes/pathology , Rats, Sprague-Dawley , Signal Transduction
20.
Am J Physiol Renal Physiol ; 317(6): F1549-F1562, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31566427

ABSTRACT

The present study tested the hypotheses that nephrotic syndrome (NS) leads to renal K+ loss because of augmented epithelial Na+ channel (ENaC) activity followed by downregulation of renal K+ secretory pathways by suppressed aldosterone. The hypotheses were addressed by determining K+ balance and kidney abundance of K+ and Na+ transporter proteins in puromycin aminonucleoside (PAN)-induced rat nephrosis. The effects of amiloride and angiotensin II type 1 receptor and mineralocorticoid receptor (MR) antagonists were tested. Glucocorticoid-dependent MR activation was tested by suppression of endogenous glucocorticoid with dexamethasone. Urine and plasma samples were obtained from pediatric patients with NS in acute and remission phases. PAN-induced nephrotic rats had ENaC-dependent Na+ retention and displayed lower renal K+ excretion but elevated intestinal K+ secretion that resulted in less cumulated K+ in NS. Aldosterone was suppressed at day 8. The NS-associated changes in intestinal, but not renal, K+ handling responded to suppression of corticosterone, whereas angiotensin II type 1 receptor and MR blockers and amiloride had no effect on urine K+ excretion during NS. In PAN-induced nephrosis, kidney protein abundance of the renal outer medullary K+ channel and γ-ENaC were unchanged, whereas the Na+-Cl- cotransporter was suppressed and Na+-K+-ATPase increased. Pediatric patients with acute NS displayed suppressed urine Na+-to-K+ ratios compared with remission and elevated plasma K+ concentration, whereas fractional K+ excretion did not differ. Acute NS is associated with less cumulated K+ in a rat model, whereas patients with acute NS have elevated plasma K+ and normal renal fractional K+ excretion. In NS rats, K+ balance is not coupled to ENaC activity but results from opposite changes in renal and fecal K+ excretion with a contribution from corticosteroid MR-driven colonic secretion.


Subject(s)
Nephrotic Syndrome/metabolism , Potassium/metabolism , Adolescent , Aldosterone/metabolism , Amiloride/pharmacology , Angiotensin II Type 2 Receptor Blockers/pharmacology , Animals , Child , Child, Preschool , Diuretics , Down-Regulation , Epithelial Sodium Channels/metabolism , Humans , Infant , Kidney/drug effects , Kidney/metabolism , Male , Mineralocorticoid Receptor Antagonists/pharmacology , Nephrotic Syndrome/blood , Nephrotic Syndrome/urine , Potassium/blood , Potassium/urine , Potassium Channels/metabolism , Puromycin Aminonucleoside , Rats , Rats, Sprague-Dawley , Sodium-Potassium-Exchanging ATPase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL