ABSTRACT
The cystic fibrosis transmembrane conductance regulator (CFTR) is a crucial ion channel whose loss of function leads to cystic fibrosis, whereas its hyperactivation leads to secretory diarrhea. Small molecules that improve CFTR folding (correctors) or function (potentiators) are clinically available. However, the only potentiator, ivacaftor, has suboptimal pharmacokinetics and inhibitors have yet to be clinically developed. Here, we combine molecular docking, electrophysiology, cryo-EM, and medicinal chemistry to identify CFTR modulators. We docked â¼155 million molecules into the potentiator site on CFTR, synthesized 53 test ligands, and used structure-based optimization to identify candidate modulators. This approach uncovered mid-nanomolar potentiators, as well as inhibitors, that bind to the same allosteric site. These molecules represent potential leads for the development of more effective drugs for cystic fibrosis and secretory diarrhea, demonstrating the feasibility of large-scale docking for ion channel drug discovery.
Subject(s)
Aminophenols , Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Molecular Docking Simulation , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/chemistry , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Humans , Cystic Fibrosis/drug therapy , Cystic Fibrosis/metabolism , Aminophenols/pharmacology , Aminophenols/chemistry , Aminophenols/therapeutic use , Drug Discovery , Cryoelectron Microscopy , Quinolones/pharmacology , Quinolones/chemistry , Quinolones/therapeutic use , Allosteric Site/drug effects , Animals , LigandsABSTRACT
RNA splicing, the process of intron removal from pre-mRNA, is essential for the regulation of gene expression. It is controlled by the spliceosome, a megadalton RNA-protein complex that assembles de novo on each pre-mRNA intron through an ordered assembly of intermediate complexes1,2. Spliceosome activation is a major control step that requires substantial protein and RNA rearrangements leading to a catalytically active complex1-5. Splicing factor 3B subunit 1 (SF3B1) protein-a subunit of the U2 small nuclear ribonucleoprotein6-is phosphorylated during spliceosome activation7-10, but the kinase that is responsible has not been identified. Here we show that cyclin-dependent kinase 11 (CDK11) associates with SF3B1 and phosphorylates threonine residues at its N terminus during spliceosome activation. The phosphorylation is important for the association between SF3B1 and U5 and U6 snRNAs in the activated spliceosome, termed the Bact complex, and the phosphorylation can be blocked by OTS964, a potent and selective inhibitor of CDK11. Inhibition of CDK11 prevents spliceosomal transition from the precatalytic complex B to the activated complex Bact and leads to widespread intron retention and accumulation of non-functional spliceosomes on pre-mRNAs and chromatin. We demonstrate a central role of CDK11 in spliceosome assembly and splicing regulation and characterize OTS964 as a highly selective CDK11 inhibitor that suppresses spliceosome activation and splicing.
Subject(s)
Cyclin-Dependent Kinases , Phosphoproteins , RNA Precursors , RNA Splicing , Ribonucleoprotein, U2 Small Nuclear , Spliceosomes , Chromatin/metabolism , Cyclin-Dependent Kinases/antagonists & inhibitors , Cyclin-Dependent Kinases/metabolism , Enzyme Activation/drug effects , Phosphoproteins/chemistry , Phosphoproteins/metabolism , Phosphorylation , Quinolones/pharmacology , RNA Precursors/genetics , RNA Precursors/metabolism , RNA Splicing/drug effects , Ribonucleoprotein, U2 Small Nuclear/chemistry , Ribonucleoprotein, U2 Small Nuclear/metabolism , Spliceosomes/drug effects , Spliceosomes/metabolism , Threonine/metabolismABSTRACT
The tumor suppressor PTEN controls cell proliferation by regulating phosphatidylinositol-3-kinase (PI3K) activity, but the participation of PTEN in host defense against bacterial infection is less well understood. Anti-inflammatory PI3K-Akt signaling is suppressed in patients with cystic fibrosis (CF), a disease characterized by hyper-inflammatory responses to airway infection. We found that Ptenl-/- mice, which lack the NH2-amino terminal splice variant of PTEN, were unable to eradicate Pseudomonas aeruginosa from the airways and could not generate sufficient anti-inflammatory PI3K activity, similar to what is observed in CF. PTEN and the CF transmembrane conductance regulator (CFTR) interacted directly and this interaction was necessary to position PTEN at the membrane. CF patients under corrector-potentiator therapy, which enhances CFTR transport to the membrane, have increased PTEN amounts. These findings suggest that improved CFTR trafficking could enhance P. aeruginosa clearance from the CF airway by activating PTEN-mediated anti-bacterial responses and might represent a therapeutic strategy.
