Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52.511
Filter
Add more filters

Publication year range
1.
Cell ; 184(23): 5691-5693, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34767773

ABSTRACT

Cyclic pyrimidines cCMP and cUMP were known to be present in a variety of organisms and cell types, but their biological roles remained mysterious. Tal et al. show that bacteria use cCMP and cUMP as second messengers that function in anti-phage defense.


Subject(s)
Bacteriophages , Cyclic CMP , Nucleotides, Cyclic , Pyrimidines , Second Messenger Systems
2.
Cell ; 184(23): 5728-5739.e16, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34644530

ABSTRACT

The cyclic pyrimidines 3',5'-cyclic cytidine monophosphate (cCMP) and 3',5'-cyclic uridine monophosphate (cUMP) have been reported in multiple organisms and cell types. As opposed to the cyclic nucleotides 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP), which are second messenger molecules with well-established regulatory roles across all domains of life, the biological role of cyclic pyrimidines has remained unclear. Here we report that cCMP and cUMP are second messengers functioning in bacterial immunity against viruses. We discovered a family of bacterial pyrimidine cyclase enzymes that specifically synthesize cCMP and cUMP following phage infection and demonstrate that these molecules activate immune effectors that execute an antiviral response. A crystal structure of a uridylate cyclase enzyme from this family explains the molecular mechanism of selectivity for pyrimidines as cyclization substrates. Defense systems encoding pyrimidine cyclases, denoted here Pycsar (pyrimidine cyclase system for antiphage resistance), are widespread in prokaryotes. Our results assign clear biological function to cCMP and cUMP as immunity signaling molecules in bacteria.


Subject(s)
Bacteria/immunology , Bacteria/virology , Bacteriophages/physiology , Cyclic CMP/metabolism , Nucleotides, Cyclic/metabolism , Uridine Monophosphate/metabolism , Amino Acid Sequence , Bacteria/genetics , Burkholderia/enzymology , Cyclic CMP/chemistry , Cyclization , Escherichia coli/enzymology , Models, Molecular , Mutation/genetics , Nucleotides, Cyclic/chemistry , Phosphorus-Oxygen Lyases/chemistry , Phosphorus-Oxygen Lyases/metabolism , Pyrimidines/metabolism , Uridine Monophosphate/chemistry
3.
Cell ; 184(17): 4547-4563.e17, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34314701

ABSTRACT

Frontotemporal dementia (FTD) because of MAPT mutation causes pathological accumulation of tau and glutamatergic cortical neuronal death by unknown mechanisms. We used human induced pluripotent stem cell (iPSC)-derived cerebral organoids expressing tau-V337M and isogenic corrected controls to discover early alterations because of the mutation that precede neurodegeneration. At 2 months, mutant organoids show upregulated expression of MAPT, glutamatergic signaling pathways, and regulators, including the RNA-binding protein ELAVL4, and increased stress granules. Over the following 4 months, mutant organoids accumulate splicing changes, disruption of autophagy function, and build-up of tau and P-tau-S396. By 6 months, tau-V337M organoids show specific loss of glutamatergic neurons as seen in individuals with FTD. Mutant neurons are susceptible to glutamate toxicity, which can be rescued pharmacologically by the PIKFYVE kinase inhibitor apilimod. Our results demonstrate a sequence of events that precede neurodegeneration, revealing molecular pathways associated with glutamate signaling as potential targets for therapeutic intervention in FTD.


Subject(s)
Cerebrum/pathology , ELAV-Like Protein 4/genetics , Glutamic Acid/metabolism , Mutation/genetics , Neurons/pathology , Organoids/metabolism , RNA Splicing/genetics , tau Proteins/genetics , Autophagy/drug effects , Autophagy/genetics , Biomarkers/metabolism , Body Patterning/drug effects , Body Patterning/genetics , Cell Death/drug effects , Cell Line , Humans , Hydrazones/pharmacology , Lysosomes/drug effects , Lysosomes/metabolism , Morpholines/pharmacology , Neurons/drug effects , Neurons/metabolism , Organoids/drug effects , Organoids/ultrastructure , Phosphorylation/drug effects , Pyrimidines/pharmacology , RNA Splicing/drug effects , Signal Transduction/drug effects , Stress Granules/drug effects , Stress Granules/metabolism , Synapses/metabolism , Up-Regulation/drug effects , Up-Regulation/genetics
4.
Nat Immunol ; 24(3): 501-515, 2023 03.
Article in English | MEDLINE | ID: mdl-36797499

ABSTRACT

Blocking pyrimidine de novo synthesis by inhibiting dihydroorotate dehydrogenase is used to treat autoimmunity and prevent expansion of rapidly dividing cell populations including activated T cells. Here we show memory T cell precursors are resistant to pyrimidine starvation. Although the treatment effectively blocked effector T cells, the number, function and transcriptional profile of memory T cells and their precursors were unaffected. This effect occurred in a narrow time window in the early T cell expansion phase when developing effector, but not memory precursor, T cells are vulnerable to pyrimidine starvation. This vulnerability stems from a higher proliferative rate of early effector T cells as well as lower pyrimidine synthesis capacity when compared with memory precursors. This differential sensitivity is a drug-targetable checkpoint that efficiently diminishes effector T cells without affecting the memory compartment. This cell fate checkpoint might therefore lead to new methods to safely manipulate effector T cell responses.


Subject(s)
Pyrimidines , Cell Cycle , Cell Differentiation
5.
Cell ; 183(5): 1202-1218.e25, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33142117

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) tumors have a nutrient-poor, desmoplastic, and highly innervated tumor microenvironment. Although neurons can release stimulatory factors to accelerate PDAC tumorigenesis, the metabolic contribution of peripheral axons has not been explored. We found that peripheral axons release serine (Ser) to support the growth of exogenous Ser (exSer)-dependent PDAC cells during Ser/Gly (glycine) deprivation. Ser deprivation resulted in ribosomal stalling on two of the six Ser codons, TCC and TCT, and allowed the selective translation and secretion of nerve growth factor (NGF) by PDAC cells to promote tumor innervation. Consistent with this, exSer-dependent PDAC tumors grew slower and displayed enhanced innervation in mice on a Ser/Gly-free diet. Blockade of compensatory neuronal innervation using LOXO-101, a Trk-NGF inhibitor, further decreased PDAC tumor growth. Our data indicate that axonal-cancer metabolic crosstalk is a critical adaptation to support PDAC growth in nutrient poor environments.


Subject(s)
Neurons/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Protein Biosynthesis , Serine/metabolism , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Aged , Animals , Axons/metabolism , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Cell Proliferation , Codon/genetics , Female , Glycine/metabolism , Humans , Male , Mice , Middle Aged , Mitochondria/metabolism , Nerve Tissue/pathology , Oxygen Consumption , Pancreatic Neoplasms/pathology , Pyrazoles , Pyrimidines , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Transfer/genetics , Rats
6.
Cell ; 177(1): 8, 2019 03 21.
Article in English | MEDLINE | ID: mdl-30901551

ABSTRACT

Larotrectinib is a small-molecule kinase inhibitor that targets NTRK fusions that occur in multiple types of cancer. Its FDA approval represents the first instance of a treatment indication being designated "tumor-agnostic" from the outset, being based on actionable genomic insights. To view this Bench to Bedside, open or download the PDF.


Subject(s)
Pyrazoles/metabolism , Pyrazoles/pharmacology , Pyrimidines/metabolism , Pyrimidines/pharmacology , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism , Humans , Neoplasms/genetics , Oncogene Proteins, Fusion/genetics , Protein Kinase Inhibitors/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Receptor Tyrosine Kinase-like Orphan Receptors/agonists , Receptor, trkB/metabolism
7.
Cell ; 174(6): 1559-1570.e22, 2018 09 06.
Article in English | MEDLINE | ID: mdl-30100185

ABSTRACT

The urea cycle (UC) is the main pathway by which mammals dispose of waste nitrogen. We find that specific alterations in the expression of most UC enzymes occur in many tumors, leading to a general metabolic hallmark termed "UC dysregulation" (UCD). UCD elicits nitrogen diversion toward carbamoyl-phosphate synthetase2, aspartate transcarbamylase, and dihydrooratase (CAD) activation and enhances pyrimidine synthesis, resulting in detectable changes in nitrogen metabolites in both patient tumors and their bio-fluids. The accompanying excess of pyrimidine versus purine nucleotides results in a genomic signature consisting of transversion mutations at the DNA, RNA, and protein levels. This mutational bias is associated with increased numbers of hydrophobic tumor antigens and a better response to immune checkpoint inhibitors independent of mutational load. Taken together, our findings demonstrate that UCD is a common feature of tumors that profoundly affects carcinogenesis, mutagenesis, and immunotherapy response.


Subject(s)
Genomics , Metabolomics , Neoplasms/pathology , Urea/metabolism , Amino Acid Transport Systems, Basic/metabolism , Animals , Aspartate Carbamoyltransferase/genetics , Aspartate Carbamoyltransferase/metabolism , Carbamoyl-Phosphate Synthase (Glutamine-Hydrolyzing)/genetics , Carbamoyl-Phosphate Synthase (Glutamine-Hydrolyzing)/metabolism , Cell Line, Tumor , Dihydroorotase/genetics , Dihydroorotase/metabolism , Female , Humans , Mice , Mice, Inbred C57BL , Mice, SCID , Mitochondrial Membrane Transport Proteins , Neoplasms/metabolism , Ornithine Carbamoyltransferase/antagonists & inhibitors , Ornithine Carbamoyltransferase/genetics , Ornithine Carbamoyltransferase/metabolism , Phosphorylation/drug effects , Pyrimidines/biosynthesis , Pyrimidines/chemistry , RNA Interference , RNA, Small Interfering/metabolism , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism
8.
Cell ; 169(2): 258-272.e17, 2017 Apr 06.
Article in English | MEDLINE | ID: mdl-28388410

ABSTRACT

A complex interplay of environmental factors impacts the metabolism of human cells, but neither traditional culture media nor mouse plasma mimic the metabolite composition of human plasma. Here, we developed a culture medium with polar metabolite concentrations comparable to those of human plasma (human plasma-like medium [HPLM]). Culture in HPLM, relative to that in traditional media, had widespread effects on cellular metabolism, including on the metabolome, redox state, and glucose utilization. Among the most prominent was an inhibition of de novo pyrimidine synthesis-an effect traced to uric acid, which is 10-fold higher in the blood of humans than of mice and other non-primates. We find that uric acid directly inhibits uridine monophosphate synthase (UMPS) and consequently reduces the sensitivity of cancer cells to the chemotherapeutic agent 5-fluorouracil. Thus, media that better recapitulates the composition of human plasma reveals unforeseen metabolic wiring and regulation, suggesting that HPLM should be of broad utility.


Subject(s)
Culture Media/chemistry , Multienzyme Complexes/antagonists & inhibitors , Orotate Phosphoribosyltransferase/antagonists & inhibitors , Orotidine-5'-Phosphate Decarboxylase/antagonists & inhibitors , Uric Acid/metabolism , Aged , Animals , Cell Culture Techniques , Cell Line, Tumor , Fluorouracil/pharmacology , Glucose/metabolism , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Male , Mice , Middle Aged , Multienzyme Complexes/chemistry , Orotate Phosphoribosyltransferase/chemistry , Orotidine-5'-Phosphate Decarboxylase/chemistry , Protein Domains , Pyrimidines/biosynthesis
9.
Annu Rev Biochem ; 85: 265-90, 2016 Jun 02.
Article in English | MEDLINE | ID: mdl-27294439

ABSTRACT

Transcription factor IIH (TFIIH) is a multiprotein complex involved in both transcription and DNA repair, revealing a striking functional link between these two processes. Some of its subunits also belong to complexes involved in other cellular processes, such as chromosome segregation and cell cycle regulation, emphasizing the multitasking capabilities of this factor. This review aims to depict the structure of TFIIH and to dissect the roles of its subunits in different cellular mechanisms. Our understanding of the biochemistry of TFIIH has greatly benefited from studies focused on diseases related to TFIIH mutations. We address the etiology of these disorders and underline the fact that TFIIH can be considered a promising target for therapeutic strategies.


Subject(s)
DNA Repair/drug effects , Transcription Factor TFIIH/genetics , Transcription, Genetic/drug effects , Trichothiodystrophy Syndromes/genetics , Xeroderma Pigmentosum/genetics , Cell Cycle/drug effects , Cell Cycle/genetics , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromosome Segregation , DNA/genetics , DNA/metabolism , DNA Damage , Humans , Models, Molecular , Molecular Targeted Therapy , Mutation , Phenylenediamines/therapeutic use , Protein Subunits/antagonists & inhibitors , Protein Subunits/genetics , Protein Subunits/metabolism , Pyrimidines/therapeutic use , Spironolactone/therapeutic use , Transcription Factor TFIIH/antagonists & inhibitors , Transcription Factor TFIIH/metabolism , Trichothiodystrophy Syndromes/drug therapy , Trichothiodystrophy Syndromes/metabolism , Trichothiodystrophy Syndromes/pathology , Xeroderma Pigmentosum/drug therapy , Xeroderma Pigmentosum/metabolism , Xeroderma Pigmentosum/pathology
10.
Cell ; 167(1): 171-186.e15, 2016 Sep 22.
Article in English | MEDLINE | ID: mdl-27641501

ABSTRACT

While acute myeloid leukemia (AML) comprises many disparate genetic subtypes, one shared hallmark is the arrest of leukemic myeloblasts at an immature and self-renewing stage of development. Therapies that overcome differentiation arrest represent a powerful treatment strategy. We leveraged the observation that the majority of AML, despite their genetically heterogeneity, share in the expression of HoxA9, a gene normally downregulated during myeloid differentiation. Using a conditional HoxA9 model system, we performed a high-throughput phenotypic screen and defined compounds that overcame differentiation blockade. Target identification led to the unanticipated discovery that inhibition of the enzyme dihydroorotate dehydrogenase (DHODH) enables myeloid differentiation in human and mouse AML models. In vivo, DHODH inhibitors reduced leukemic cell burden, decreased levels of leukemia-initiating cells, and improved survival. These data demonstrate the role of DHODH as a metabolic regulator of differentiation and point to its inhibition as a strategy for overcoming differentiation blockade in AML.


Subject(s)
Antineoplastic Agents/therapeutic use , Enzyme Inhibitors/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Molecular Targeted Therapy , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Cell Differentiation , Dihydroorotate Dehydrogenase , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , High-Throughput Screening Assays , Homeodomain Proteins/genetics , Humans , Leukemia, Myeloid, Acute/genetics , Mice , Myeloid Cells/pathology , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Pyrimidines/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/isolation & purification , Small Molecule Libraries/therapeutic use , Xenograft Model Antitumor Assays
11.
Mol Cell ; 83(16): 2837-2839, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37595553

ABSTRACT

A recent study by Yang et al.1 uncovers the pyrimidinosome, a multienzyme complex where enzymes from different subcellular compartments collaborate to enable efficient pyrimidine biosynthesis and ferroptosis defense, highlighting the remarkable adaptability of cellular metabolism and new therapeutic opportunities.


Subject(s)
Ferroptosis , Pyrimidines
12.
Nature ; 631(8019): 87-93, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38697196

ABSTRACT

Structure-activity relationship (SAR) studies are fundamental to drug and agrochemical development, yet only a few synthetic strategies apply to the nitrogen heteroaromatics frequently encountered in small molecule candidates1-3. Here we present an alternative approach in which we convert pyrimidine-containing compounds into various other nitrogen heteroaromatics. Transforming pyrimidines into their corresponding N-arylpyrimidinium salts enables cleavage into a three-carbon iminoenamine building block, used for various heterocycle-forming reactions. This deconstruction-reconstruction sequence diversifies the initial pyrimidine core and enables access to various heterocycles, such as azoles4. In effect, this approach allows heterocycle formation on complex molecules, resulting in analogues that would be challenging to obtain by other methods. We anticipate that this deconstruction-reconstruction strategy will extend to other heterocycle classes.


Subject(s)
Chemistry Techniques, Synthetic , Pyrimidines , Azoles/chemistry , Nitrogen/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Structure-Activity Relationship , Chemistry Techniques, Synthetic/methods
13.
Immunity ; 53(3): 672-684.e11, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32750333

ABSTRACT

Autoinflammatory disease can result from monogenic errors of immunity. We describe a patient with early-onset multi-organ immune dysregulation resulting from a mosaic, gain-of-function mutation (S703I) in JAK1, encoding a kinase essential for signaling downstream of >25 cytokines. By custom single-cell RNA sequencing, we examine mosaicism with single-cell resolution. We find that JAK1 transcription was predominantly restricted to a single allele across different cells, introducing the concept of a mutational "transcriptotype" that differs from the genotype. Functionally, the mutation increases JAK1 activity and transactivates partnering JAKs, independent of its catalytic domain. S703I JAK1 is not only hypermorphic for cytokine signaling but also neomorphic, as it enables signaling cascades not canonically mediated by JAK1. Given these results, the patient was treated with tofacitinib, a JAK inhibitor, leading to the rapid resolution of clinical disease. These findings offer a platform for personalized medicine with the concurrent discovery of fundamental biological principles.


Subject(s)
Hereditary Autoinflammatory Diseases/genetics , Hereditary Autoinflammatory Diseases/pathology , Janus Kinase 1/genetics , Systemic Inflammatory Response Syndrome/genetics , Systemic Inflammatory Response Syndrome/pathology , Adolescent , COVID-19/mortality , Catalytic Domain/genetics , Cell Line , Cytokines/metabolism , Female , Gain of Function Mutation/genetics , Genotype , HEK293 Cells , Hereditary Autoinflammatory Diseases/drug therapy , Humans , Janus Kinase 1/antagonists & inhibitors , Mosaicism , Piperidines/therapeutic use , Precision Medicine/methods , Pyrimidines/therapeutic use , Signal Transduction/immunology , Systemic Inflammatory Response Syndrome/drug therapy
14.
Cell ; 159(5): 1126-1139, 2014 Nov 20.
Article in English | MEDLINE | ID: mdl-25416950

ABSTRACT

The MYC oncoproteins are thought to stimulate tumor cell growth and proliferation through amplification of gene transcription, a mechanism that has thwarted most efforts to inhibit MYC function as potential cancer therapy. Using a covalent inhibitor of cyclin-dependent kinase 7 (CDK7) to disrupt the transcription of amplified MYCN in neuroblastoma cells, we demonstrate downregulation of the oncoprotein with consequent massive suppression of MYCN-driven global transcriptional amplification. This response translated to significant tumor regression in a mouse model of high-risk neuroblastoma, without the introduction of systemic toxicity. The striking treatment selectivity of MYCN-overexpressing cells correlated with preferential downregulation of super-enhancer-associated genes, including MYCN and other known oncogenic drivers in neuroblastoma. These results indicate that CDK7 inhibition, by selectively targeting the mechanisms that promote global transcriptional amplification in tumor cells, may be useful therapy for cancers that are driven by MYC family oncoproteins.


Subject(s)
Cyclin-Dependent Kinases/antagonists & inhibitors , Disease Models, Animal , Neuroblastoma/drug therapy , Nuclear Proteins/metabolism , Oncogene Proteins/metabolism , Phenylenediamines/therapeutic use , Protein Kinase Inhibitors/pharmacology , Pyrimidines/therapeutic use , Animals , Cell Cycle/drug effects , Cell Line, Tumor , Cyclin-Dependent Kinases/metabolism , Humans , N-Myc Proto-Oncogene Protein , Transcription, Genetic/drug effects , Cyclin-Dependent Kinase-Activating Kinase
15.
Cell ; 158(5): 1094-1109, 2014 Aug 28.
Article in English | MEDLINE | ID: mdl-25171410

ABSTRACT

It is increasingly appreciated that oncogenic transformation alters cellular metabolism to facilitate cell proliferation, but less is known about the metabolic changes that promote cancer cell aggressiveness. Here, we analyzed metabolic gene expression in cancer cell lines and found that a set of high-grade carcinoma lines expressing mesenchymal markers share a unique 44 gene signature, designated the "mesenchymal metabolic signature" (MMS). A FACS-based shRNA screen identified several MMS genes as essential for the epithelial-mesenchymal transition (EMT), but not for cell proliferation. Dihydropyrimidine dehydrogenase (DPYD), a pyrimidine-degrading enzyme, was highly expressed upon EMT induction and was necessary for cells to acquire mesenchymal characteristics in vitro and for tumorigenic cells to extravasate into the mouse lung. This role of DPYD was mediated through its catalytic activity and enzymatic products, the dihydropyrimidines. Thus, we identify metabolic processes essential for the EMT, a program associated with the acquisition of metastatic and aggressive cancer cell traits.


Subject(s)
Epithelial-Mesenchymal Transition , Pyrimidines/metabolism , Animals , Carcinoma/metabolism , Cell Line, Tumor , Dihydrouracil Dehydrogenase (NADP)/genetics , Flow Cytometry , Gene Expression Profiling , Humans , Mesoderm/cytology , Mesoderm/metabolism , Mice , RNA, Small Interfering/metabolism
16.
Nature ; 615(7950): 67-72, 2023 03.
Article in English | MEDLINE | ID: mdl-36603811

ABSTRACT

Pyridines and related N-heteroarenes are commonly found in pharmaceuticals, agrochemicals and other biologically active compounds1,2. Site-selective C-H functionalization would provide a direct way of making these medicinally active products3-5. For example, nicotinic acid derivatives could be made by C-H carboxylation, but this remains an elusive transformation6-8. Here we describe the development of an electrochemical strategy for the direct carboxylation of pyridines using CO2. The choice of the electrolysis setup gives rise to divergent site selectivity: a divided electrochemical cell leads to C5 carboxylation, whereas an undivided cell promotes C4 carboxylation. The undivided-cell reaction is proposed to operate through a paired-electrolysis mechanism9,10, in which both cathodic and anodic events play critical roles in altering the site selectivity. Specifically, anodically generated iodine preferentially reacts with a key radical anion intermediate in the C4-carboxylation pathway through hydrogen-atom transfer, thus diverting the reaction selectivity by means of the Curtin-Hammett principle11. The scope of the transformation was expanded to a wide range of N-heteroarenes, including bipyridines and terpyridines, pyrimidines, pyrazines and quinolines.


