Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
Add more filters

Publication year range
1.
Development ; 151(3)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38284547

ABSTRACT

The renin-angiotensin-aldosterone system (RAAS) plays a well-characterized role regulating blood pressure in mammals. Pharmacological and genetic manipulation of the RAAS has been shown to extend lifespan in Caenorhabditis elegans, Drosophila and rodents, but its mechanism is not well defined. Here, we investigate the angiotensin-converting enzyme (ACE) inhibitor drug captopril, which extends lifespan in worms and mice. To investigate the mechanism, we performed a forward genetic screen for captopril-hypersensitive mutants. We identified a missense mutation that causes a partial loss of function of the daf-2 receptor tyrosine kinase gene, a powerful regulator of aging. The homologous mutation in the human insulin receptor causes Donohue syndrome, establishing these mutant worms as an invertebrate model of this disease. Captopril functions in C. elegans by inhibiting ACN-1, the worm homolog of ACE. Reducing the activity of acn-1 via captopril or RNA interference promoted dauer larvae formation, suggesting that acn-1 is a daf gene. Captopril-mediated lifespan extension was abrogated by daf-16(lf) and daf-12(lf) mutations. Our results indicate that captopril and acn-1 influence lifespan by modulating dauer formation pathways. We speculate that this represents a conserved mechanism of lifespan control.


Subject(s)
Caenorhabditis elegans Proteins , Captopril , Animals , Humans , Mice , Captopril/pharmacology , Captopril/metabolism , Caenorhabditis elegans/metabolism , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/metabolism , Caenorhabditis elegans Proteins/metabolism , Aging , Longevity/physiology , Receptor, Insulin/metabolism , Mutation/genetics , Mammals/metabolism
2.
Proc Natl Acad Sci U S A ; 121(17): e2401716121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38625937

ABSTRACT

Serine phosphorylations on insulin receptor substrate 1 (IRS-1) by diverse kinases aoccur widely during obesity-, stress-, and inflammation-induced conditions in models of insulin resistance and type 2 diabetes. In this study, we define a region within the human IRS-1, which is directly C-terminal to the PTB domain encompassing numerous serine phosphorylation sites including Ser307 (mouse Ser302) and Ser312 (mouse 307) creating a phosphorylation insulin resistance (PIR) domain. We demonstrate that the IRS-1 PTB-PIR with its unphosphorylated serine residues interacts with the insulin receptor (IR) but loses the IR-binding when they are phosphorylated. Surface plasmon resonance studies further confirm that the PTB-PIR binds stronger to IR than just the PTB domain, and that phosphorylations at Ser307, Ser312, Ser315, and Ser323 within the PIR domain result in abrogating the binding. Insulin-responsive cells containing the mutant IRS-1 with all these four serines changed into glutamates to mimic phosphorylations show decreased levels of phosphorylations in IR, IRS-1, and AKT compared to the wild-type IRS-1. Hydrogen-deuterium exchange mass spectrometry experiments indicating the PIR domain interacting with the N-terminal lobe and the hinge regions of the IR kinase domain further suggest the possibility that the IRS-1 PIR domain protects the IR from the PTP1B-mediated dephosphorylation.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Mice , Humans , Animals , Phosphorylation , Serine/metabolism , Receptor, Insulin/metabolism , Insulin Receptor Substrate Proteins/genetics , Insulin Receptor Substrate Proteins/metabolism , Cell Line , Phosphoproteins/metabolism , Insulin/metabolism
3.
Proc Natl Acad Sci U S A ; 121(29): e2400666121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38976738

ABSTRACT

Urinary tract infection (UTI) commonly afflicts people with diabetes. This augmented infection risk is partly due to deregulated insulin receptor (IR) signaling in the kidney collecting duct. The collecting duct is composed of intercalated cells (ICs) and principal cells (PCs). Evidence suggests that ICs contribute to UTI defenses. Here, we interrogate how IR deletion in ICs impacts antibacterial defenses against uropathogenic Escherichia coli. We also explore how IR deletion affects immune responses in neighboring PCs with intact IR expression. To accomplish this objective, we profile the transcriptomes of IC and PC populations enriched from kidneys of wild-type and IC-specific IR knock-out mice that have increased UTI susceptibility. Transcriptomic analysis demonstrates that IR deletion suppresses IC-integrated stress responses and innate immune defenses. To define how IR shapes these immune defenses, we employ murine and human kidney cultures. When challenged with bacteria, murine ICs and human kidney cells with deregulated IR signaling cannot engage central components of the integrated stress response-including activating transcriptional factor 4 (ATF4). Silencing ATF4 impairs NFkB activation and promotes infection. In turn, NFkB silencing augments infection and suppresses antimicrobial peptide expression. In diabetic mice and people with diabetes, collecting duct cells show reduced IR expression, impaired integrated stress response engagement, and compromised immunity. Collectively, these translational data illustrate how IR orchestrates collecting duct antibacterial responses and the communication between ICs and PCs.


Subject(s)
Mice, Knockout , Receptor, Insulin , Urinary Tract Infections , Uropathogenic Escherichia coli , Animals , Humans , Mice , Escherichia coli Infections/immunology , Escherichia coli Infections/metabolism , Escherichia coli Infections/microbiology , Immunity, Innate , Kidney/metabolism , Kidney Tubules, Collecting/metabolism , Mice, Inbred C57BL , Receptor, Insulin/metabolism , Signal Transduction , Urinary Tract Infections/microbiology , Urinary Tract Infections/metabolism , Urinary Tract Infections/immunology , Uropathogenic Escherichia coli/immunology
4.
J Biol Chem ; 300(6): 107316, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663826

ABSTRACT

Neuraminidases (NEUs) also called sialidases are glycosidases which catalyze the removal of terminal sialic acid residues from glycoproteins, glycolipids, and oligosaccharides. Mammalian NEU-1 participates in regulation of cell surface receptors such as insulin receptor (IR), epithelial growth factor receptor, low-density lipoprotein receptor, and toll-like receptor 4. At the plasma membrane, NEU-1 can be associated with the elastin-binding protein and the carboxypeptidase protective protein/cathepsin A to constitute the elastin receptor complex. In this complex, NEU-1 is essential for elastogenesis, signal transduction through this receptor and for biological effects of the elastin-derived peptides on atherosclerosis, thrombosis, insulin resistance, nonalcoholic steatohepatitis, and cancers. This is why research teams are developing inhibitors targeting this sialidase. Previously, we developed interfering peptides to inhibit the dimerization and the activation of NEU-1. In this study, we investigated the effects of these peptides on IR activation in vitro and in vivo. Using cellular overexpression and endogenous expression models of NEU-1 and IR (COS-7 and HepG2 cells, respectively), we have shown that interfering peptides inhibit NEU-1 dimerization and sialidase activity which results in a reduction of IR phosphorylation. These results demonstrated that NEU-1 positively regulates IR phosphorylation and activation in our conditions. In vivo, biodistribution study showed that interfering peptides are well distributed in mice. Treatment of C57Bl/6 mice during 8 weeks with interfering peptides induces a hyperglycemic effect in our experimental conditions. Altogether, we report here that inhibition of NEU-1 sialidase activity by interfering peptides decreases IR activity in vitro and glucose homeostasis in vivo.


Subject(s)
Neuraminidase , Receptor, Insulin , Neuraminidase/metabolism , Neuraminidase/antagonists & inhibitors , Animals , Receptor, Insulin/metabolism , Humans , Mice , Hep G2 Cells , Chlorocebus aethiops , Homeostasis/drug effects , Peptides/pharmacology , Peptides/chemistry , Male , Glucose/metabolism , Mice, Inbred C57BL , Receptors, Cell Surface
5.
FASEB J ; 38(1): e23355, 2024 01.
Article in English | MEDLINE | ID: mdl-38071609

ABSTRACT

Drosophila melanogaster (fruit fly) insulin receptor (D-IR) is highly homologous to the human counterpart. Like the human pathway, D-IR responds to numerous insulin-like peptides to activate cellular signals that regulate growth, development, and lipid metabolism in fruit flies. Allelic mutations in the D-IR kinase domain elevate life expectancy in fruit flies. We developed a robust heterologous expression system to express and purify wild-type and longevity-associated mutant D-IR kinase domains to investigate enzyme kinetics and substrate specificities. D-IR exhibits remarkable similarities to the human insulin receptor kinase domain but diverges in substrate preferences. We show that longevity-associated mutations reduce D-IR catalytic activity. Deletion of the unique kinase insert domain portion or mutations proximal to activating tyrosines do not influence kinase activity, suggesting their potential role in substrate recruitment and downstream signaling. Through biochemical investigations, this study enhances our comprehension of D-IR's role in Drosophila physiology, complementing genetic studies and expanding our knowledge on the catalytic functions of this conserved signaling pathway.


Subject(s)
Drosophila Proteins , Drosophila , Humans , Animals , Drosophila/metabolism , Receptor, Insulin/genetics , Receptor, Insulin/metabolism , Drosophila melanogaster/metabolism , Longevity/genetics , Signal Transduction/physiology , Insulin/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism
6.
Cell Mol Life Sci ; 81(1): 25, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38212570

ABSTRACT

Increased circulating amino acid levels have been linked to insulin resistance and development of type 2 diabetes (T2D), but the underlying mechanism remains largely unknown. Herein, we show that tryptophan modifies insulin receptor (IR) to attenuate insulin signaling and impair glucose uptake. Mice fed with tryptophan-rich chow developed insulin resistance. Excessive tryptophan promoted tryptophanyl-tRNA synthetase (WARS) to tryptophanylate lysine 1209 of IR (W-K1209), which induced insulin resistance by inhibiting the insulin-stimulated phosphorylation of IR, AKT, and AS160. SIRT1, but not other sirtuins, detryptophanylated IRW-K1209 to increase the insulin sensitivity. Collectively, we unveiled the mechanisms of how tryptophan impaired insulin signaling, and our data suggested that WARS might be a target to attenuate insulin resistance in T2D patients.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Humans , Mice , Animals , Insulin/metabolism , Receptor, Insulin/metabolism , Diabetes Mellitus, Type 2/metabolism , Tryptophan/metabolism , Phosphorylation , Glucose/metabolism
7.
BMC Biol ; 22(1): 127, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816743

ABSTRACT

BACKGROUND: Optimal size at birth dictates perinatal survival and long-term risk of developing common disorders such as obesity, type 2 diabetes and cardiovascular disease. The imprinted Grb10 gene encodes a signalling adaptor protein capable of inhibiting receptor tyrosine kinases, including the insulin receptor (Insr) and insulin-like growth factor type 1 receptor (Igf1r). Grb10 restricts fetal growth such that Grb10 knockout (KO) mice are at birth some 25-35% larger than wild type. Using a mouse genetic approach, we test the widely held assumption that Grb10 influences growth through interaction with Igf1r, which has a highly conserved growth promoting role. RESULTS: Should Grb10 interact with Igf1r to regulate growth Grb10:Igf1r double mutant mice should be indistinguishable from Igf1r KO single mutants, which are around half normal size at birth. Instead, Grb10:Igf1r double mutants were intermediate in size between Grb10 KO and Igf1r KO single mutants, indicating additive effects of the two signalling proteins having opposite actions in separate pathways. Some organs examined followed a similar pattern, though Grb10 KO neonates exhibited sparing of the brain and kidneys, whereas the influence of Igf1r extended to all organs. An interaction between Grb10 and Insr was similarly investigated. While there was no general evidence for a major interaction for fetal growth regulation, the liver was an exception. The liver in Grb10 KO mutants was disproportionately overgrown with evidence of excess lipid storage in hepatocytes, whereas Grb10:Insr double mutants were indistinguishable from Insr single mutants or wild types. CONCLUSIONS: Grb10 acts largely independently of Igf1r or Insr to control fetal growth and has a more variable influence on individual organs. Only the disproportionate overgrowth and excess lipid storage seen in the Grb10 KO neonatal liver can be explained through an interaction between Grb10 and the Insr. Our findings are important for understanding how positive and negative influences on fetal growth dictate size and tissue proportions at birth.


Subject(s)
Fetal Development , GRB10 Adaptor Protein , Mice, Knockout , Receptor, IGF Type 1 , Receptor, Insulin , Animals , GRB10 Adaptor Protein/genetics , GRB10 Adaptor Protein/metabolism , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism , Mice , Receptor, Insulin/genetics , Receptor, Insulin/metabolism , Fetal Development/genetics , Genomic Imprinting , Female , Male , Insulin-Like Peptides
8.
Am J Physiol Cell Physiol ; 326(4): C1237-C1247, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38581667

ABSTRACT

Diabetes alters the function of ion channels responsible for regulating arterial smooth muscle membrane potential, resulting in vasoconstriction. Our prior research demonstrated an elevation of TMEM16A in diabetic arteries. Here, we explored the mechanisms involved in Transmembrane protein 16A (TMEM16A) gene expression. Our data indicate that a Snail-mediated repressor complex regulates arterial TMEM16A gene transcription. Snail expression was reduced in diabetic arteries while TMEM16A expression was upregulated. The TMEM16A promoter contained three canonical E-box sites. Electrophoretic mobility and super shift assays revealed that the -154 nt E-box was the binding site of the Snail repressor complex and binding of the repressor complex decreased in diabetic arteries. High glucose induced a biphasic contractile response in pressurized nondiabetic mouse hindlimb arteries incubated ex vivo. Hindlimb arteries incubated in high glucose also showed decreased phospho-protein kinase D1 and TMEM16A expression. In hindlimb arteries from nondiabetic mice, administration of a bolus dose of glucose activated protein kinase D1 signaling to induce Snail degradation. In both in vivo and ex vivo conditions, Snail expression exhibited an inverse relationship with the expression of protein kinase D1 and TMEM16A. In diabetic mouse arteries, phospho-protein kinase D1 increased while Akt2 and pGSK3ß levels declined. These results indicate that in nondiabetic mice, high glucose triggers a transient deactivation of the Snail repressor complex to increase arterial TMEM16A expression independently of insulin signaling. Conversely, insulin resistance activates GSK3ß signaling and enhances arterial TMEM16A channel expression. These data have uncovered the Snail-mediated regulation of arterial TMEM16A expression and its dysfunction during diabetes.NEW & NOTEWORTHY The calcium-activated chloride channel, TMEM16A, is upregulated in the diabetic vasculature to cause increased vasoconstriction. In this paper, we have uncovered that the TMEM16A gene expression is controlled by a Snail-mediated repressor complex that uncouples with both insulin-dependent and -independent pathways to allow for upregulated arterial protein expression thereby causing vasoconstriction. The paper highlights the effect of short- and long-term glucose-induced dysfunction of an ion channel expression as a causative factor in diabetic vascular disease.


