ABSTRACT
Changes in pharmacokinetics and endogenous metabolites may underlie additive biological effects of concomitant use of antipsychotics and opioids. In this study, we employed untargeted metabolomics analysis and targeted analysis to examine the changes in drug metabolites and endogenous metabolites in the prefrontal cortex (PFC), midbrain, and blood of rats following acute co-administration of quetiapine and methadone. Rats were divided into four groups and received cumulative increasing doses of quetiapine (QTP), methadone (MTD), quetiapine + methadone (QTP + MTD), or vehicle (control). All samples were analyzed using liquid chromatography-mass spectrometry (LC-MS). Our findings revealed increased levels of the quetiapine metabolites: Norquetiapine, O-dealkylquetiapine, 7-hydroxyquetiapine, and quetiapine sulfoxide, in the blood and brain when methadone was present. Our study also demonstrated a decrease in methadone and its metabolite 2-ethylidene-1,5-dimethyl-3,3-diphenylpyrrolidine (EDDP) in the rat brain when quetiapine was present. Despite these findings, there were only small differences in the levels of 225-296 measured endogenous metabolites due to co-administration compared to single administrations. For example, N-methylglutamic acid, glutaric acid, p-hydroxyphenyllactic acid, and corticosterone levels were significantly decreased in the brain of rats treated with both compounds. Accumulation of serotonin in the midbrain was additionally observed in the MTD group, but not in the QTP + MTD group. In conclusion, this study in rats suggests a few but important additive metabolic effects when quetiapine and methadone are co-administered.
Subject(s)
Antipsychotic Agents , Methadone , Rats , Animals , Methadone/toxicity , Quetiapine Fumarate , Analgesics, Opioid/metabolism , Brain/metabolism , Antipsychotic Agents/toxicity , Pyrrolidines/metabolismABSTRACT
Plant-specialized metabolism is complex, with frequent examples of highly branched biosynthetic pathways, and shared chemical intermediates. As such, many plant-specialized metabolic networks are poorly characterized. The N-methyl Δ1 -pyrrolinium cation is a simple pyrrolidine alkaloid and precursor of pharmacologically important tropane alkaloids. Silencing of pyrrolidine ketide synthase (AbPyKS) in the roots of Atropa belladonna (Deadly Nightshade) reduces tropane alkaloid abundance and causes high N-methyl Δ1 -pyrrolinium cation accumulation. The consequences of this metabolic shift on alkaloid metabolism are unknown. In this study, we utilized discovery metabolomics coupled with AbPyKS silencing to reveal major changes in the root alkaloid metabolome of A. belladonna. We discovered and annotated almost 40 pyrrolidine alkaloids that increase when AbPyKS activity is reduced. Suppression of phenyllactate biosynthesis, combined with metabolic engineering in planta, and chemical synthesis indicates several of these pyrrolidines share a core structure formed through the nonenzymatic Mannich-like decarboxylative condensation of the N-methyl Δ1 -pyrrolinium cation with 2-O-malonylphenyllactate. Decoration of this core scaffold through hydroxylation and glycosylation leads to mono- and dipyrrolidine alkaloid diversity. This study reveals the previously unknown complexity of the A. belladonna root metabolome and creates a foundation for future investigation into the biosynthesis, function, and potential utility of these novel alkaloids.
Subject(s)
Alkaloids , Atropa belladonna , Atropa belladonna/metabolism , Alkaloids/metabolism , Tropanes/chemistry , Tropanes/metabolism , Pyrrolidines/metabolismABSTRACT
Inflammasome involvement in Parkinson's disease (PD) has been intensively investigated. Absent in melanoma 2 (AIM2) is an essential inflammasome protein known to contribute to the development of several neurological diseases. However, a specific role for AIM2 in PD has not been reported. In this study, we investigated the effect of AIM2 in the N-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced PD model by use of various knockout and bone marrow chimeric mice. The mechanism of action for AIM2 in PD was assessed by RNA-sequencing and in vitro primary microglial transfection. Results were validated in the A30P transgenic mouse model of PD. In the MPTP mouse model, AIM2 activation was found to negatively regulate neuro-inflammation independent of the inflammasome. Microglial AIM2 deficiency exacerbated behavioral and pathological features of both MPTP-induced and transgenic PD mouse models. Mechanistically, AIM2 reduced cyclic GMP-AMP synthase (cGAS)-mediated antiviral-related inflammation by inhibition of AKT-interferon regulatory factor 3 (IRF3) phosphorylation. These results demonstrate microglial AIM2 to inhibit the antiviral-related neuro-inflammation associated with PD and provide for a foundation upon which to identify new therapeutic targets for treatment of the disease.
Subject(s)
Melanoma , Parkinson Disease , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Animals , Antiviral Agents/pharmacology , DNA-Binding Proteins , Disease Models, Animal , Dopaminergic Neurons/metabolism , Inflammasomes/metabolism , Inflammation/metabolism , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-3/pharmacology , Melanoma/metabolism , Melanoma/pathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microglia/metabolism , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/pharmacology , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Parkinson Disease/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Pyrrolidines/metabolism , Pyrrolidines/pharmacology , RNA/metabolismABSTRACT
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a neurotoxin that damages dopaminergic neurons. Zebrafish has been shown to be a suitable model organism to investigate the molecular pathways in the pathogenesis of Parkinson's disease and also for potential therapeutic agent research. Boron has been shown to play an important role in the neural activity of the brain. Boronic acids are used in combinatorial approaches in drug design and discovery. The effect of 3-pyridinylboronic acid which is an important sub-class of heterocyclic boronic acids has not been evaluated in case of MPTP exposure in zebrafish embryos. Accordingly, this study was designed to investigate the effects of 3-pyridinylboronic acid on MPTP exposed zebrafish embryos focusing on the molecular pathways related to neurodegeneration and apoptosis by RT-PCR. Zebrafish embryos were exposed to MPTP (800 µM); MPTP + Low Dose 3-Pyridinylboronic acid (50 µM) (MPTP + LB) and MPTP + High Dose 3-Pyridinylboronic acid (100 µM) (MPTP + HB) in well plates for 72 hours post fertilization. Results of our study showed that MPTP induced a P53 dependent and Bax mediated apoptosis in zebrafish embryos and 3-pyridinylboronic acid restored the locomotor activity and gene expressions related to mitochondrial dysfunction and oxidative stress due to the deleterious effects of MPTP, in a dose-dependent manner.
Subject(s)
MPTP Poisoning , Zebrafish , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/metabolism , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Animals , Boronic Acids/metabolism , Boronic Acids/therapeutic use , Disease Models, Animal , MPTP Poisoning/drug therapy , MPTP Poisoning/metabolism , MPTP Poisoning/pathology , Mice , Mice, Inbred C57BL , Pyridines , Pyrrolidines/metabolism , Pyrrolidines/therapeutic use , Zebrafish/metabolismABSTRACT
Dopamine D2 receptors (D2-R) in extrastriatal brain regions are of high interest for research in a wide range of psychiatric and neurologic disorders. Pharmacological competition studies and test-retest experiments have shown high validity and reliability of the positron emission tomography (PET) radioligand [11C]FLB 457 for D2-R quantification in extrastriatal brain regions. However, this radioligand is not available at most research centers. Instead, the medium affinity radioligand [11C]raclopride, which has been extensively validated for quantification of D2-R in the high-density region striatum, has been applied also in studies on extrastriatal D2-R. Recently, the validity of this approach has been questioned by observations of low occupancy of [11C]raclopride in extrastriatal regions in a pharmacological competition study with quetiapine. Here, we utilise a data set of 16 healthy control subjects examined with both [11C]raclopride and [11C]FLB 457 to assess the correlation in binding potential (BPND) in extrastriatal brain regions. BPND was quantified using the simplified reference tissue model with cerebellum as reference region. The rank order of mean regional BPND values were similar for both radioligands, and corresponded to previously reported data, both post-mortem and using PET. Nevertheless, weak to moderate within-subject correlations were observed between [11C]raclopride and [11C]FLB 457 BPND extrastriatally (Pearson's R: 0.30-0.56), in contrast to very strong correlations between repeated [11C]FLB 457 measurements (Pearson's R: 0.82-0.98). In comparison, correlations between repeated [11C]raclopride measurements were low to moderate (Pearson's R: 0.28-0.75). These results are likely related to low signal to noise ratio of [11C]raclopride in extrastriatal brain regions, and further strengthen the recommendation that extrastriatal D2-R measures obtained with [11C]raclopride should be interpreted with caution.