Subject(s)
Carbon Dioxide , Electrochemistry , Pyrazines , Pyridines , Pyrimidines , Quinolines , Hydrogen/chemistry , Pyrazines/chemistry , Pyridines/chemistry , Pyrimidines/chemistry , Electrochemistry/methods , Carbon Dioxide/chemistry , Quinolines/chemistry , Pharmaceutical Preparations/chemical synthesis , Pharmaceutical Preparations/chemistry
17.
Genes Dev ; 35(11-12): 870-887, 2021 06.
Article in English | MEDLINE | ID: mdl-34016692

ABSTRACT

Small cell lung carcinoma (SCLC) is among the most lethal of all solid tumor malignancies. In an effort to identify novel therapeutic approaches for this recalcitrant cancer type, we applied genome-scale CRISPR/Cas9 inactivation screens to cell lines that we derived from a murine model of SCLC. SCLC cells were particularly sensitive to the deletion of NEDD8 and other neddylation pathway genes. Genetic suppression or pharmacological inhibition of this pathway using MLN4924 caused cell death not only in mouse SCLC cell lines but also in patient-derived xenograft (PDX) models of pulmonary and extrapulmonary small cell carcinoma treated ex vivo or in vivo. A subset of PDX models were exceptionally sensitive to neddylation inhibition. Neddylation inhibition suppressed expression of major regulators of neuroendocrine cell state such as INSM1 and ASCL1, which a subset of SCLC rely upon for cell proliferation and survival. To identify potential mechanisms of resistance to neddylation inhibition, we performed a genome-scale CRISPR/Cas9 suppressor screen. Deletion of components of the COP9 signalosome strongly mitigated the effects of neddylation inhibition in small cell carcinoma, including the ability of MLN4924 to suppress neuroendocrine transcriptional program expression. This work identifies neddylation as a regulator of neuroendocrine cell state and potential therapeutic target for small cell carcinomas.


Subject(s)
Carcinoma, Small Cell/therapy , Cyclopentanes , Lung Neoplasms/therapy , NEDD8 Protein/metabolism , Pyrimidines , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , COP9 Signalosome Complex/genetics , Carcinoma, Small Cell/physiopathology , Cell Death/drug effects , Cell Line, Tumor , Cyclopentanes/pharmacology , Cyclopentanes/therapeutic use , Disease Models, Animal , Gene Expression Regulation, Neoplastic/drug effects , Heterografts , Humans , Lung Neoplasms/physiopathology , Mice , NEDD8 Protein/genetics , Neuroendocrine Cells/cytology , Neuroendocrine Cells/drug effects , Proteins/genetics , Proteins/metabolism , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Repressor Proteins/genetics , Sequence Deletion
18.
Nature ; 604(7904): 134-140, 2022 04.
Article in English | MEDLINE | ID: mdl-35130559

ABSTRACT

The SARS-CoV-2 virus has infected more than 261 million people and has led to more than 5 million deaths in the past year and a half1 ( https://www.who.org/ ). Individuals with SARS-CoV-2 infection typically develop mild-to-severe flu-like symptoms, whereas infection of a subset of individuals leads to severe-to-fatal clinical outcomes2. Although vaccines have been rapidly developed to combat SARS-CoV-2, there has been a dearth of antiviral therapeutics. There is an urgent need for therapeutics, which has been amplified by the emerging threats of variants that may evade vaccines. Large-scale efforts are underway to identify antiviral drugs. Here we screened approximately 18,000 drugs for antiviral activity using live virus infection in human respiratory cells and validated 122 drugs with antiviral activity and selectivity against SARS-CoV-2. Among these candidates are 16 nucleoside analogues, the largest category of clinically used antivirals. This included the antivirals remdesivir and molnupiravir, which have been approved for use in COVID-19. RNA viruses rely on a high supply of nucleoside triphosphates from the host to efficiently replicate, and we identified a panel of host nucleoside biosynthesis inhibitors as antiviral. Moreover, we found that combining pyrimidine biosynthesis inhibitors with antiviral nucleoside analogues synergistically inhibits SARS-CoV-2 infection in vitro and in vivo against emerging strains of SARS-CoV-2, suggesting a clinical path forward.