Subject(s)
Cell Membrane/immunology , Cystic Fibrosis Transmembrane Conductance Regulator/immunology , Cystic Fibrosis/immunology , PTEN Phosphohydrolase/immunology , Pseudomonas Infections/immunology , Aminophenols/pharmacology , Aminopyridines/pharmacology , Animals , Benzodioxoles/pharmacology , Cell Membrane/drug effects , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Cystic Fibrosis/microbiology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Gene Expression Regulation , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Molecular , Monocytes/drug effects , Monocytes/immunology , Monocytes/microbiology , PTEN Phosphohydrolase/deficiency , PTEN Phosphohydrolase/genetics , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/immunology , Protein Binding , Protein Conformation , Protein Transport , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/immunology , Pseudomonas Infections/genetics , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/immunology , Quinolones/pharmacology , Signal TransductionABSTRACT
BACKGROUND: Heart failure (HF) is one of the leading causes of mortality worldwide. Extracellular vesicles, including small extracellular vesicles or exosomes, and their molecular cargo are known to modulate cell-to-cell communication during multiple cardiac diseases. However, the role of systemic extracellular vesicle biogenesis inhibition in HF models is not well documented and remains unclear. METHODS: We investigated the role of circulating exosomes during cardiac dysfunction and remodeling in a mouse transverse aortic constriction (TAC) model of HF. Importantly, we investigate the efficacy of tipifarnib, a recently identified exosome biogenesis inhibitor that targets the critical proteins (Rab27a [Ras associated binding protein 27a], nSMase2 [neutral sphingomyelinase 2], and Alix [ALG-2-interacting protein X]) involved in exosome biogenesis for this mouse model of HF. In this study, 10-week-old male mice underwent TAC surgery were randomly assigned to groups with and without tipifarnib treatment (10 mg/kg 3 times/wk) and monitored for 8 weeks, and a comprehensive assessment was conducted through performed echocardiographic, histological, and biochemical studies. RESULTS: TAC significantly elevated circulating plasma exosomes and markedly increased cardiac left ventricular dysfunction, cardiac hypertrophy, and fibrosis. Furthermore, injection of plasma exosomes from TAC mice induced left ventricular dysfunction and cardiomyocyte hypertrophy in uninjured mice without TAC. On the contrary, treatment of tipifarnib in TAC mice reduced circulating exosomes to baseline and remarkably improved left ventricular functions, hypertrophy, and fibrosis. Tipifarnib treatment also drastically altered the miRNA profile of circulating post-TAC exosomes, including miR 331-5p, which was highly downregulated both in TAC circulating exosomes and in TAC cardiac tissue. Mechanistically, miR 331-5p is crucial for inhibiting the fibroblast-to-myofibroblast transition by targeting HOXC8, a critical regulator of fibrosis. Tipifarnib treatment in TAC mice upregulated the expression of miR 331-5p that acts as a potent repressor for one of the fibrotic mechanisms mediated by HOXC8. CONCLUSIONS: Our study underscores the pathological role of exosomes in HF and fibrosis in response to pressure overload. Tipifarnib-mediated inhibition of exosome biogenesis and cargo sorting may serve as a viable strategy to prevent progressive cardiac remodeling in HF.
Subject(s)
Extracellular Vesicles , Heart Failure , Quinolones , Animals , Male , Mice , Cardiotonic Agents/pharmacology , Cardiotonic Agents/therapeutic use , Disease Models, Animal , Extracellular Vesicles/drug effects , Heart Failure/pathology , Heart Failure/prevention & control , Quinolones/pharmacology , Quinolones/therapeutic use , Random Allocation , Up-Regulation/drug effects , MicroRNAs , Myofibroblasts/drug effects , Myofibroblasts/metabolismABSTRACT
Physiologic and environmental factors can modulate antibiotic activity and thus pose a significant challenge to antibiotic treatment. The quinolone class of antibiotics, which targets bacterial topoisomerases, fails to kill bacteria that have grown to high density; however, the mechanistic basis for this persistence is unclear. Here, we show that exhaustion of the metabolic inputs that couple carbon catabolism to oxidative phosphorylation is a primary cause of growth phase-dependent persistence to quinolone antibiotics. Supplementation of stationary-phase cultures with glucose and a suitable terminal electron acceptor to stimulate respiratory metabolism is sufficient to sensitize cells to quinolone killing. Using this approach, we successfully sensitize high-density populations of Escherichia coli, Staphylococcus aureus, and Mycobacterium smegmatis to quinolone antibiotics. Our findings link growth-dependent quinolone persistence to discrete impairments in respiratory metabolism and identify a strategy to kill non-dividing bacteria.
Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacterial Infections/drug therapy , Carbon/metabolism , Cell Respiration/physiology , Drug Resistance, Bacterial , Oxygen/metabolism , Quinolones/pharmacology , Bacteria/growth & development , Bacterial Infections/microbiology , Microbial Sensitivity Tests , Oxidative PhosphorylationABSTRACT
CFTR is an anion channel that has evolved from the mold of an ABC transporter. It possesses specific structural features, including a lateral portal between the cytoplasmic extensions of its transmembrane helices TM4 and TM6. This TM4-TM6 portal is lined by basic residues attracting anions from the cytosol towards the intracellular vestibule. Even though a symmetric, open portal is not observed at the level of the TM10/TM12 interface, basic amino acids are also present at this level, exposed to solvent in the vicinity of the regulatory R region, whose phosphorylation enables channel activation. Here, using all-atom molecular dynamics simulations in combination with functional and biochemical assays, we investigate the importance of these basic amino acids (R1158 and R1030), and of a neighboring aromatic amino acid (W846) in the regulation of CFTR activity. Results indicate that mutation of these amino acids globally increased channel activity and enabled channel opening by potentiators without the need to elevate cAMP levels. These effects (i) were observed even when the binding site of the potentiator VX-770 was mutated, revealing a probable independent mechanism, and (ii) were additive to one gain-of-function mutant within the selectivity filter. Taken together, our results indicate that the region of the membrane-spanning domain 2 (MSD2), symmetric to the lateral portal located between MSD1 TM4 and TM6, is a novel critical actor of CFTR regulation.
Subject(s)
Adenosine Triphosphate , Cyclic AMP , Cystic Fibrosis Transmembrane Conductance Regulator , Gain of Function Mutation , Molecular Dynamics Simulation , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/chemistry , Humans , Cyclic AMP/metabolism , Adenosine Triphosphate/metabolism , Animals , Protein Domains , Quinolones/metabolism , Quinolones/pharmacology , Cricetulus , Ion Channel Gating , AminophenolsABSTRACT
Rationale: Pharmacological improvement of cystic fibrosis transmembrane conductance regulator (CFTR) function with elexacaftor/tezacaftor/ivacaftor (ETI) provides unprecedented improvements in lung function and other clinical outcomes in patients with cystic fibrosis (CF). However, ETI effects on impaired mucosal homeostasis and host defense at the molecular and cellular levels in the airways of patients with CF remain unknown. Objectives: To investigate effects of ETI on the transcriptome of nasal epithelial and immune cells from children with CF at the single-cell level. Methods: Nasal swabs from 13 children with CF and at least one F508del allele aged 6 to 11 years were collected at baseline and 3 months after initiation of ETI, subjected to single-cell RNA sequencing, and compared with swabs from 12 age-matched healthy children. Measurements and Main Results: Proportions of CFTR-positive cells were decreased in epithelial basal, club, and goblet cells, but not in ionocytes, from children with CF at baseline and were restored by ETI therapy to nearly healthy levels. Single-cell transcriptomics revealed an impaired IFN signaling and reduced expression of major histocompatibility complex classes I and II encoding genes in epithelial cells of children with CF at baseline, which was partially restored by ETI. In addition, ETI therapy markedly reduced the inflammatory phenotype of immune cells, particularly of neutrophils and macrophages. Conclusions: Pharmacological improvement of CFTR function improves innate mucosal immunity and reduces immune cell inflammatory responses in the upper airways of children with CF at the single-cell level, highlighting the potential to restore epithelial homeostasis and host defense in CF airways by early initiation of ETI therapy.
Subject(s)
Aminophenols , Benzodioxoles , Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Homeostasis , Humans , Cystic Fibrosis/drug therapy , Cystic Fibrosis/immunology , Cystic Fibrosis/physiopathology , Child , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Female , Male , Benzodioxoles/therapeutic use , Benzodioxoles/pharmacology , Aminophenols/therapeutic use , Aminophenols/pharmacology , Quinolones/therapeutic use , Quinolones/pharmacology , Indoles/therapeutic use , Indoles/pharmacology , Drug Combinations , Quinolines/therapeutic use , Quinolines/pharmacology , Pyrazoles/therapeutic use , Pyrazoles/pharmacology , Pyrroles/therapeutic use , Pyrroles/pharmacology , Nasal Mucosa/immunology , Pyridines/therapeutic use , Pyridines/pharmacologyABSTRACT
BACKGROUND: Pseudomonas aeruginosa is a multidrug-resistant pathogen causing recalcitrant pulmonary infections in people with cystic fibrosis (pwCF). Cystic fibrosis transmembrane conductance regulator (CFTR) modulators have been developed that partially correct the defective chloride channel driving disease. Despite the many clinical benefits, studies in adults have demonstrated that while P. aeruginosa sputum load decreases, chronic infection persists. Here, we investigate how P. aeruginosa in pwCF may change in the altered lung environment after CFTR modulation. METHODS: P. aeruginosa strains (n = 105) were isolated from the sputum of 11 chronically colonized pwCF at baseline and up to 21 months posttreatment with elexacaftor-tezacaftor-ivacaftor or tezacaftor-ivacaftor. Phenotypic characterization and comparative genomics were performed. RESULTS: Clonal lineages of P. aeruginosa persisted after therapy, with no evidence of displacement by alternative strains. We identified commonly mutated genes among patient isolates that may be positively selected for in the CFTR-modulated lung. However, classic chronic P. aeruginosa phenotypes such as mucoid morphology were sustained, and isolates remained just as resistant to clinically relevant antibiotics. CONCLUSIONS: Despite the clinical benefits of CFTR modulators, clonal lineages of P. aeruginosa persist that may prove just as difficult to manage in the future, especially in pwCF with advanced lung disease.
Subject(s)
Aminophenols , Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Drug Combinations , Pseudomonas Infections , Pseudomonas aeruginosa , Quinolones , Sputum , Humans , Cystic Fibrosis/microbiology , Cystic Fibrosis/complications , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Aminophenols/therapeutic use , Aminophenols/pharmacology , Quinolones/therapeutic use , Quinolones/pharmacology , Sputum/microbiology , Indoles/therapeutic use , Indoles/pharmacology , Benzodioxoles/therapeutic use , Benzodioxoles/pharmacology , Adult , Female , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Male , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Mutation , Persistent Infection/microbiology , Pyridines , QuinolinesABSTRACT
Vaginal inserts that can be used on demand before or after sex may be a desirable human immunodeficiency virus (HIV) prevention option for women. We recently showed that inserts containing tenofovir alafenamide fumarate (TAF, 20â mg) and elvitegravir (EVG, 16â mg) were highly protective against repeated simian/human immunodeficiency virus (SHIV) vaginal exposures when administered to macaques 4 hours before or after virus exposure (93% and 100%, respectively). Here, we show in the same macaque model that insert application 8 hours or 24 hours after exposure maintains high efficacy (94.4% and 77.2%, respectively). These data extend the protective window by TAF/EVG inserts and inform their clinical development for on-demand prophylaxis in women.
Subject(s)
Adenine , Alanine , Anti-HIV Agents , Quinolones , Simian Acquired Immunodeficiency Syndrome , Tenofovir , Animals , Tenofovir/administration & dosage , Tenofovir/analogs & derivatives , Female , Quinolones/administration & dosage , Quinolones/pharmacology , Alanine/administration & dosage , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Acquired Immunodeficiency Syndrome/virology , Anti-HIV Agents/administration & dosage , Adenine/analogs & derivatives , Adenine/administration & dosage , Adenine/pharmacology , Adenine/therapeutic use , Vagina/virology , Vagina/drug effects , Simian Immunodeficiency Virus/drug effects , HIV Infections/prevention & control , HIV Infections/virology , Administration, Intravaginal , Macaca mulatta , Disease Models, AnimalABSTRACT
The opportunistic pathogen Pseudomonas aeruginosa has complex quorum sensing (QS) circuitry, which involves two acylhomoserine lactone (AHL) systems, the LasI AHL synthase and LasR AHL-dependent transcriptional activator system and the RhlI AHL synthase-RhlR AHL-responsive transcriptional activator. There is also a quinoline signaling system [the Pseudomonas quinolone signal (PQS) system]. Although there is a core set of genes regulated by the AHL circuits, there is strain-to-strain variation in the non-core QS regulon. A size reduction of the QS regulon occurs in laboratory evolution experiments with the model strain PAO1. We used transcriptomics to test the hypothesis that reductive evolution in the PAO1 QS regulon can in large part be explained by a null mutation in pqsR, the gene encoding the transcriptional activator of the pqs operon. We found that PqsR had very little influence on the AHL QS regulon. This was a surprising finding because the last gene in the PqsR-dependent pqs operon, pqsE, codes for a protein, which physically interacts with RhlR, and this interaction is required for RhlR-dependent activation of some genes. We used comparative transcriptomics to examine the influence of a pqsE mutation on the QS regulon and identified only three transcripts, which were strictly dependent on PqsE. By using reporter constructs, we showed that the PqsE influence on other genes was dependent on experimental conditions and we have gained some insight about those conditions. This work adds to our understanding of the plasticity of the P. aeruginosa QS regulon and to the role PqsE plays in RhlR-dependent gene activation.IMPORTANCEOver many generations of growth in certain conditions, Pseudomonas aeruginosa undergoes a large reductive evolution in the number of genes activated by quorum sensing. Here, we rule out one plausible route of the reductive evolution: that a mutation in a transcriptional activator PqsR or the PqsR activation of pqsE, which codes for a chaperone for the quorum sensing signal-responsive transcription factor RhlR, explains the finding. We further provide information about the influence of PqsR and PqsE on quorum sensing in P. aeruginosa.
Subject(s)
Bacterial Proteins , Gene Expression Regulation, Bacterial , Pseudomonas aeruginosa , Quorum Sensing , Signal Transduction , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Acyl-Butyrolactones/metabolism , Quinolones/metabolism , Quinolones/pharmacology , RegulonABSTRACT
Metallo-ß-lactamases (MBL) deactivate ß-lactam antibiotics through a catalytic reaction caused by two zinc ions at the active center. Since MBLs deteriorate a wide range of antibiotics, they are dangerous factors for bacterial multidrug resistance. In this work, organic synthesis, computational design, and crystal structure analysis were performed to obtain potent MBL inhibitors based on a previously identified hit compound. The hit compound comprised 3,4-dihydro-2(1H)-quinolinone linked with a phenyl-ether-methyl group via a thiazole ring. In the first step, the thiazole ring was replaced with a tertiary amine to avoid the planar structure. In the second step, we virtually modified the compound by keeping the quinolinone backbone. Every modified compound was bound to a kind of MBL, imipenemase-1 (IMP-1), and the binding pose was optimized by a molecular mechanics calculation. The binding scores were evaluated for the respective optimized binding poses. Given the predicted binding poses and calculated binding scores, candidate compounds were determined for organic syntheses. The inhibitory activities of the synthesized compounds were measured by an in vitro assay for two kinds of MBLs, IMP-1 and New Delhi metallo-ß-lactamase (NDM-1). A quinolinone connected with an amine bound with methyl-phenyl-ether-propyl and cyclohexyl-ethyl showed a 50% inhibitory concentration of 4.8 µM. An X-ray crystal analysis clarified the binding structure of a synthesized compound to IMP-1. The δ-lactam ring of quinolinone was hydrolyzed, and the generated carboxyl group was coordinated with zinc ions. The findings on the chemical structure and binding pose are expected to be a base for developing MBL inhibitors.
Subject(s)
beta-Lactamase Inhibitors , beta-Lactamases , beta-Lactamases/chemistry , beta-Lactamases/metabolism , beta-Lactamase Inhibitors/pharmacology , beta-Lactamase Inhibitors/chemistry , Crystallography, X-Ray , Drug Design , Molecular Docking Simulation , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Quinolones/chemistry , Quinolones/pharmacology , Quinolones/metabolismABSTRACT
Bacterial lineages acquire novel traits at diverse rates in part because the genetic background impacts the successful acquisition of novel genes by horizontal transfer. Yet, how horizontal transfer affects the subsequent evolution of core genes remains poorly understood. Here, we studied the evolution of resistance to quinolones in Escherichia coli accounting for population structure. We found 60 groups of genes whose gain or loss induced an increase in the probability of subsequently becoming resistant to quinolones by point mutations in the gyrase and topoisomerase genes. These groups include functions known to be associated with direct mitigation of the effect of quinolones, with metal uptake, cell growth inhibition, biofilm formation, and sugar metabolism. Many of them are encoded in phages or plasmids. Although some of the chronologies may reflect epidemiological trends, many of these groups encoded functions providing latent phenotypes of antibiotic low-level resistance, tolerance, or persistence under quinolone treatment. The mutations providing resistance were frequent and accumulated very quickly. Their emergence was found to increase the rate of acquisition of other antibiotic resistances setting the path for multidrug resistance. Hence, our findings show that horizontal gene transfer shapes the subsequent emergence of adaptive mutations in core genes. In turn, these mutations further affect the subsequent evolution of resistance by horizontal gene transfer. Given the substantial gene flow within bacterial genomes, interactions between horizontal transfer and point mutations in core genes may be a key to the success of adaptation processes.
Subject(s)
Escherichia coli , Quinolones , Plasmids , Escherichia coli/genetics , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Drug Resistance, Bacterial/genetics , Quinolones/pharmacology , Mutation , Gene Transfer, HorizontalABSTRACT
Quorum sensing is a type of cell-cell communication that modulates various biological activities of bacteria. Previous studies indicate that quorum sensing contributes to the evolution of bacterial resistance to antibiotics, but the underlying mechanisms are not fully understood. In this study, we grew Pseudomonas aeruginosa in the presence of sub-lethal concentrations of ciprofloxacin, resulting in a large increase in ciprofloxacin minimal inhibitory concentration. We discovered that quorum sensing-mediated phenazine biosynthesis was significantly enhanced in the resistant isolates, where the quinolone circuit was the predominant contributor to this phenomenon. We found that production of pyocyanin changed carbon flux and showed that the effect can be partially inhibited by the addition of pyruvate to cultures. This study illustrates the role of quorum sensing-mediated phenotypic resistance and suggests a strategy for its prevention.
Subject(s)
Anti-Bacterial Agents , Ciprofloxacin , Drug Resistance, Bacterial , Microbial Sensitivity Tests , Phenazines , Pseudomonas aeruginosa , Pyocyanine , Quorum Sensing , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Ciprofloxacin/pharmacology , Quorum Sensing/drug effects , Phenazines/pharmacology , Phenazines/metabolism , Anti-Bacterial Agents/pharmacology , Pyocyanine/biosynthesis , Drug Resistance, Bacterial/genetics , Gene Expression Regulation, Bacterial/drug effects , Quinolones/pharmacologyABSTRACT
In situ profiling of single-nucleotide variations (SNVs) can elucidate drug-resistant genotypes with single-cell resolution. The capacity to directly "see" genetic information is crucial for investigating the relationship between mutated genes and phenotypes. Fluorescence in situ hybridization serves as a canonical tool for genetic imaging; however, it cannot detect subtle sequence alteration including SNVs. Herein, we develop an in situ Cas12a-based amplification refractory mutation system-PCR (ARMS-PCR) method that allows the visualization of SNVs related to quinolone resistance inside cells. The capacity of discriminating SNVs is enhanced by incorporating optimized mismatched bases in the allele-specific primers, thus allowing to specifically amplify quinolone-resistant related genes. After in situ ARMS-PCR, we employed a modified Cas12a/CRISPR RNA to tag the amplicon, thereby enabling specific binding of fluorophore-labeled DNA probes. The method allows to precisely quantify quinolone-resistant Salmonella enterica in the bacterial mixture. Utilizing this method, we investigated the survival competition capacity of quinolone-resistant and quinolone-sensitive bacteria toward antimicrobial peptides and indicated the enrichment of quinolone-resistant bacteria under colistin sulfate stress. The in situ Cas12a-based ARMS-PCR method holds the potential for profiling cellular phenotypes and gene regulation with single-nucleotide resolution at the single-cell level.
Subject(s)
Quinolones , Salmonella enterica , CRISPR-Cas Systems/genetics , Alleles , In Situ Hybridization, Fluorescence , Quinolones/pharmacology , Salmonella enterica/genetics , Polymerase Chain ReactionABSTRACT
Introduction. Leclercia adecarboxylata is a member of Enterobacterales, often considered an opportunistic pathogen. Recent reports have highlighted L. adecarboxylata as an emerging pathogen harbouring virulence and resistance determinants.Gap statement. Little information exists on virulence and resistance determinants in L. adecarboxylata strains isolated from environmental, food, and clinical samples.Aim. To determine the presence of resistance and virulence determinants and plasmid features in L. adecarboxylata strains isolated from environmental, food, and clinical samples, as well as their phylogenetic relationship.Results. All strains tested showed resistance to ß-lactams and quinolones but were sensitive to aminoglycosides and nitrofurans. However, even though fosfomycin resistance is considered a characteristic trait of L. adecarboxylata, the resistance phenotype was only observed in 50â% of the strains; bla TEM was the most prevalent BLEE gene (70â%), while the quinolone qnrB gene was observed in 60â% of the strains. Virulence genes were differentially observed in the strains, with adhesion-related genes being the most abundant, followed by toxin genes. Finally, all strains carried one to seven plasmid bands ranging from 7 to 125 kbps and harboured several plasmid addiction systems, such as ParDE, VagCD, and CcdAB in 80â% of the strains.Conclusions. L. adecarboxylata is an important emerging pathogen that may harbour resistance and virulence genes. Additionally, it has mobilizable genetic elements that may contribute to the dissemination of genetic determinants to other bacterial genera.
Subject(s)
Anti-Bacterial Agents , Enterobacteriaceae , Microbial Sensitivity Tests , Phylogeny , Plasmids , Virulence Factors , Anti-Bacterial Agents/pharmacology , Plasmids/genetics , Virulence/genetics , Enterobacteriaceae/genetics , Enterobacteriaceae/drug effects , Enterobacteriaceae/pathogenicity , Enterobacteriaceae/isolation & purification , Enterobacteriaceae/classification , Virulence Factors/genetics , Humans , Enterobacteriaceae Infections/microbiology , Phenotype , Drug Resistance, Bacterial/genetics , Quinolones/pharmacology , beta-Lactams/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Food MicrobiologyABSTRACT
The most common CFTR mutant in cystic fibrosis (CF), ΔF508 CFTR, is eliminated by ubiquitination even in the presence of CF drugs, reducing their therapeutic efficacy. RFFL is one of the ubiquitin ligases that remove ΔF508 CFTR from the cell surface despite treatment with the triple combination of CFTR modulators (TEZ/ELX/IVA) used clinically. Although RFFL knockdown has been shown to enhance the efficacy of TEZ/ELX/IVA in cell culture models, its impact in mouse models has not been evaluated. Here, we demonstrate that RFFL ablation significantly improves the effect of TEZ/ELX/IVA, resulting in enhanced function of ΔF508 CFTR in mouse organoids. Since RFFL knockout mice showed no significant abnormalities, our findings support RFFL inhibition as a promising strategy to improve CFtreatment.
Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Mice, Knockout , Organoids , Ubiquitin-Protein Ligases , Animals , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Organoids/metabolism , Mice , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Cystic Fibrosis/metabolism , Cystic Fibrosis/genetics , Cystic Fibrosis/pathology , Aminophenols/pharmacology , Benzodioxoles/pharmacology , Quinolones/pharmacology , Benzofurans/pharmacology , Quinolines/pharmacology , Drug Combinations , Mice, Inbred C57BL , Aminopyridines/pharmacology , Pyrazoles , Pyridines , PyrrolidinesABSTRACT
BACKGROUND: The emergence of fluoroquinolone resistance in clinical isolates of Klebsiella pneumoniae is a growing concern. To investigate the mechanisms behind this resistance, we studied a total of 215 K. pneumoniae isolates from hospitals in Bushehr province, Iran, collected between 2017 and 2019. Antimicrobial susceptibility test for fluoroquinolones was determined. The presence of plasmid mediated quinolone resistance (PMQR) and mutations in quinolone resistance-determining region (QRDR) of gyrA and parC genes in ciprofloxacin-resistant K. pneumoniae isolates were identified by PCR and sequencing. RESULTS: Out of 215 K. pneumoniae isolates, 40 were resistant to ciprofloxacin as determined by E-test method. PCR analysis revealed that among these ciprofloxacin-resistant isolates, 13 (32.5%), 7 (17.5%), 40 (100%), and 25 (62.5%) isolates harbored qnrB, qnrS, oqxA and aac(6')-Ib-cr genes, respectively. Mutation analysis of gyrA and parC genes showed that 35 (87.5%) and 34 (85%) of the ciprofloxacin-resistant isolates had mutations in these genes, respectively. The most frequent mutations were observed in codon 83 of gyrA and codon 80 of parC gene. Single gyrA substitution, Ser83â Ile and Asp87âGly, and double substitutions, Ser83âPhe plus Asp87âAla, Ser83âTyr plus Asp87âAla, Ser83âIle plus Asp87âTyr, Ser83âPhe plus Asp87âAsn and Ser83âIle plus Asp87âGly were detected. In addition, Ser80âIle and Glu84âLys single substitution were found in parC gene. CONCLUSIONS: Our results indicated that 90% of isolates have at least one mutation in QRDR of gyrA orparC genes, thus the frequency of mutations was very significant and alarming in our region.
Subject(s)
Anti-Bacterial Agents , DNA Gyrase , DNA Topoisomerase IV , Drug Resistance, Bacterial , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , Mutation , Plasmids , Quinolones , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , DNA Gyrase/genetics , Plasmids/genetics , DNA Topoisomerase IV/genetics , Humans , Anti-Bacterial Agents/pharmacology , Klebsiella Infections/microbiology , Klebsiella Infections/epidemiology , Drug Resistance, Bacterial/genetics , Quinolones/pharmacology , Ciprofloxacin/pharmacology , Iran , Bacterial Proteins/genetics , Prevalence , Fluoroquinolones/pharmacologyABSTRACT
BACKGROUND: Data about the prevalence of plasmid-mediated quinolone resistance (PMQR) and extended-spectrum beta-lactamase (ESBL) production in P. aeruginosa compared to the Enterobacteriaceae family is limited. The availability of limited therapeutic options raises alarming concerns about the treatment of multidrug-resistant P. aeruginosa. This study aimed to assess the presence of PMQR and ESBL genes among P. aeruginosa strains. METHODS: Fifty-six P. aeruginosa strains were isolated from 330 patients with different clinical infections. Phenotypically fluoroquinolone-resistant isolates were tested by PCR for the presence of six PMQR genes. Then, blaTEM, blaSHV, and blaCTX-M type ESBL genes were screened to study the co-existence of different resistance determinants. RESULTS: Overall, 22/56 (39.3%) of the studied P. aeruginosa isolates were phenotypically resistant to fluoroquinolones. PMQR-producing P. aeruginosa isolates were identified in 20 isolates (90.9%). The acc(6')-Ib-cr was the most prevalent PMQR gene (77.3%). The qnr genes occurred in 72.7%, with the predominance of the qnrA gene at 54.5%, followed by the qnrS gene at 27.3%, then qnrB and qnrC at 22.7%. The qepA was not detected in any isolate. The acc(6')-Ib-cr was associated with qnr genes in 65% of positive PMQR isolates. Significant differences between the fluoroquinolone-resistant and fluoroquinolone-susceptible isolates in terms of the antibiotic resistance rates of amikacin, imipenem, and cefepime (P value < 0.0001) were found. The ESBL genes were detected in 52% of cephalosporin-resistant P. aeruginosa isolates. The most frequent ESBL gene was blaCTX-M (76.9%), followed by blaTEM (46.2%). No isolates carried the blaSHV gene. The acc(6')-Ib-cr gene showed the highest association with ESBL genes, followed by the qnrA gene. The correlation matrix of the detected PMQR and ESBL genes indicated overall positive correlations. The strongest and most highly significant correlation was between qnrA and acc(6')-Ib-cr (r = 0.602) and between qnrA and blaCTX-M (r = 0.519). CONCLUSION: A high prevalence of PMQR genes among the phenotypic fluoroquinolone-resistant P. aeruginosa isolates was detected, with the co-carriage of different PMQR genes. The most frequent PMQR was the acc(6')-Ib-cr gene. Co-existence between PMQR and ESBL genes was found, with 75% of PMQR-positive isolates carrying at least one ESBL gene. A high and significant correlation between the ESBL and PMQR genes was detected.
Subject(s)
Anti-Bacterial Agents , Microbial Sensitivity Tests , Plasmids , Pseudomonas Infections , Pseudomonas aeruginosa , Quinolones , beta-Lactamases , Humans , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/isolation & purification , Pseudomonas aeruginosa/enzymology , beta-Lactamases/genetics , Egypt , Plasmids/genetics , Anti-Bacterial Agents/pharmacology , Pseudomonas Infections/microbiology , Pseudomonas Infections/epidemiology , Quinolones/pharmacology , Drug Resistance, Bacterial/genetics , Drug Resistance, Multiple, Bacterial/genetics , Fluoroquinolones/pharmacology , Adult , Female , MaleABSTRACT
BACKGROUND: The usage of fluoroquinolones in Norwegian livestock production is very low, including in broiler production. Historically, quinolone-resistant Escherichia coli (QREC) isolated from Norwegian production animals rarely occur. However, with the introduction of a selective screening method for QREC in the Norwegian monitoring programme for antimicrobial resistance in the veterinary sector in 2014; 89.5% of broiler caecal samples and 70.7% of broiler meat samples were positive. This triggered the concern if there could be possible links between broiler and human reservoirs of QREC. We are addressing this by characterizing genomes of QREC from humans (healthy carriers and patients) and broiler isolates (meat and caecum). RESULTS: The most frequent mechanism for quinolone resistance in both broiler and human E. coli isolates were mutations in the chromosomally located gyrA and parC genes, although plasmid mediated quinolone resistance (PMQR) was also identified. There was some relatedness of the isolates within human and broiler groups, but little between these two groups. Further, some overlap was seen for isolates with the same sequence type isolated from broiler and humans, but overall, the SNP distance was high. CONCLUSION: Based on data from this study, QREC from broiler makes a limited contribution to the incidence of QREC in humans in Norway.
Subject(s)
Anti-Bacterial Agents , Chickens , Drug Resistance, Bacterial , Escherichia coli Infections , Escherichia coli , Quinolones , Animals , Chickens/microbiology , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Humans , Norway , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Drug Resistance, Bacterial/genetics , Quinolones/pharmacology , Anti-Bacterial Agents/pharmacology , Genomics , Plasmids/genetics , Poultry Diseases/microbiology , Microbial Sensitivity Tests , Genome, Bacterial/genetics , DNA Gyrase/genetics , DNA Topoisomerase IV/genetics , Meat/microbiology , Mutation , Escherichia coli Proteins/genetics , Cecum/microbiologyABSTRACT
BACKGROUND: Cystic Fibrosis causing mutations in the gene CFTR, reduce the activity of the CFTR channel protein, and leads to mucus aggregation, airway obstruction and poor lung function. A role for CFTR in the pathogenesis of other muco-obstructive airway diseases such as Chronic Obstructive Pulmonary Disease (COPD) has been well established. The CFTR modulatory compound, Ivacaftor (VX-770), potentiates channel activity of CFTR and certain CF-causing mutations and has been shown to ameliorate mucus obstruction and improve lung function in people harbouring these CF-causing mutations. A pilot trial of Ivacaftor supported its potential efficacy for the treatment of mucus obstruction in COPD. These findings prompted the search for CFTR potentiators that are more effective in ameliorating cigarette-smoke (CS) induced mucostasis. METHODS: Small molecule potentiators, previously identified in CFTR binding studies, were tested for activity in augmenting CFTR channel activity using patch clamp electrophysiology in HEK-293 cells, a fluorescence-based assay of membrane potential in Calu-3 cells and in Ussing chamber studies of primary bronchial epithelial cultures. Addition of cigarette smoke extract (CSE) to the solutions bathing the apical surface of Calu-3 cells and primary bronchial airway cultures was used to model COPD. Confocal studies of the velocity of fluorescent microsphere movement on the apical surface of CSE exposed airway epithelial cultures, were used to assess the effect of potentiators on CFTR-mediated mucociliary movement. RESULTS: We showed that SK-POT1, like VX-770, was effective in augmenting the cyclic AMP-dependent channel activity of CFTR. SK-POT-1 enhanced CFTR channel activity in airway epithelial cells previously exposed to CSE and ameliorated mucostasis on the surface of primary airway cultures. CONCLUSION: Together, this evidence supports the further development of SK-POT1 as an intervention in the treatment of COPD.