Subject(s)
Diabetes Mellitus , Insulins , Animals , Mice , Anoctamin-1/metabolism , Arteries/metabolism , Diabetes Mellitus/metabolism , Muscle, Smooth, Vascular/metabolism , Receptor, Insulin/metabolism
9.
Proteins ; 92(8): 905-922, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38506327

ABSTRACT

Understanding kinase-inhibitor selectivity continues to be a major objective in kinase drug discovery. We probe the molecular basis of selectivity of an allosteric inhibitor (MSC1609119A-1) of the insulin-like growth factor-I receptor kinase (IGF1RK), which has been shown to be ineffective for the homologous insulin receptor kinase (IRK). Specifically, we investigated the structural and energetic basis of the allosteric binding of this inhibitor to each kinase by combining molecular modeling, molecular dynamics (MD) simulations, and thermodynamic calculations. We predict the inhibitor conformation in the binding pocket of IRK and highlight that the charged residues in the histidine-arginine-aspartic acid (HRD) and aspartic acid-phenylalanine-glycine (DFG) motifs and the nonpolar residues in the binding pocket govern inhibitor interactions in the allosteric pocket of each kinase. We suggest that the conformational changes in the IGF1RK residues M1054 and M1079, movement of the ⍺C-helix, and the conformational stabilization of the DFG motif favor the selectivity of the inhibitor toward IGF1RK. Our thermodynamic calculations reveal that the observed selectivity can be rationalized through differences observed in the electrostatic interaction energy of the inhibitor in each inhibitor/kinase complex and the hydrogen bonding interactions of the inhibitor with the residue V1063 in IGF1RK that are not attained with the corresponding residue V1060 in IRK. Overall, our study provides a rationale for the molecular basis of recognition of this allosteric inhibitor by IGF1RK and IRK, which is potentially useful in developing novel inhibitors with improved affinity and selectivity.


Subject(s)
Molecular Dynamics Simulation , Protein Binding , Protein Kinase Inhibitors , Receptor, IGF Type 1 , Thermodynamics , Humans , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/metabolism , Allosteric Regulation , Receptor, IGF Type 1/chemistry , Receptor, IGF Type 1/antagonists & inhibitors , Receptor, IGF Type 1/metabolism , Allosteric Site , Binding Sites , Receptor, Insulin/chemistry , Receptor, Insulin/metabolism , Receptor, Insulin/antagonists & inhibitors , Hydrogen Bonding
10.
Biochem Biophys Res Commun ; 729: 150347, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38976945

ABSTRACT

The mutations in Caenorhabditis elegans (C. elegans) that extend lifespan slow down aging by interfering with several signaling pathways, including the insulin/IGF-1 signaling (IIS) pathway, AMP-activated protein kinase (AMPK), and mechanistic target of rapamycin (mTOR). The tumor suppressor pRb (retinoblastoma protein) is believed to be involved in almost all human cancers. Lin-35, the C. elegans orthologue of the tumor suppressor pRb, was included in the study to explore the effects of insulin and IGF-1 because it has been linked to cancer-related pRb function in mammals and exhibits a tumor suppressor effect by inhibiting mTOR or IIS signaling. According to our results, IGF-1 or insulin increased the lifespan of lin-35 worms compared to N2 worms by increasing fertilization efficiency, also causing a significant increase in body size. It was concluded that the expression of daf-2 and rsks-1 decreased after insulin or IGF-1 administration, thus extending the lifespan of C. elegans lin-35 worms through both IIS and mTOR-dependent mechanisms. This suggests that it was mediated by the combined effect of the TOR and IIS pathways. These results, especially obtained in cancer-associated mutant lin-35 worms, will be useful in elucidating the C. elegans cancer model in the future.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Insulin-Like Growth Factor I , Insulin , Longevity , Signal Transduction , TOR Serine-Threonine Kinases , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Insulin/metabolism , Insulin-Like Growth Factor I/metabolism , Insulin-Like Growth Factor I/genetics , Longevity/drug effects , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/genetics , Receptor, Insulin/metabolism , Receptor, Insulin/genetics , Ribosomal Protein S6 Kinases, 70-kDa , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism
11.
J Transl Med ; 22(1): 78, 2024 01 19.
Article in English | MEDLINE | ID: mdl-38243324

ABSTRACT

BACKGROUND: Inflammatory Bowel Diseases (IBD), an autoimmune disease characterised by abnormal intestinal immunity, are related to vital morbidity around the world. However, therapeutic agents for IBD have not achieved desired benefit. Exploring new therapeutic targets for IBD, especially based on its abnormally intestinal immunity, could alleviate the flare-up and worsening of IBD. Tissue resident memory T cells (TRM) are core of multiple autoimmune diseases, including IBD. However, the mechanism of TRM differentiation remains to be investigated. METHODS: The alterations in mRNA and lncRNA profile of intestinal intraepithelial lymphocytes (IELs), the largest component of intestinal TRM, were analyzed in DSS-induced chronic colitis. Based on it, we examined the function of rectal insulin instillation in a dextran sodium sulfate (DSS) induced chronic colitis. Furthermore, we investigated the downstream-target of the insulin pathway-EZH2 and the crucial role of EZH2 in intestinal tissue resident memory T cell differentiation by utilizing EZH2fl/flCD4cre mice. RESULTS: Insulin receptor (INSR) expression was found to be significantly reduced. Activation of mucosal insulin pathway by rectal insulin instillation exacerbated colitis by disrupting IELs subgroups and up-regulating TNF-ɑ and IL-17 expression. Rectal insulin instillation promoted EZH2 expression and EZH2 inhibition alleviated chronic colitis. EZH2fl/flCD4cre mice restored the normal IEL subgroups and suppressed TNF-ɑ and IL-17 expression, exhibiting alleviated colitis. IELs from EZH2fl/flCD4cre mice exhibit significant changes in TRM related phenotype. CD4+TRM was significantly increased in chronic colitis and decreased in EZH2fl/flCD4cre mice. CONCLUSION: Insulin receptor of intestinal mucosal T-cells could promote intestinal TRM differentiation via EZH2. Our discoveries suggest that therapies targeting colonic INSR and EZH2 could be potential treatment for IBD based on its regulatory effects on TRM. Insulin receptor inhibitors rather than insulin should be applied during colitis-active phase. In addition, EZH2 shows to be a downstream signal of the insulin pathway and EZH2 inhibitor could alleviating intestinal inflammation. However, the critical role of EZH2 in TRM differentiation restricts the anti-tumor effects of EZH2 inhibitor in vivo.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Insulins , Mice , Animals , Interleukin-17/metabolism , Tumor Necrosis Factor-alpha/metabolism , Receptor, Insulin/adverse effects , Receptor, Insulin/metabolism , Memory T Cells , Colitis/chemically induced , Cell Differentiation , Intestinal Mucosa/pathology , Inflammation/pathology , Insulins/metabolism , Dextran Sulfate/adverse effects , Disease Models, Animal
12.
Clin Endocrinol (Oxf) ; 100(3): 284-293, 2024 03.
Article in English | MEDLINE | ID: mdl-38172081

ABSTRACT

OBJECTIVE: Insulin receptor substract 1 (IRS1) protein is an important signal transduction adapter for extracellular signal transduction from insulin-like growth factor-1 receptor and its family members to IRS1 downstream proteins. IRS1 has been reported to be involved in tumourigenesis and metastasis in some of solid tumors. Investigating the role of IRS1 in thyroid cancer can help to screen high risk patients at the initial diagnosis. DESIGN, PATIENTS AND MEASUREMENTS: Immunohistochemical assay was used to detect the expression levels of IRS1 in 131 metastatic thyroid cancer tissues. Wound healing, cell invasion and colony formation assays were used to study the functions of IRS1 in vitro. RNA sequencing (RNA-seq) and Western blot analysis analyses were performed to examine the underlying regulation mechanisms of IRS1 in thyroid cancer cells. RESULTS: IRS1 was highly expressed in thyroid cancers and its expression was positively associated with distant metastasis and advanced clinical stages. In vitro studies demonstrated that IRS1 is an important mediator of migration, invasion and colony formation of thyroid cancer cells. RNA-seq showed that IRS1 promoted the metastasis of thyroid cancer by regulating epithelial-mesenchymal transition and phosphoinositide 3-kinase (PI3K)/AKT pathway. CONCLUSIONS: IRS1 overexpression contributes to the aggressiveness of thyroid cancer and is expected to be a stratified marker and a potential therapeutic target for thyroid cancer.


Subject(s)
Phosphatidylinositol 3-Kinase , Thyroid Neoplasms , Humans , Phosphatidylinositol 3-Kinase/genetics , Phosphatidylinositol 3-Kinase/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Receptor, Insulin/genetics , Receptor, Insulin/metabolism , Cell Proliferation/genetics , Cell Line, Tumor , Cell Movement/genetics , Thyroid Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Insulin Receptor Substrate Proteins/genetics , Insulin Receptor Substrate Proteins/metabolism
13.
Cardiovasc Diabetol ; 23(1): 258, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39026321

ABSTRACT

BACKGROUND: Insulin signaling regulates cardiac substrate utilization and is implicated in physiological adaptations of the heart. Alterations in the signaling response within the heart are believed to contribute to pathological conditions such as type-2 diabetes and heart failure. While extensively investigated in several metabolic organs using phosphoproteomic strategies, the signaling response elicited in cardiac tissue in general, and specifically in the specialized cardiomyocytes, has not yet been investigated to the same extent. METHODS: Insulin or vehicle was administered to male C57BL6/JRj mice via intravenous injection into the vena cava. Ventricular tissue was extracted and subjected to quantitative phosphoproteomics analysis to evaluate the insulin signaling response. To delineate the cardiomyocyte-specific response and investigate the role of Tbc1d4 in insulin signal transduction, cardiomyocytes from the hearts of cardiac and skeletal muscle-specific Tbc1d4 knockout mice, as well as from wildtype littermates, were studied. The phosphoproteomic studies involved isobaric peptide labeling with Tandem Mass Tags (TMT), enrichment for phosphorylated peptides, fractionation via micro-flow reversed-phase liquid chromatography, and high-resolution mass spectrometry measurements. RESULTS: We quantified 10,399 phosphorylated peptides from ventricular tissue and 12,739 from isolated cardiomyocytes, localizing to 3,232 and 3,128 unique proteins, respectively. In cardiac tissue, we identified 84 insulin-regulated phosphorylation events, including sites on the Insulin Receptor (InsrY1351, Y1175, Y1179, Y1180) itself as well as the Insulin receptor substrate protein 1 (Irs1S522, S526). Predicted kinases with increased activity in response to insulin stimulation included Rps6kb1, Akt1 and Mtor. Tbc1d4 emerged as a major phosphorylation target in cardiomyocytes. Despite limited impact on the global phosphorylation landscape, Tbc1d4 deficiency in cardiomyocytes attenuated insulin-induced Glut4 translocation and induced protein remodeling. We observed 15 proteins significantly regulated upon knockout of Tbc1d4. While Glut4 exhibited decreased protein abundance consequent to Tbc1d4-deficiency, Txnip levels were notably increased. Stimulation of wildtype cardiomyocytes with insulin led to the regulation of 262 significant phosphorylation events, predicted to be regulated by kinases such as Akt1, Mtor, Akt2, and Insr. In cardiomyocytes, the canonical insulin signaling response is elicited in addition to regulation on specialized cardiomyocyte proteins, such as Kcnj11Y12 and DspS2597. Details of all phosphorylation sites are provided. CONCLUSION: We present a first global outline of the insulin-induced phosphorylation signaling response in heart tissue and in isolated adult cardiomyocytes, detailing the specific residues with changed phosphorylation abundances. Our study marks an important step towards understanding the role of insulin signaling in cardiac diseases linked to insulin resistance.


Subject(s)
Insulin , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Cardiac , Phosphoproteins , Proteomics , Signal Transduction , Animals , Myocytes, Cardiac/metabolism , Male , Insulin/metabolism , Phosphorylation , Phosphoproteins/metabolism , GTPase-Activating Proteins/metabolism , GTPase-Activating Proteins/genetics , Receptor, Insulin/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Mice
14.
Neurobiol Learn Mem ; 212: 107938, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38772444

ABSTRACT

Insulin is transported across the blood-brain barrier (BBB) endothelium to regulate aspects of metabolism and cognition. Brain insulin resistance often results from high-fat diet (HFD) consumption and is thought to contribute to spatial cognition deficits. To target BBB insulin function, we used Cre-LoxP genetic excision of the insulin receptor (InsR) from endothelial cells in adult male mice. We hypothesized that this excision would impair spatial cognition, and that high-fat diet consumption would exacerbate these effects. Excision of the endothelial InsR did not impair performance in two spatial cognition tasks, the Y-Maze and Morris Water Maze, in tests held both before and after 14 weeks of access to high-fat (or chow control) diet. The HFD increased body weight gain and induced glucose intolerance but did not impair spatial cognition. Endothelial InsR excision tended to increase body weight and reduce sensitivity to peripheral insulin, but these metabolic effects were not associated with impairments to spatial cognition and did not interact with HFD exposure. Instead, all mice showed intact spatial cognitive performance regardless of whether they had been fed chow or a HFD, and whether the InsR had been excised or not. Overall, the results indicate that loss of the endothelial InsR does not impact spatial cognition, which is in line with pharmacological evidence that other mechanisms at the BBB facilitate insulin transport and allow it to exert its pro-cognitive effects.


Subject(s)
Blood-Brain Barrier , Cognition , Diet, High-Fat , Receptor, Insulin , Animals , Receptor, Insulin/metabolism , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Male , Mice , Cognition/physiology , Cognition/drug effects , Insulin Resistance/physiology , Endothelial Cells/metabolism , Maze Learning/physiology , Mice, Inbred C57BL
15.
Arch Biochem Biophys ; 758: 110062, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38880320

ABSTRACT

Carvacrol (CV) is an organic compound found in the essential oils of many aromatic herbs. It is nearly unfeasible to analyze all the current human proteins for a query ligand using in vitro and in vivo methods. This study aimed to clarify whether CV possesses an anti-diabetic feature via Docking-based inverse docking and molecular dynamic (MD) simulation and in vitro characterization against a set of novel human protein targets. Herein, the best poses of CV docking simulations according to binding energy ranged from -7.9 to -3.5 (kcal/mol). After pathway analysis of the protein list through GeneMANIA and WebGestalt, eight interacting proteins (DPP4, FBP1, GCK, HSD11ß1, INSR, PYGL, PPARA, and PPARG) with CV were determined, and these proteins exhibited stable structures during the MD process with CV. In vitro application, statistically significant results were achieved only in combined doses with CV or metformin. Considering all these findings, PPARG and INSR, among these target proteins of CV, are FDA-approved targets for treating diabetes. Therefore, CV may be on its way to becoming a promising therapeutic compound for treating Diabetes Mellitus (DM). Our outcomes expose formerly unexplored potential target human proteins, whose association with diabetic disorders might guide new potential treatments for DM.


Subject(s)
Cymenes , Hypoglycemic Agents , Metformin , Molecular Docking Simulation , Molecular Dynamics Simulation , Monoterpenes , Humans , Cymenes/pharmacology , Cymenes/chemistry , Metformin/pharmacology , Metformin/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/therapeutic use , Monoterpenes/pharmacology , Monoterpenes/chemistry , Hyperglycemia/drug therapy , Hyperglycemia/metabolism , Receptor, Insulin/metabolism , PPAR gamma/metabolism , PPAR gamma/chemistry , Protein Binding , Computer Simulation , Antigens, CD
16.
Mol Pharm ; 21(5): 2176-2186, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38625027

ABSTRACT

The blood-brain barrier (BBB) is instrumental in clearing toxic metabolites from the brain, such as amyloid-ß (Aß) peptides, and in delivering essential nutrients to the brain, like insulin. In Alzheimer's disease (AD) brain, increased Aß levels are paralleled by decreased insulin levels, which are accompanied by insulin signaling deficits at the BBB. Thus, we investigated the impact of insulin-like growth factor and insulin receptor (IGF1R and IR) signaling on Aß and insulin trafficking at the BBB. Following intravenous infusion of an IGF1R/IR kinase inhibitor (AG1024) in wild-type mice, the BBB trafficking of 125I radiolabeled Aß peptides and insulin was assessed by dynamic SPECT/CT imaging. The brain efflux of [125I]iodo-Aß42 decreased upon AG1024 treatment. Additionally, the brain influx of [125I]iodoinsulin, [125I]iodo-Aß42, [125I]iodo-Aß40, and [125I]iodo-BSA (BBB integrity marker) was decreased, increased, unchanged, and unchanged, respectively, upon AG1024 treatment. Subsequent mechanistic studies were performed using an in vitro BBB cell model. The cell uptake of [125I]iodoinsulin, [125I]iodo-Aß42, and [125I]iodo-Aß40 was decreased, increased, and unchanged, respectively, upon AG1024 treatment. Further, AG1024 reduced the phosphorylation of insulin signaling kinases (Akt and Erk) and the membrane expression of Aß and insulin trafficking receptors (LRP-1 and IR-ß). These findings reveal that insulin signaling differentially regulates the BBB trafficking of Aß peptides and insulin. Moreover, deficits in IGF1R and IR signaling, as observed in the brains of type II diabetes and AD patients, are expected to increase Aß accumulation while decreasing insulin delivery to the brain, which has been linked to the progression of cognitive decline in AD.


Subject(s)
Amyloid beta-Peptides , Blood-Brain Barrier , Insulin , Signal Transduction , Animals , Male , Mice , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Brain/metabolism , Insulin/metabolism , Iodine Radioisotopes , Mice, Inbred C57BL , Peptide Fragments/metabolism , Receptor, IGF Type 1/metabolism , Receptor, Insulin/metabolism , Single Photon Emission Computed Tomography Computed Tomography/methods , Tyrphostins/pharmacology
17.
J Chem Inf Model ; 64(14): 5657-5670, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38963805

ABSTRACT

Insulin Wakayama is a clinical insulin variant where a conserved valine at the third residue on insulin's A chain (ValA3) is replaced with a leucine (LeuA3), weakening insulin receptor (IR) binding by 140-500-fold. This severe impact on binding from a subtle modification has posed an intriguing problem for decades. Although experimental investigations of natural and unnatural A3 mutations have highlighted the sensitivity of insulin-IR binding at this site, atomistic explanations of these binding trends have remained elusive. We investigate this problem computationally using λ-dynamics free energy calculations to model structural changes in response to perturbations of the ValA3 side chain and to calculate associated relative changes in binding free energy (ΔΔGbind). The Wakayama LeuA3 mutation and seven other A3 substitutions were studied in this work. The calculated ΔΔGbind results showed high agreement compared to experimental binding potencies with a Pearson correlation of 0.88 and a mean unsigned error of 0.68 kcal/mol. Extensive structural analyses of λ-dynamics trajectories revealed that critical interactions were disrupted between insulin and the insulin receptor as a result of the A3 mutations. This investigation also quantifies the effect that adding an A3 Cδ atom or losing an A3 Cγ atom has on insulin's binding affinity to the IR. Thus, λ-dynamics was able to successfully model the effects of mutations to insulin's A3 side chain on its protein-protein interactions with the IR and shed new light on a decades-old mystery: the exquisite sensitivity of hormone-receptor binding to a subtle modification of an invariant insulin residue.


Subject(s)
Insulin , Molecular Dynamics Simulation , Protein Binding , Receptor, Insulin , Thermodynamics , Receptor, Insulin/metabolism , Receptor, Insulin/chemistry , Receptor, Insulin/genetics , Insulin/metabolism , Insulin/chemistry , Mutation , Humans , Protein Conformation
18.
Eur J Nutr ; 63(4): 1163-1175, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38358514

ABSTRACT

PURPOSE: The present study aimed at evaluating possible synergistic effects between two risk factors for cognitive decline and neurodegenerative disorders, i.e. iron overload and exposure to a hypercaloric/hyperlipidic diet, on cognition, insulin resistance, and hippocampal GLUT1, GLUT3, Insr mRNA expression, and AKT phosporylation. METHODS: Male Wistar rats were treated with iron (30 mg/kg carbonyl iron) or vehicle (5% sorbitol in water) from 12 to 14th post-natal days. Iron-treated rats received a standard laboratory diet or a high fat diet from weaning to adulthood (9 months of age). Recognition and emotional memory, peripheral blood glucose and insulin levels were evaluated. Glucose transporters (GLUT 1 and GLUT3) and insulin signaling were analyzed in the hippocampus of rats. RESULTS: Both iron overload and exposure to a high fat diet induced memory deficits. Remarkably, the association of iron with the high fat diet induced more severe cognitive deficits. Iron overload in the neonatal period induced higher insulin levels associated with significantly higher HOMA-IR, an index of insulin resistance. Long-term exposure to a high fat diet resulted in higher fasting glucose levels. Iron treatment induced changes in Insr and GLUT1 expression in the hippocampus. At the level of intracellular signaling, both iron treatment and the high fat diet decreased AKT phosphorylation. CONCLUSION: The combination of iron overload with exposure to a high fat diet only led to synergistic deleterious effect on emotional memory, while the effects induced by iron and by the high fat diet on AKT phosphorylation were comparable. These findings indicate that there is, at least to some extent, an additive effect of iron combined with the diet. Further studies investigating the mechanisms associated to deleterious effects on cognition and susceptibility for the development of age-associated neurodegenerative disorders are warranted.


Subject(s)
Animals, Newborn , Diet, High-Fat , Glucose Transporter Type 1 , Hippocampus , Insulin Resistance , Iron Overload , Memory Disorders , Rats, Wistar , Animals , Male , Diet, High-Fat/adverse effects , Iron Overload/complications , Iron Overload/metabolism , Memory Disorders/etiology , Hippocampus/metabolism , Hippocampus/drug effects , Rats , Glucose Transporter Type 1/metabolism , Glucose Transporter Type 1/genetics , Glucose Transporter Type 3/metabolism , Glucose Transporter Type 3/genetics , Receptor, Insulin/metabolism , Receptor, Insulin/genetics , Proto-Oncogene Proteins c-akt/metabolism , Blood Glucose/metabolism , Insulin/blood , Signal Transduction
19.
Zoolog Sci ; 41(2): 230-243, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38587918

ABSTRACT

The insulin/insulin-like growth factor-like signaling (IIS) pathway is highly conserved across metazoans and regulates numerous physiological functions, including development, metabolism, fecundity, and lifespan. The insulin receptor (InR), a crucial membrane receptor in the IIS pathway, is known to be ubiquitously expressed in various tissues, albeit at generally low levels, and its subcellular localization remains incompletely characterized. In this study, we employed CRISPR-mediated mutagenesis in the fruit fly Drosophila to create knock-in alleles of InR tagged with fluorescent proteins (InR::mCherry or InR::EYFP). By inserting the coding sequence of the fluorescent proteins mCherry or EYFP near the end of the coding sequence of the endogenous InR gene, we could trace the natural InR protein through their fluorescence. As an example, we investigated epithelial cells of the male accessory gland (AG), an internal reproductive organ, and identified two distinct patterns of InR::mCherry localization. In young AG, InR::mCherry accumulated on the basal plasma membrane between cells, whereas in mature AG, it exhibited intracellular localization as multiple puncta, indicating endocytic recycling of InR during cell growth. In the AG senescence accelerated by the mutation of Diuretic hormone 31 (Dh31), the presence of InR::mCherry puncta was more pronounced compared to the wild type. These findings raise expectations for the utility of the newly created InR::mCherry/EYFP alleles for studying the precise expression levels and subcellular localization of InR. Furthermore, this fluorescently tagged allele approach can be extended to investigate other membrane receptors with low abundance, facilitating the direct examination of their true expression and localization.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Male , Animals , Drosophila melanogaster/physiology , Receptor, Insulin/genetics , Receptor, Insulin/metabolism , Alleles , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila
20.
Age Ageing ; 53(5)2024 05 01.
Article in English | MEDLINE | ID: mdl-38752921

ABSTRACT

OBJECTIVE: To investigate longitudinal associations between variations in the co-expression-based brain insulin receptor polygenic risk score and frailty, as well as change in frailty across follow-up. METHODS: This longitudinal study included 1605 participants from the Helsinki Birth Cohort Study. Biologically informed expression-based polygenic risk scores for the insulin receptor gene network, which measure genetic variation in the function of the insulin receptor, were calculated for the hippocampal (hePRS-IR) and the mesocorticolimbic (mePRS-IR) regions. Frailty was assessed in at baseline in 2001-2004, 2011-2013 and 2017-2018 by applying a deficit accumulation-based frailty index. Analyses were carried out by applying linear mixed models and logistical regression models adjusted for adult socioeconomic status, birthweight, smoking and their interactions with age. RESULTS: The FI levels of women were 1.19%-points (95% CI 0.12-2.26, P = 0.029) higher than in men. Both categorical and continuous hePRS-IR in women were associated with higher FI levels than in men at baseline (P < 0.05). In women with high hePRS-IR, the rate of change was steeper with increasing age compared to those with low or moderate hePRS-IR (P < 0.05). No associations were detected between mePRS-IR and frailty at baseline, nor between mePRS-IR and the increase in mean FI levels per year in either sex (P > 0.43). CONCLUSIONS: Higher variation in the function of the insulin receptor gene network in the hippocampus is associated with increasing frailty in women. This could potentially offer novel targets for future drug development aimed at frailty and ageing.


Subject(s)
Frailty , Gene Regulatory Networks , Receptor, Insulin , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Age Factors , Aging/genetics , Antigens, CD , Brain/metabolism , Finland , Frailty/genetics , Frailty/diagnosis , Geriatric Assessment , Hippocampus/metabolism , Longitudinal Studies , Receptor, Insulin/genetics , Receptor, Insulin/metabolism , Risk Factors , Sex Factors
SELECTION OF CITATIONS
SEARCH DETAIL