Subject(s)
Brain Mapping/methods , Brain/metabolism , Positron-Emission Tomography/methods , Radiopharmaceuticals/metabolism , Receptors, Dopamine D2/analysis , Carbon Radioisotopes/metabolism , Carbon Radioisotopes/pharmacology , Dopamine Antagonists/metabolism , Dopamine Antagonists/pharmacology , Female , Humans , Male , Middle Aged , Pyrrolidines/metabolism , Pyrrolidines/pharmacology , Raclopride/metabolism , Raclopride/pharmacology , Radioligand Assay/methods , Radiopharmaceuticals/pharmacology , Salicylamides/metabolism , Salicylamides/pharmacologyABSTRACT
Mitochondrial permeability transition pore (mPTP) opening is a key event in cell death during myocardial ischemia reperfusion. Inhibition of its modulator cyclophilin D (CypD) by cyclosporine A (CsA) reduces ischemia-reperfusion injury. The use of cyclosporine A in this indication is debated; however, targeting mPTP remains a major goal to achieve. We investigated the protective effects of a new original small-molecule cyclophilin inhibitor C31, which was specifically designed to target CypD. CypD peptidylprolyl cis-trans isomerase (PPIase) activity was assessed by the standard chemotrypsin-coupled assay. The effects of C31 on mPTP opening were investigated in isolated mouse cardiac mitochondria by measuring mitochondrial swelling and calcium retention capacity (CRC) in rat H9C2 cardiomyoblasts and in adult mouse cardiomyocytes by fluorescence microscopy in isolated perfused mouse hearts and ex vivo after drug infusion in mice. C31 potently inhibited CypD PPIase activity and mitochondrial swelling. C31 was more effective at increasing mitochondrial CRC than CsA and was still able to increase CRC in Ppif -/- (CypD-inactivated) cardiac mitochondria. C31 delayed both mPTP opening and cell death in cardiomyocytes subjected to hypoxia reoxygenation. However, high concentrations of both drugs were necessary to reduce mPTP opening in isolated perfused hearts, and neither CsA nor C31 inhibited mPTP opening in heart after in vivo infusion, underlying the importance of myocardial drug distribution for cardioprotection. C31 is an original inhibitor of mPTP opening involving both CypD-dependent and -independent mechanisms. It constitutes a promising new cytoprotective agent. Optimization of its pharmacokinetic properties is now required prior to its use against cardiac ischemia-reperfusion injury. SIGNIFICANCE STATEMENT: This study demonstrates that the new cyclophilin inhibitor C31 potently inhibits cardiac mitochondrial permeability transition pore (mPTP) opening in vitro and ex vivo. The dual mechanism of action of C31 allows the prevention of mPTP opening beyond cyclophilin D inhibition. Further development of the compound might bring promising drug candidates for cardioprotection. However, the lack of effect of both C31 and cyclosporine A after systemic administration demonstrates the difficulties of targeting myocardial mitochondria in vivo and should be taken into account in cardioprotective strategies.
Subject(s)
Heart/drug effects , Mitochondrial Permeability Transition Pore/antagonists & inhibitors , Myocardium/metabolism , Pyrrolidines/chemistry , Pyrrolidines/pharmacology , Animals , Biological Transport , Cytosol/drug effects , Cytosol/metabolism , Male , Mice , Mice, Inbred C57BL , Mitochondria, Heart/drug effects , Mitochondria, Heart/metabolism , Myocardium/cytology , Pyrrolidines/metabolismABSTRACT
PURPOSE: Glioblastoma (GBM) is a malignant brain tumor with a poor long-term prognosis due to recurrence from highly resistant GBM cancer stem cells (CSCs), for which the current standard of treatment with temozolomide (TMZ) alone will unlikely produce a viable cure. In addition, CSCs regenerate rapidly and overexpress methyl transferase which overrides the DNA-alkylating mechanism of TMZ, leading to resistance. The objective of this research was to apply the concepts of nanotechnology to develop a multi-drug therapy, TMZ and idasanutlin (RG7388, a potent mouse double minute 2 (MDM2) antagonist), loaded in functionalized nanoparticles (NPs) that target the GBM CSC subpopulation, reduce the cell viability and provide possibility of in vivo preclinical imaging. METHODS: Polymer-micellar NPs composed of poly(styrene-b-ethylene oxide) (PS-b-PEO) and poly(lactic-co-glycolic) acid (PLGA) were developed by a double emulsion technique loading TMZ and/or RG7388. The NPs were covalently bound to a 15-nucleotide base-pair CD133 aptamer to target the CD133 antigen expressed on the surfaces of GBM CSCs. For diagnostic functionality, the NPs were labelled with radiotracer Zirconium-89 (89Zr). RESULTS: NPs maintained size range less than 100 nm, a low negative charge and exhibited the ability to target and kill the CSC subpopulation when TMZ and RG7388 were used in combination. The targeting function of CD133 aptamer promoted killing in GBM CSCs providing impetus for further development of targeted nanosystems for localized therapy in future in vivo models. CONCLUSIONS: This work has provided a potential clinical application for targeting GBM CSCs with simultaneous diagnostic imaging.
Subject(s)
AC133 Antigen/metabolism , Brain Neoplasms/metabolism , Drug Delivery Systems/methods , Glioblastoma/metabolism , Nanoparticles/metabolism , Neoplastic Stem Cells/metabolism , Animals , Brain Neoplasms/drug therapy , Cell Line, Tumor , Dose-Response Relationship, Drug , Drug Development/methods , Drug Evaluation, Preclinical/methods , Glioblastoma/drug therapy , Humans , Mice , Micelles , Nanoparticles/administration & dosage , Neoplastic Stem Cells/drug effects , Polymers/administration & dosage , Polymers/metabolism , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Proto-Oncogene Proteins c-mdm2/metabolism , Pyrrolidines/administration & dosage , Pyrrolidines/metabolism , Temozolomide/administration & dosage , Temozolomide/metabolism , para-Aminobenzoates/administration & dosage , para-Aminobenzoates/metabolismABSTRACT
3,4-Methylenedioxypyrovalerone (MDPV) is consumed worldwide, despite its potential to cause toxicity in several organs and even death. There is a recognized need to clarify the biological pathways through which MDPV elicits general and target-organ toxicity. In this work, a comprehensive untargeted GC-MS-based metabolomics analysis was performed, aiming to detect metabolic changes in putative target organs (brain, heart, kidneys and liver) but also in urine of mice after acute exposure to human-relevant doses of MDPV. Male CD-1 mice received binge intraperitoneal administrations of saline or MDPV (2.5 mg/kg or 5 mg/kg) every 2 h, for a total of three injections. Twenty-four hours after the first administration, target organs, urine and blood samples were collected for metabolomics, biochemical and histological analysis. Hepatic and renal tissues of MDPV-treated mice showed moderate histopathological changes but no significant differences were found in plasma and tissue biochemical markers of organ injury. In contrast, the multivariate analysis significantly discriminated the organs and urine of MDPV-treated mice from the control (except for the lowest dose in the brain), allowing the identification of a panoply of metabolites. Those levels were significantly deviated in relation to physiological conditions and showed an organ specific response towards the drug. Kidneys and liver showed the greatest metabolic changes. Metabolites related with energetic metabolism, antioxidant defenses and inflammatory response were significantly changed in the liver of MDPV-dosed animals, while the kidneys seem to have developed an adaptive response against oxidative stress caused by MDPV. On the other hand, the dysregulation of metabolites that contribute to metabolic acidosis was also observed in this organ. The heart showed an increase of fatty acid biosynthesis, possibly as an adaptation to maintain the cardiac energy homeostasis. In the brain, changes in 3-hydroxybutyric acid levels may reflect the activation of a neurotoxic pathway. However, the increase in metabolites with neuroprotective properties seems to counteract this change. Metabolic profiling of urine from MDPV-treated mice suggested that glutathione-dependent antioxidant pathways may be particularly involved in the compensatory mechanism to counteract oxidative stress induced by MDPV. Overall, this study reports, for the first time, the metabolic profile of liver, kidneys, heart, brain, and urine of MDPV-dosed mice, providing unique insights into the biological pathways of toxicity. Our findings also underline the value of toxicometabolomics as a robust and sensitive tool for detecting adaptive/toxic cellular responses upon exposure to a physiologically relevant dose of a toxic agent, earlier than conventional toxicity tests.
Subject(s)
Benzodioxoles/metabolism , Benzodioxoles/toxicity , Brain/metabolism , Kidney/metabolism , Liver/metabolism , Myocardium/metabolism , Pyrrolidines/metabolism , Pyrrolidines/toxicity , 3-Hydroxybutyric Acid/biosynthesis , Animals , Biomarkers , Blood Chemical Analysis , Dose-Response Relationship, Drug , Fatty Acids/biosynthesis , Gas Chromatography-Mass Spectrometry , Homeostasis/drug effects , Humans , Kidney/pathology , Liver/pathology , Male , Metabolome , Mice , Urine/chemistry , Synthetic CathinoneABSTRACT
Deletion of phenylalanine at position 508 (F508del) in the CFTR chloride channel is the most frequent mutation in cystic fibrosis (CF) patients. F508del impairs the stability and folding of the CFTR protein, thus resulting in mistrafficking and premature degradation. F508del-CFTR defects can be overcome with small molecules termed correctors. We investigated the efficacy and properties of VX-445, a newly developed corrector, which is one of the three active principles present in a drug (Trikafta®/Kaftrio®) recently approved for the treatment of CF patients with F508del mutation. We found that VX-445, particularly in combination with type I (VX-809, VX-661) and type II (corr-4a) correctors, elicits a large rescue of F508del-CFTR function. In particular, in primary bronchial epithelial cells of CF patients, the maximal rescue obtained with corrector combinations including VX-445 was close to 60-70% of CFTR function in non-CF cells. Despite this high efficacy, analysis of ubiquitylation, resistance to thermoaggregation, protein half-life, and subcellular localization revealed that corrector combinations did not fully normalize F508del-CFTR behavior. Our study indicates that it is still possible to further improve mutant CFTR rescue with the development of corrector combinations having maximal effects on mutant CFTR structural and functional properties.
Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/drug effects , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Pyrazoles/pharmacology , Pyridines/pharmacology , Pyrrolidines/pharmacology , Aminophenols/pharmacology , Aminopyridines/pharmacology , Benzodioxoles/pharmacology , Bronchi/drug effects , Bronchi/metabolism , Chloride Channels/genetics , Chloride Channels/metabolism , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Drug Combinations , Epithelial Cells/metabolism , Humans , Indoles/pharmacology , Protein Folding/drug effects , Pyrazoles/metabolism , Pyridines/metabolism , Pyrrolidines/metabolism , Quinolines/pharmacologyABSTRACT
Transition state analogue inhibitor design (TSID) and fragment-based drug design (FBDD) are drug design approaches typically used independently. Methylthio-DADMe-Immucillin-A (MTDIA) is a tight-binding transition state analogue of bacterial 5'-methylthioadenosine nucleosidases (MTANs). Previously, Salmonella enterica MTAN structures were found to bind MTDIA and ethylene glycol fragments, but MTDIA modified to contain similar fragments did not enhance affinity. Seventy-five published MTAN structures were analyzed, and co-crystallization fragments were found that might enhance the binding of MTDIA to other bacterial MTANs through contacts external to MTDIA binding. The fragment-modified MTDIAs were tested with Helicobacter pylori MTAN and Staphylococcus aureus MTANs (HpMTAN and SaMTAN) as test cases to explore inhibitor optimization by potential contacts beyond the transition state contacts. Replacement of a methyl group with a 2'-ethoxyethanol group in MTDIA improved the dissociation constant 14-fold (0.09 nM vs 1.25 nM) for HpMTAN and 81-fold for SaMTAN (0.096 nM vs 7.8 nM). TSID combined with FBDD can be useful in enhancing already powerful inhibitors.
Subject(s)
Adenine/analogs & derivatives , Bacterial Proteins/metabolism , Enzyme Inhibitors/metabolism , Purine-Nucleoside Phosphorylase/metabolism , Pyrrolidines/metabolism , Adenine/chemistry , Adenine/metabolism , Bacteria/enzymology , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/chemistry , Catalytic Domain , Enzyme Inhibitors/chemistry , Polyethylene Glycols/chemistry , Polyethylene Glycols/metabolism , Protein Binding , Purine-Nucleoside Phosphorylase/antagonists & inhibitors , Purine-Nucleoside Phosphorylase/chemistry , Pyrrolidines/chemistryABSTRACT
Bacteria degrade nicotine mainly using pyridine and pyrrolidine pathways. Previously, we discovered a hybrid of the pyridine and pyrrolidine pathways (the VPP pathway) in Pseudomonas geniculata N1 and characterized its key enzyme, 6-hydroxypseudooxynicotine amine oxidase (HisD). It catalyzes oxidative deamination of 6-hydroxypseudooxynicotine to 6-hydroxy-3-succinoylsemialdehyde-pyridine, which is the crucial step connecting upstream and downstream portions of the VPP pathway. We determined the crystal structure of wild-type HisD to 2.6 Å. HisD is a monomer that contains a flavin mononucleotide, an iron-sulfur cluster, and ADP. On the basis of sequence alignment and structure comparison, a difference has been found among HisD, closely related trimethylamine dehydrogenase (TMADH), and histamine dehydrogenase (HADH). The flavin mononucleotide (FMN) cofactor is not covalently bound to any residue, and the FMN isoalloxazine ring is planar in HisD compared to TMADH or HADH, which forms a 6-S-cysteinyl flavin mononucleotide cofactor and has an FMN isoalloxazine ring in a "butterfly bend" conformation. Based on the structure, docking study, and site-directed mutagenesis, the residues Glu60, Tyr170, Asp262, and Trp263 may be involved in substrate binding. The expanded understanding of the substrate binding mode from this study may guide rational engineering of such enzymes for biodegradation of potential pollutants or for bioconversion to generate desired products.IMPORTANCE Nicotine is a major tobacco alkaloid in tobacco waste. Pyridine and pyrrolidine pathways are the two best-elucidated nicotine metabolic pathways; Pseudomonas geniculata N1 catabolizes nicotine via a hybrid between the pyridine and pyrrolidine pathways. The crucial enzyme, 6-hydroxypseudooxynicotine amine oxidase (HisD), links the upstream and downstream portions of the VPP pathway; however, there is little structural information about this important enzyme. In this study, we determined the crystal structure of HisD from Pseudomonas geniculata N1. Its basic insights about the structure may help us to guide the engineering of such enzymes for bioremediation and bioconversion applications.
Subject(s)
Bacterial Proteins/chemistry , Metabolic Networks and Pathways , Nicotine/metabolism , Pseudomonas/genetics , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Flavin Mononucleotide/metabolism , Pseudomonas/enzymology , Pyridines/metabolism , Pyrrolidines/metabolism , Sequence AlignmentABSTRACT
Purpose MDM2 is a negative regulator of the tumor suppressor p53. RO6839921 is an inactive pegylated prodrug of idasanutlin, an MDM2 antagonist, developed for intravenous administration. On cleavage by plasma esterases, the active principle (AP = idasanutlin) is released. This phase 1 study investigated the safety, pharmacokinetics, and pharmacodynamics of RO6839921 in patients with advanced solid tumors (NCT02098967). Methods Patients were evaluated on a 5-day dosing schedule every 28 days. Dose escalation used the Bayesian new continual reassessment model. Accelerated dose titration was permitted until grade ≥2 drug-related AEs were observed. The target DLT rate to define the MTD was 16-25%. p53 activation was assessed by measuring macrophage inhibitory cytokine-1 (MIC-1). Results Forty-one patients received 14-120 mg AP; 39 were DLT evaluable. The MTD was 110-mg AP (8% DLT rate), whereas 120-mg AP had a 44% DLT rate. DLTs were neutropenia, thrombocytopenia, and stridor. The most common treatment-related AEs (≥30%) were nausea, fatigue, vomiting, and thrombocytopenia. Pharmacokinetic analyses indicated rapid conversion of prodrug to AP and an approximately linear and dose-proportional dose-exposure relationship, with a 2-fold increase in exposure between Days 1 and 5 of AP. MIC-1 increases were exposure dependent. Stable disease was observed in 14 patients (34%). Conclusions RO6839921 showed reduced pharmacokinetic exposure variability and a safety profile comparable with that of oral idasanutlin. Although this study indicated that RO6839921 could be administered to patients, the results did not provide sufficient differentiation or improvement in the biologic or safety profile compared with oral idasanutlin to support continued development.
Subject(s)
Antineoplastic Agents/administration & dosage , Prodrugs/administration & dosage , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Pyrrolidines/metabolism , para-Aminobenzoates/metabolism , Administration, Oral , Adult , Aged , Aged, 80 and over , Antineoplastic Agents/adverse effects , Antineoplastic Agents/pharmacokinetics , Female , Growth Differentiation Factor 15/blood , Humans , Infusions, Intravenous , Male , Middle Aged , Neoplasms/blood , Neoplasms/drug therapy , Neoplasms/metabolism , Polyethylene Glycols/administration & dosage , Polyethylene Glycols/adverse effects , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacokinetics , Prodrugs/adverse effects , Prodrugs/chemistry , Prodrugs/pharmacokinetics , Treatment Outcome , Tumor Suppressor Protein p53/metabolismABSTRACT
In acute myeloid leukemia (AML), TP53 mutations and dysregulation of wild-type p53 is common and supports an MDM2 antagonist as a therapy. RO6839921 is an inactive pegylated prodrug of the oral MDM2 antagonist idasanutlin (active principle [AP]) that allows for IV administration. This phase 1 monotherapy study evaluated the safety, pharmacokinetics, and pharmacodynamics of RO6839921 in patients with AML. Primary objectives identified dose-limiting toxicities (DLTs) and maximum tolerated dose (MTD). Secondary objectives assessed pharmacokinetic, pharmacodynamic, and antileukemic activity. A total of 26 patients received 120-300 mg AP of idasanutlin. The MTD was 200 mg, with DLTs at 250 (2/8 patients) and 300 mg (2/5). Treatment-related adverse events in >20% of patients were diarrhea, nausea, vomiting, decreased appetite, and fatigue. Six deaths (23.1%) occurred, all unrelated to treatment. Pharmacokinetics showed rapid and near-complete conversion of the prodrug to AP and dose-proportional exposure across doses. Variability ranged from 30%-47% (22%-54% for idasanutlin). TP53 was 21 (87.5%) wild-type and 3 mutant (12.5%). The composite response rate (complete remission [CR], CR with incomplete hematologic recovery/morphological leukemia-free state [CRi/MLFS], or CR without platelet recovery [CRp]) was 7.7%. Antileukemic activity (CR, CRi/MLFS, partial response, hematologic improvement/stable disease) was observed in 11 patients (disease control rate, 42%): 10/11 were TP53 wild-type; 1 had no sample. p53 activation was demonstrated by MIC-1 induction and was associated with AP exposure. There was not sufficient differentiation or improvement in the biologic or safety profile compared with oral idasanutlin to support continued development of RO6839921. NCT02098967.
Subject(s)
Antineoplastic Agents/administration & dosage , Leukemia, Myeloid, Acute/drug therapy , Prodrugs/administration & dosage , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Pyrrolidines/administration & dosage , para-Aminobenzoates/administration & dosage , Adult , Aged , Aged, 80 and over , Antineoplastic Agents/adverse effects , Antineoplastic Agents/pharmacokinetics , Female , Humans , Infusions, Intravenous , Leukemia, Myeloid, Acute/blood , Leukemia, Myeloid, Acute/metabolism , Male , Maximum Tolerated Dose , Middle Aged , Prodrugs/adverse effects , Prodrugs/pharmacokinetics , Proto-Oncogene Proteins c-mdm2/blood , Pyrrolidines/adverse effects , Pyrrolidines/blood , Pyrrolidines/metabolism , Pyrrolidines/pharmacokinetics , Young Adult , para-Aminobenzoates/adverse effects , para-Aminobenzoates/blood , para-Aminobenzoates/metabolism , para-Aminobenzoates/pharmacokineticsABSTRACT
RATIONALE: The presence of α-pyrrolidinovalerophenone (α-PVP) and its metabolites in urine is evidence of the administration of α-PVP. A toxicological challenge is that the metabolites of α-PVP exhibit amphoteric properties, which make them unsuitable for detection using gas chromatography-mass spectrometry (GC/MS). In the study reported, proper derivatization and sample extraction were essential for improving the sensitivity for GC/MS analysis. METHODS: An automated solid-phase extraction (SPE) method has been developed and optimized. The derivatization efficiency was tested using longer reaction time and the addition of polar pyridine into a mixture of N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) with 1% trimethylchlorosilane. Method validation, including linearity, limit of detection, precision, accuracy, and recovery, was evaluated using automatic SPE and GC/MS. RESULTS: The results suggested that adding pyridine to BSTFA (1:1, v/v) significantly improved derivatization efficiency and precision. After optimization, the linear range was from 25 to 1000 ng mL-1 with R2 > 0.9950. The limit of detection was 5 ng mL-1 for α-PVP and 25 ng mL-1 for OH-α-PVP. The recovery for SPE was over 88%. The inter-day and intra-day precisions were less than 15%. A forensic sample has been found containing α-PVP (67.3 ng mL-1 ) and OH-α-PVP (560.2 ng mL-1 ). CONCLUSIONS: This study is the first to validate an auto-SPE-GC/MS method for the quantification and qualification of α-PVP and OH-α-PVP in urine. We have successfully improved the derivatization efficiency and developed a sensitive and semi-automatic approach. This approach is desirable for the detection of synthetic cathinone at trace levels in biological samples.
Subject(s)
Alkaloids/urine , Gas Chromatography-Mass Spectrometry/methods , Pyrrolidines/urine , Alkaloids/metabolism , Designer Drugs/metabolism , Designer Drugs/pharmacokinetics , Humans , Limit of Detection , Pyrrolidines/metabolism , Solid Phase Extraction/methods , Substance Abuse Detection/methodsABSTRACT
In an effort to discover oral inverse agonists of RORγt to treat inflammatory diseases, a new 2,6-difluorobenzyl ether series of cyclopentyl sulfones were found to be surprisingly more potent than the corresponding alcohol derivatives. When combined with a more optimized phenyl ((R)-3-phenylpyrrolidin-3-yl)sulfone template, the 2,6-difluorobenzyl ethers yielded a set of very potent RORγt inverse agonists (e.g., compound 26, RORγt Gal4 EC50 11 nM) that are highly selective against PXR, LXRα and LXRß. After optimizing for stability in human and mouse liver microsomes, compounds 29 and 38 were evaluated in vivo and found to have good oral bioavailability (56% and 101%, respectively) in mice. X-ray co-crystal structure of compound 27 in RORγt revealed that the bulky benzyl ether group causes helix 11 of the protein to partially uncoil to create a new, enlarged binding site, which nicely accommodates the benzyl ether moiety, leading to net potency gain.
Subject(s)
Nuclear Receptor Subfamily 1, Group F, Member 3/antagonists & inhibitors , Pyrrolidines/pharmacology , Sulfones/pharmacology , Animals , Crystallography, X-Ray , Drug Discovery , Drug Inverse Agonism , Drug Stability , Hep G2 Cells , Humans , Mice , Microsomes, Liver/metabolism , Molecular Structure , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Pyrrolidines/chemical synthesis , Pyrrolidines/metabolism , Structure-Activity Relationship , Sulfones/chemical synthesis , Sulfones/metabolismABSTRACT
A novel series of cis-3,4-diphenylpyrrolidines were designed as RORγt inverse agonists based on the binding conformation of previously reported bicyclic sulfonamide 1. Preliminary synthesis and structure-activity relationship (SAR) study established (3S,4S)-3-methyl-3-(4-fluorophenyl)-4-(4-(1,1,1,3,3,3-hexafluoro-2-hydroxyprop-2-yl)phenyl)pyrrolidine as the most effective scaffold. Subsequent SAR optimization led to identification of a piperidinyl carboxamide 31, which was potent against RORγt (EC50 of 61 nM in an inverse agonist assay), selective relative to RORα, RORß, LXRα and LXRß, and stable in human and mouse liver microsomes. Furthermore, compound 31 exhibited considerably lower PXR Ymax (46%) and emerged as a promising lead. The binding mode of the diphenylpyrrolidine series was established with an X-ray co-crystal structure of 10A/RORγt.
Subject(s)
Drug Design , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Pyrrolidines/chemistry , Animals , Binding Sites , Crystallography, X-Ray , Drug Inverse Agonism , Humans , Mice , Microsomes, Liver/metabolism , Molecular Dynamics Simulation , Nuclear Receptor Subfamily 1, Group F, Member 3/agonists , Pregnane X Receptor/agonists , Pregnane X Receptor/metabolism , Pyrrolidines/chemical synthesis , Pyrrolidines/metabolism , Structure-Activity RelationshipABSTRACT
N-substituted azaindoles were discovered as potent pan-PIM inhibitors. Lead optimization, guided by structure and focused on physico-chemical properties allowed us to solve inherent hERG and permeability liabilities, and provided compound 27, which subsequently impacted KG-1 tumor growth in a mouse model.
Subject(s)
Antineoplastic Agents/pharmacology , Aza Compounds/pharmacology , Indoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Aza Compounds/chemical synthesis , Aza Compounds/metabolism , Cell Line, Tumor , Crystallography, X-Ray , Humans , Indoles/chemical synthesis , Indoles/metabolism , Mice , Piperidines/chemical synthesis , Piperidines/metabolism , Piperidines/pharmacology , Protein Binding , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/metabolism , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Proto-Oncogene Proteins c-pim-1/metabolism , Pyrrolidines/chemical synthesis , Pyrrolidines/metabolism , Pyrrolidines/pharmacology , Rats , Stereoisomerism , Xenograft Model Antitumor AssaysABSTRACT
A series of novel tetrahydropyridine derivatives were prepared and evaluated using cell-based measurements. Systematic optimization of general structure G-1 led to the identification of compound 35 (EC50 = 4.9 nM) and 37 (EC50 = 8.8 nM) with high GPR119 agonism activity and moderate clog P. Through single and long-term pharmacodynamic experiments, we found that compound35 showed a hypoglycemic effect and may have an effect on improving basal metabolic rate in DIO mice. Both in vitro and in vivo tests indicated that compound 35 was a potential potent GPR119 agonist in allusion to T2DM treatment.
Subject(s)
Drug Design , Hypoglycemic Agents/chemistry , Pyrrolidines/chemistry , Receptors, G-Protein-Coupled/agonists , Animals , Blood Glucose/analysis , Glucose Tolerance Test , Humans , Hypoglycemic Agents/metabolism , Hypoglycemic Agents/therapeutic use , Male , Mice , Mice, Inbred C57BL , Obesity/drug therapy , Obesity/pathology , Pyrrolidines/metabolism , Pyrrolidines/therapeutic use , Rats , Receptors, G-Protein-Coupled/metabolism , Solubility , Structure-Activity RelationshipABSTRACT
A collection of small molecules has been synthesized by composing photo-cycloaddition, C-H functionalization, and N-capping strategies. Multidimensional biological fingerprints of molecules comprising this collection have been recorded as changes in cell and organelle morphology. This untargeted, phenotypic approach allowed for a broad assessment of biological activity to be determined. Reproducibility and the magnitude of measured fingerprints revealed activity of several treatments. Reactive functional groups, such as imines, dominated the observed activity. Two non-reactive candidate compounds with distinct bioactivity fingerprints were identified, as well.
Subject(s)
Pyrrolidines/chemical synthesis , Pyrrolidines/metabolism , Amines/chemistry , Cell Line , Cyclization , Cycloaddition Reaction , Humans , Imines/chemistry , Optical Imaging , Organelles/metabolism , Organelles/ultrastructure , Photochemical Processes , Reproducibility of Results , StereoisomerismABSTRACT
For more than ten years, new synthetic cathinones (SCs) mimicking the effects of controlled cocaine-like stimulants have flooded the illegal drug market, causing numerous intoxications and fatalities. There are often no data on the pharmacokinetics of these substances when they first emerge onto the market. However, the detection of SC metabolites is often critical in order to prove consumption in clinical and forensic settings. In this research, the metabolite profile of two pyrrolidinyl SCs, α-pyrrolidinohexaphenone (α-PHP) and 4''-fluoro-α-pyrrolidinovalerophenone (4F-α-PVP), were characterized to identify optimal intake markers. Experiments were conducted using pooled human hepatocyte incubations followed by liquid chromatography-high-resolution tandem mass spectrometry and data-mining software. We suggest α-PHP dihydroxy-pyrrolidinyl, α-PHP hexanol, α-PHP 2'-keto-pyrrolidinyl-hexanol, and α-PHP 2'-keto-pyrrolidinyl as markers of α-PHP use, and 4F-α-PVP dihydroxy-pyrrolidinyl, 4F-α-PVP hexanol, 4F-α-PVP 2'-keto-pyrrolidinyl-hexanol, and 4F-α-PVP 2'-keto-pyrrolidinyl as markers of 4F-α-PVP use. These results represent the first data available on 4F-α-PVP metabolism. The metabolic fate of α-PHP was previously studied using human liver microsomes and urine samples from α-PHP users. We identified an additional major metabolite (α-PHP dihydroxy-pyrrolidinyl) that might be crucial for documenting exposure to α-PHP. Further experiments with suitable analytical standards, which are yet to be synthesized, and authentic specimens should be conducted to confirm these results.