Subject(s)
Antiviral Agents , Drug Evaluation, Preclinical , Nucleosides , Pyrimidines , SARS-CoV-2 , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/pharmacology , COVID-19/virology , Cell Line , Cytidine/analogs & derivatives , Humans , Hydroxylamines , Nucleosides/analogs & derivatives , Nucleosides/pharmacology , Pyrimidines/pharmacology , SARS-CoV-2/drug effects , COVID-19 Drug Treatment
19.
Nature ; 605(7910): 522-526, 2022 05.
Article in English | MEDLINE | ID: mdl-35395152

ABSTRACT

The cyclic oligonucleotide-based antiphage signalling system (CBASS) and the pyrimidine cyclase system for antiphage resistance (Pycsar) are antiphage defence systems in diverse bacteria that use cyclic nucleotide signals to induce cell death and prevent viral propagation1,2. Phages use several strategies to defeat host CRISPR and restriction-modification systems3-10, but no mechanisms are known to evade CBASS and Pycsar immunity. Here we show that phages encode anti-CBASS (Acb) and anti-Pycsar (Apyc) proteins that counteract defence by specifically degrading cyclic nucleotide signals that activate host immunity. Using a biochemical screen of 57 phages in Escherichia coli and Bacillus subtilis, we discover Acb1 from phage T4 and Apyc1 from phage SBSphiJ as founding members of distinct families of immune evasion proteins. Crystal structures of Acb1 in complex with 3'3'-cyclic GMP-AMP define a mechanism of metal-independent hydrolysis 3' of adenosine bases, enabling broad recognition and degradation of cyclic dinucleotide and trinucleotide CBASS signals. Structures of Apyc1 reveal a metal-dependent cyclic NMP phosphodiesterase that uses relaxed specificity to target Pycsar cyclic pyrimidine mononucleotide signals. We show that Acb1 and Apyc1 block downstream effector activation and protect from CBASS and Pycsar defence in vivo. Active Acb1 and Apyc1 enzymes are conserved in phylogenetically diverse phages, demonstrating that cleavage of host cyclic nucleotide signals is a key strategy of immune evasion in phage biology.


Subject(s)
Bacteriophages , Bacteria/metabolism , Bacterial Proteins/metabolism , Bacteriophage T4/metabolism , Bacteriophages/physiology , CRISPR-Cas Systems/genetics , Endonucleases/metabolism , Escherichia coli/metabolism , Nucleotides, Cyclic/metabolism , Oligonucleotides , Pyrimidines/metabolism
20.
Mol Cell ; 80(1): 29-42.e10, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32857952

ABSTRACT

(p)ppGpp is a nucleotide messenger universally produced in bacteria following nutrient starvation. In E. coli, ppGpp inhibits purine nucleotide synthesis by targeting several different enzymes, but the physiological significance of their inhibition is unknown. Here, we report the structural basis of inhibition for one target, Gsk, the inosine-guanosine kinase. Gsk creates an unprecedented, allosteric binding pocket for ppGpp by restructuring terminal sequences, which restrains conformational dynamics necessary for catalysis. Guided by this structure, we generated a chromosomal mutation that abolishes Gsk regulation by ppGpp. This mutant strain accumulates abnormally high levels of purine nucleotides following amino-acid starvation, compromising cellular fitness. We demonstrate that this unrestricted increase in purine nucleotides is detrimental because it severely depletes pRpp and essential, pRpp-derived metabolites, including UTP, histidine, and tryptophan. Thus, our results reveal the significance of ppGpp's regulation of purine nucleotide synthesis and a critical mechanism by which E. coli coordinates biosynthetic processes during starvation.


Subject(s)
Amino Acids/biosynthesis , Escherichia coli/metabolism , Guanosine Tetraphosphate/metabolism , Nucleotides/biosynthesis , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Feedback, Physiological , Guanosine Diphosphate/metabolism , Models, Molecular , Protein Conformation , Protein Multimerization , Purines/biosynthesis , Pyrimidines/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL