Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.305
Filter
Add more filters

Publication year range
1.
Cell ; 180(6): 1081-1097.e24, 2020 03 19.
Article in English | MEDLINE | ID: mdl-32142650

ABSTRACT

Understanding molecular mechanisms that dictate B cell diversity is important for targeting B cells as anti-cancer treatment. Through the single-cell dissection of B cell heterogeneity in longitudinal samples of patients with breast cancer before and after neoadjuvant chemotherapy, we revealed that an ICOSL+ B cell subset emerges after chemotherapy. Using three immunocompetent mouse models, we recapitulated the subset switch of human tumor-infiltrating B cells during chemotherapy. By employing B-cell-specific deletion mice, we showed that ICOSL in B cells boosts anti-tumor immunity by enhancing the effector to regulatory T cell ratio. The signature of ICOSL+ B cells is imprinted by complement-CR2 signaling, which is triggered by immunogenic cell death. Moreover, we identified that CD55, a complement inhibitory protein, determines the opposite roles of B cells in chemotherapy. Collectively, we demonstrated a critical role of the B cell subset switch in chemotherapy response, which has implications in designing novel anti-cancer therapies. VIDEO ABSTRACT.


Subject(s)
B-Lymphocytes/immunology , Breast Neoplasms/immunology , Inducible T-Cell Co-Stimulator Ligand/metabolism , Animals , Antineoplastic Agents/metabolism , B-Lymphocytes/metabolism , CD55 Antigens/immunology , CD55 Antigens/metabolism , Cell Line, Tumor , Complement System Proteins/metabolism , Disease Models, Animal , Female , Humans , Inducible T-Cell Co-Stimulator Ligand/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Mice , Mice, Inbred C57BL , Receptors, Complement 3d/immunology , Receptors, Complement 3d/metabolism , Signal Transduction/immunology , T-Lymphocytes, Regulatory/immunology
2.
Cell ; 162(5): 1090-100, 2015 Aug 27.
Article in English | MEDLINE | ID: mdl-26279189

ABSTRACT

Epstein-Barr virus (EBV) represents a major global health problem. Though it is associated with infectious mononucleosis and ∼200,000 cancers annually worldwide, a vaccine is not available. The major target of immunity is EBV glycoprotein 350/220 (gp350) that mediates attachment to B cells through complement receptor 2 (CR2/CD21). Here, we created self-assembling nanoparticles that displayed different domains of gp350 in a symmetric array. By focusing presentation of the CR2-binding domain on nanoparticles, potent neutralizing antibodies were elicited in mice and non-human primates. The structurally designed nanoparticle vaccine increased neutralization 10- to 100-fold compared to soluble gp350 by targeting a functionally conserved site of vulnerability, improving vaccine-induced protection in a mouse model. This rational approach to EBV vaccine design elicited potent neutralizing antibody responses by arrayed presentation of a conserved viral entry domain, a strategy that can be applied to other viruses.


Subject(s)
Herpesvirus Vaccines/chemistry , Herpesvirus Vaccines/immunology , Animals , Antibodies, Neutralizing/immunology , Crystallography, X-Ray , Drug Design , Female , Herpesvirus 4, Human , Herpesvirus Vaccines/genetics , Herpesvirus Vaccines/isolation & purification , Macaca fascicularis , Mice , Mice, Inbred BALB C , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Receptors, Complement 3d/chemistry , Receptors, Complement 3d/immunology , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification
3.
Nature ; 615(7951): 305-314, 2023 03.
Article in English | MEDLINE | ID: mdl-36813963

ABSTRACT

Down's syndrome (DS) presents with a constellation of cardiac, neurocognitive and growth impairments. Individuals with DS are also prone to severe infections and autoimmunity including thyroiditis, type 1 diabetes, coeliac disease and alopecia areata1,2. Here, to investigate the mechanisms underlying autoimmune susceptibility, we mapped the soluble and cellular immune landscape of individuals with DS. We found a persistent elevation of up to 22 cytokines at steady state (at levels often exceeding those in patients with acute infection) and detected basal cellular activation: chronic IL-6 signalling in CD4 T cells and a high proportion of plasmablasts and CD11c+TbethighCD21low B cells (Tbet is also known as TBX21). This subset is known to be autoimmune-prone and displayed even greater autoreactive features in DS including receptors with fewer non-reference nucleotides and higher IGHV4-34 utilization. In vitro, incubation of naive B cells in the plasma of individuals with DS or with IL-6-activated T cells resulted in increased plasmablast differentiation compared with control plasma or unstimulated T cells, respectively. Finally, we detected 365 auto-antibodies in the plasma of individuals with DS, which targeted the gastrointestinal tract, the pancreas, the thyroid, the central nervous system, and the immune system itself. Together, these data point to an autoimmunity-prone state in DS, in which a steady-state cytokinopathy, hyperactivated CD4 T cells and ongoing B cell activation all contribute to a breach in immune tolerance. Our findings also open therapeutic paths, as we demonstrate that T cell activation is resolved not only with broad immunosuppressants such as Jak inhibitors, but also with the more tailored approach of IL-6 inhibition.


Subject(s)
Autoimmunity , CD4-Positive T-Lymphocytes , Cytokines , Down Syndrome , Humans , Autoantibodies/immunology , B-Lymphocytes/cytology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , Cytokines/analysis , Cytokines/immunology , Disease Susceptibility , Down Syndrome/immunology , Down Syndrome/physiopathology , Interleukin-6/immunology , Receptors, Complement 3d
4.
Nature ; 583(7818): 830-833, 2020 07.
Article in English | MEDLINE | ID: mdl-32380511

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of coronavirus disease 2019 (COVID-19), which has become a public health emergency of international concern1. Angiotensin-converting enzyme 2 (ACE2) is the cell-entry receptor for severe acute respiratory syndrome coronavirus (SARS-CoV)2. Here we infected transgenic mice that express human ACE2 (hereafter, hACE2 mice) with SARS-CoV-2 and studied the pathogenicity of the virus. We observed weight loss as well as virus replication in the lungs of hACE2 mice infected with SARS-CoV-2. The typical histopathology was interstitial pneumonia with infiltration of considerable numbers of macrophages and lymphocytes into the alveolar interstitium, and the accumulation of macrophages in alveolar cavities. We observed viral antigens in bronchial epithelial cells, macrophages and alveolar epithelia. These phenomena were not found in wild-type mice infected with SARS-CoV-2. Notably, we have confirmed the pathogenicity of SARS-CoV-2 in hACE2 mice. This mouse model of SARS-CoV-2 infection will be valuable for evaluating antiviral therapeutic agents and vaccines, as well as understanding the pathogenesis of COVID-19.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/pathology , Coronavirus Infections/virology , Lung/pathology , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Transgenes , Angiotensin-Converting Enzyme 2 , Animals , Antigens, Viral/immunology , Antigens, Viral/metabolism , Betacoronavirus/immunology , Betacoronavirus/metabolism , Bronchi/pathology , Bronchi/virology , COVID-19 , Coronavirus Infections/immunology , Disease Models, Animal , Epithelial Cells/pathology , Epithelial Cells/virology , Female , Humans , Immunoglobulin G/immunology , Lung/immunology , Lung/virology , Lymphocytes/immunology , Macrophages, Alveolar/immunology , Macrophages, Alveolar/virology , Male , Mice , Mice, Transgenic , Pandemics , Pneumonia, Viral/immunology , Receptors, Complement 3d/genetics , Receptors, Complement 3d/metabolism , SARS-CoV-2 , Virus Replication , Weight Loss
5.
J Immunol ; 210(9): 1408-1418, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36971659

ABSTRACT

Complement receptor type 2 (CR2) is an important membrane molecule expressed on B cells and follicular dendritic cells. Human CR2 has been shown to play a critical role in bridging the innate complement-mediated immune response with adaptive immunity by binding complement component 3d (C3d). However, the chicken CR2 (chCR2) gene has not been identified or characterized. In this study, unannotated genes that contain short consensus repeat (SCR) domains were analyzed based on RNA sequencing data for chicken bursa lymphocytes, and a gene with >80% homology to CR2 from other bird species was obtained. The gene consisted of 370 aa and was much smaller than the human CR2 gene because 10-11 SCRs were missing. The gene was then demonstrated as a chCR2 that exhibited high binding activity to chicken C3d. Further studies revealed that chCR2 interacts with chicken C3d through a binding site in its SCR1-4 region. An anti-chCR2 mAb that recognizes the epitope 258CKEISCVFPEVQ269 was prepared. Based on the anti-chCR2 mAb, the flow cytometry and confocal laser scanning microscopy experiments confirmed that chCR2 was expressed on the surface of bursal B lymphocytes and DT40 cells. Immunohistochemistry and quantitative PCR analyses further indicated that chCR2 is predominantly expressed in the spleen, bursa, and thymus, as well as in PBLs. Additionally, the expression of chCR2 varied according to the infectious bursal disease virus infection status. Collectively, this study identified and characterized chCR2 as a distinct immunological marker in chicken B cells.


Subject(s)
Chickens , Complement C3d , Animals , Humans , Complement C3d/metabolism , Receptors, Complement 3d/metabolism , Binding Sites , Immunologic Factors , Receptors, Complement
6.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 155-160, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38814221

ABSTRACT

In order to explore a new mode for the diagnosis of angioimmunoblastic T-cell lymphoma (AITL), 31 cases of AITL and 28 cases of peripheral T-cell lymphoma, not otherwise specified (PTCL-NOS) were used as the study subjects. Identifying T follicular helper (TFH) cells with CD4, CD10, Bcl-6, and PD-1, identifying proliferative B cells with CD20 and EZH2, identifying proliferative follicular dendritic cells (FDCs) with CD21 and CD23, and analyzing the value of TFH/B/FDC proliferation and immunolocalization in the diagnosis of AITL. (1) Outside the inherent lymphoid follicles, simultaneous proliferation of TFH/B/FDC (a new diagnostic mode) were observed in AITL [83.87%; 26/31], with their immunolocalizations in the same site [83.87%; 26/31], while this phenomenon was not observed in 28 cases of PTCL-NOS (P<0.05). (2) The sensitivity and specificity of using this new mode to diagnose AITL were both high (83.87%, 100%), which was superior to CD2 (100%, 0%), CD3 (100%, 0%), CD4 (100%, 32.14%), CD5 (100%, 25%), CD10 (61.9%, 100%), Bcl-6 (42.86%, 100%), PD-1 (83.87%, 96.43%), and its Youden Index (0.84) was the highest. The areas under the curve (AUC) of CD10, Bcl-6, PD-1, and new mode to diagnosis AITL were 0.81, 0.71, 0.90, and 0.92, respectively, while the new mode had the highest AUC. The simultaneous proliferation of TFH/B/FDC cells outside the inherent lymphoid follicles can be used to assist in the diagnosis of AITL, and the simultaneous spatiotemporal proliferation of TFH/B/FDC cells is a specific immunomorphology of AITL.


Subject(s)
Proto-Oncogene Proteins c-bcl-6 , Humans , Female , Male , Middle Aged , Aged , Proto-Oncogene Proteins c-bcl-6/metabolism , Neprilysin/metabolism , Immunoblastic Lymphadenopathy/diagnosis , Immunoblastic Lymphadenopathy/pathology , Dendritic Cells, Follicular/pathology , Dendritic Cells, Follicular/metabolism , Programmed Cell Death 1 Receptor/metabolism , Adult , Lymphoma, T-Cell/diagnosis , Lymphoma, T-Cell/pathology , Lymphoma, T-Cell/metabolism , Enhancer of Zeste Homolog 2 Protein/metabolism , Cell Proliferation , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , T Follicular Helper Cells/immunology , T Follicular Helper Cells/metabolism , Receptors, Complement 3d/metabolism , Receptors, Complement 3d/analysis , Antigens, CD20/metabolism , Antigens, CD20/analysis , Lymphoma, T-Cell, Peripheral/diagnosis , Lymphoma, T-Cell, Peripheral/pathology , CD4 Antigens/metabolism , Sensitivity and Specificity , Aged, 80 and over , Immunohistochemistry/methods , ROC Curve
7.
Cytometry A ; 103(4): 283-294, 2023 04.
Article in English | MEDLINE | ID: mdl-36281747

ABSTRACT

Autoreactive B cell subsets have been described in a variety of settings, using multiple classification schemes and cell surface markers also found on healthy cells. CD19+ CD21lo B cells have been identified as an autoreactive-prone subset of B cells, although the downregulation of CD21 has been observed on a variety of B cell subsets in health and disease. This variation has led to confusion regarding the meaning and applicability of the loss or reduction of CD21 in peripheral B cells. To better understand the relationships between commonly used B cell markers and their associated characteristics, we analyzed human B cells from healthy participants using multiparameter flow cytometry and the visualization algorithm, tSNE. This approach revealed significant phenotypic overlap amongst five previously described autoimmune-prone B cell subsets, including CD19+ CD10- CD27- CD21lo B cells. Interestingly, 12 different subpopulations of CD19+ CD21lo B cells were identified, some of which mapped to previously described autoreactive populations, while others were consistent with healthy B cells. This suggests that CD21 is downregulated in a variety of circumstances involving B cell activation, all of which are present in low numbers even in healthy individuals. These findings describe the utility of unbiased multiparameter analysis using a relatively limited panel of flow cytometry markers to analyze autoreactive-prone and normal activated B cells.


Subject(s)
B-Lymphocyte Subsets , B-Lymphocytes , Humans , Algorithms , Flow Cytometry , Healthy Volunteers , Receptors, Complement 3d
8.
Clin Exp Immunol ; 210(3): 217-229, 2022 12 31.
Article in English | MEDLINE | ID: mdl-36380692

ABSTRACT

Memory B cells (MBCs) are an essential part of our immunological memory. They respond fast upon re-encountering pathogens and can differentiate into plasma cells that secrete protective antibodies. The focus of this review is on MBCs that lack, or express low levels of, CD21, hereafter referred to as CD21-/low. These cells are expanded in peripheral blood with age and during chronic inflammatory conditions such as viral infections, malaria, common variable immunodeficiency, and autoimmune diseases. CD21-/low MBCs have gained significant attention; they produce disease-specific antibodies/autoantibodies and associate with key disease manifestations in some conditions. These cells can be divided into subsets based on classical B-cell and other markers, e.g. CD11c, FcRL4, and Tbet which, over the years, have become hallmarks to identify these cells. This has resulted in different names including age-associated, autoimmune-associated, atypical, tissue-like, tissue-resident, tissue-restricted, exhausted, or simply CD21-/low B cells. It is however unclear whether the expanded 'CD21-/low' cells in one condition are equivalent to those in another, whether they express an identical gene signature and whether they have a similar function. Here, we will discuss these issues with the goal to understand whether the CD21-/low B cells are comparable in different conditions.


Subject(s)
Autoimmune Diseases , Malaria , Humans , B-Lymphocytes , Autoantibodies , Receptors, Complement 3d
9.
Cytotherapy ; 24(8): 818-826, 2022 08.
Article in English | MEDLINE | ID: mdl-35525797

ABSTRACT

BACKGROUND AND AIMS: Epstein-Barr virus (EBV) is associated with solid and hematopoietic malignancies. After allogeneic stem cell transplantation, EBV infection or reactivation represents a potentially life-threatening condition with no specific treatment available in clinical routine. In vitro expansion of naturally occurring EBV-specific T cells for adoptive transfer is time-consuming and influenced by the donor's T-cell receptor (TCR) repertoire and requires a specific memory compartment that is non-existent in seronegative individuals. The authors present highly efficient identification of EBV-specific TCRs that can be expressed on human T cells and recognize EBV-infected cells. METHODS AND RESULTS: Mononuclear cells from six stem cell grafts were expanded in vitro with three HLA-B*35:01- or four HLA-A*02:01-presented peptides derived from six EBV proteins expressed during latent and lytic infection. Epitope-specific T cells expanded on average 42-fold and were single-cell-sorted and TCRαß-sequenced. To confirm specificity, 11 HLA-B*35:01- and six HLA-A*02:01-restricted dominant TCRs were expressed on reporter cell lines, and 16 of 17 TCRs recognized their presumed target peptides. To confirm recognition of virus-infected cells and assess their value for adoptive therapy, three selected HLA-B*35:01- and four HLA-A*02:01-restricted TCRs were expressed on human peripheral blood lymphocytes. All TCR-transduced cells recognized EBV-infected lymphoblastoid cell lines. CONCLUSIONS: The authors' approach provides sets of EBV epitope-specific TCRs in two different HLA contexts. Resulting cellular products do not require EBV-seropositive donors, can be adjusted to cell subsets of choice with exactly defined proportions of target-specific T cells, can be tracked in vivo and will help to overcome unmet clinical needs in the treatment and prophylaxis of EBV reactivation and associated malignancies.


Subject(s)
Epstein-Barr Virus Infections , Herpesvirus 4, Human , Epitopes , Epstein-Barr Virus Infections/therapy , HLA-A Antigens , Humans , Receptors, Antigen, T-Cell/genetics , Receptors, Complement 3d , T-Lymphocytes
10.
Immunity ; 38(6): 1164-75, 2013 Jun 27.
Article in English | MEDLINE | ID: mdl-23770227

ABSTRACT

Stromal-derived follicular dendritic cells (FDCs) are a major reservoir for antigen that are essential for formation of germinal centers, the site where memory and effector B cells differentiate. A long-standing question is how FDCs retain antigen in its native form for extended periods and how they display it to specific B cells. Here we found that FDCs acquired complement-coated immune complexes (ICs) from noncognate B cells via complement receptors 1 and 2 (CD35 and CD21, respectively) and rapidly internalized them by an actin-dependent pathway. ICs were retained intact within a nondegradative cycling compartment and were displayed periodically on the cell surface where they were accessible to antigen-specific B cells. This would explain how antigens are protected from damage and retained over long periods of time, while remaining accessible for B cells.


Subject(s)
Antigen-Antibody Complex/metabolism , Antigens/metabolism , B-Lymphocytes/immunology , Dendritic Cells, Follicular/immunology , Actins/metabolism , Animals , Antigen Presentation , Antigen-Antibody Complex/immunology , Antigens/immunology , Cells, Cultured , Endocytosis/immunology , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Protein Binding , Receptors, Complement 3b/metabolism , Receptors, Complement 3d/metabolism
11.
J Immunol ; 205(8): 2016-2025, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32907998

ABSTRACT

An expansion of CD21low B cells has been described in a variety of diseases associated with persistent immune stimulation as in chronic infection, immunodeficiency, or autoimmunity. Different developmental stages of CD21low B cells have been highlighted in specific diseases; however, a systematic comparison of distribution, phenotype, and signaling capacity of these populations has not yet been performed to delineate the pivotal character of this unusual B cell population. Screening of more than 200 patients with autoimmune disease demonstrated that the prevalence of patients with expanded CD21low B cells varies between diseases. The expansion was frequent in patients with systemic lupus erythematosus, in which it correlated to relative B cell lymphopenia and duration of disease. Different proportions of distinct developmental stages of CD21low B cells co-occur in nearly all patients with autoimmune disease. Although in most patients, naive-like and CD27- switched memory B cells were the most prominent CD21low subpopulations, there was no detectable association of the pattern with the underlying disease. Despite their distinct developmental stage, all CD21low B cells share a common core phenotype including the increased expression of inhibitory receptors, associated with an elevated constitutive phosphorylation of proximal signaling molecules downstream of the BCR but impaired Ca2+ mobilization and NF-κB activation after BCR stimulation. Further, this was accompanied by impaired upregulation of CD69, although CD86 upregulation was preserved. Beyond maturation-associated differences, the common core characteristics of all CD21low B cell populations suggests either a common ancestry or a shared sustained imprint by the environment they originated in.


Subject(s)
B-Lymphocyte Subsets/immunology , Calcium Signaling/immunology , Lupus Erythematosus, Systemic/immunology , Memory, Short-Term , Receptors, Complement 3d/immunology , Signal Transduction/immunology , Adult , B-Lymphocyte Subsets/pathology , Female , Humans , Male , Receptors, Antigen, B-Cell/immunology
12.
Cancer Sci ; 112(11): 4799-4811, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34449934

ABSTRACT

Epstein-Barr virus (EBV)-associated gastric cancer belongs to 1 of the 4 subtypes of gastric cancer and accounts for 10% of total gastric cancers. However, most cases of gastric cancer have a history of Helicobacter pylori infection. Therefore, we investigated the possibility that H. pylori infection promotes the development of EBV-associated gastric cancer. H. pylori was exposed to principal EBV receptor, CD21, negative gastric epithelial cells, and then infected with EBV recombinant expressing enhanced green fluorescent protein. Changes in EBV infectivity due to prior H. pylori exposure were analyzed using flow cytometry. The treatment of gastric epithelial cells with H. pylori increased the efficiency of EBV infection. An increase was also observed when CagA-deficient, VacA-deficient, and FlaA-deficient H. pylori strains were used, but not when cag pathogenicity island-deficient H. pylori was used. The treatment of epithelial cells with H. pylori induced the expression of accessory EBV receptors, EphA2 and NMHC-IIA, and increased the efficiency of EBV infection depending on their expression levels. When gastric epithelial cells were treated with EPHA2 or NMHC-IIA siRNA, EBV infection via H. pylori attachment was decreased. The adhesion of H. pylori induced the expression of accessory EBV receptors in gastric epithelial cells and increased the efficiency of EBV infection.


Subject(s)
Epstein-Barr Virus Infections/etiology , Helicobacter Infections/complications , Helicobacter pylori/physiology , Herpesvirus 4, Human , Stomach Neoplasms/virology , Antigens, Bacterial/metabolism , Attachment Sites, Microbiological/physiology , Bacterial Adhesion/physiology , Bacterial Proteins/metabolism , Cell Line, Tumor , Epithelial Cells/drug effects , Epithelial Cells/microbiology , Green Fluorescent Proteins/metabolism , Helicobacter Infections/metabolism , Helicobacter pylori/drug effects , Helicobacter pylori/genetics , Herpesvirus 4, Human/metabolism , Herpesvirus 4, Human/pathogenicity , Humans , Hydro-Lyases/deficiency , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Oxidoreductases/deficiency , RNA, Small Interfering/pharmacology , Receptor, EphA2/genetics , Receptor, EphA2/metabolism , Receptors, Complement 3d/metabolism , Stomach Neoplasms/microbiology
13.
J Virol ; 94(11)2020 05 18.
Article in English | MEDLINE | ID: mdl-32238579

ABSTRACT

Epstein-Barr virus (EBV) is associated with a number of T-cell diseases, including some peripheral T-cell lymphomas, hemophagocytic lymphohistiocytosis, and chronic active EBV disease. The tropism of EBV for B cells and epithelial cell infection has been well characterized, but infection of T cells has been minimally explored. We have recently shown that the EBV type 2 (EBV-2) strain has the unique ability to infect mature T cells. Utilizing an ex vivo infection model, we sought to understand the viral glycoprotein and cellular receptor required for EBV-2 infection of T cells. Here, using a neutralizing-antibody assay, we found that viral gp350 and complement receptor 2 (CD21) are required for CD3+ T-cell infection. Using the HB5 anti-CD21 antibody clone but not the Bly-4 anti-CD21 antibody clone, we detected expression of CD21 on both CD4+ and CD8+ T cells, with the highest expression on naive CD4 and CD8+ T-cell subsets. Using CRISPR to knock out CD21, we demonstrated that CD21 is necessary for EBV entry into the Jurkat T-cell line. Together, these results indicate that EBV uses the same viral glycoprotein and cellular receptor for both T- and B-cell infection.IMPORTANCE Epstein-Barr virus (EBV) has a well-described tropism for B cells and epithelial cells. Recently, we described the ability of a second strain of EBV, EBV type 2, to infect mature peripheral T cells. Using a neutralizing antibody assay, we determined that EBV uses the viral glycoprotein gp350 and the cellular protein CD21 to gain entry into mature peripheral T cells. CRISPR-Cas9 deletion of CD21 on the Jurkat T-cell line confirmed that CD21 is required for EBV infection. This study has broad implications, as we have defined a function for CD21 on mature peripheral T cells, i.e., as a receptor for EBV. In addition, the requirement for gp350 for T-cell entry has implications for EBV vaccine studies currently targeting the gp350 glycoprotein to prevent EBV-associated diseases.


Subject(s)
B-Lymphocytes/metabolism , Epstein-Barr Virus Infections/metabolism , Herpesvirus 4, Human/metabolism , Receptors, Complement 3d/metabolism , T-Lymphocytes/metabolism , Virus Internalization , Adult , B-Lymphocytes/pathology , B-Lymphocytes/virology , Epstein-Barr Virus Infections/genetics , Epstein-Barr Virus Infections/pathology , Female , Gene Deletion , Herpesvirus 4, Human/genetics , Humans , Male , Receptors, Complement 3d/genetics , T-Lymphocytes/pathology , T-Lymphocytes/virology
14.
Clin Exp Immunol ; 205(2): 128-134, 2021 08.
Article in English | MEDLINE | ID: mdl-33876421

ABSTRACT

The objective of this study was to evaluate the predictive role of CD21low B cells as markers of new digital ulcers in systemic sclerosis patients. Peripheral blood B cell subpopulations and clinical assessments have been evaluated in 74 systemic sclerosis patients at baseline and after a 12-month follow-up. After a 12-month follow-up, 23 (31.1%) systemic sclerosis patients developed new digital ulcers. The median percentage of CD21low B cells was significantly higher in patients with than without new digital ulcers [10.1 (4.3-13.6) versus 4.8 (3.5-7.4); p < 0.01]. The 10% cut-off shows good diagnostic accuracy [area under the curve (AUC) = 0.732, confidence interval (CI) = 0.587-0.878; P = 0.01]. Kaplan-Meier curves show a significantly reduced free survival from new digital ulcers in systemic sclerosis patients with CD21low B cells ≥ 10% (p < 0.0001). In multivariate analysis, CD21low B cells ≥ 10%, modified Rodnan skin score (mRSS) and systolic pulmonary arterial pressure (sPAP) are associated with the development of new digital ulcers. We hypothesize that CD21low B cells are a predictive marker of new digital ulcers in systemic sclerosis patients.


Subject(s)
B-Lymphocytes/immunology , Biomarkers/metabolism , Receptors, Complement 3d/metabolism , Scleroderma, Systemic/immunology , Scleroderma, Systemic/metabolism , Skin Ulcer/immunology , Skin Ulcer/metabolism , B-Lymphocytes/metabolism , Female , Humans , Male , Middle Aged
15.
Immunity ; 37(2): 199-207, 2012 Aug 24.
Article in English | MEDLINE | ID: mdl-22921118

ABSTRACT

The complement system of innate immunity is important in regulating humoral immunity largely through the complement receptor CR2, which forms a coreceptor on B cells during antigen-induced activation. However, CR2 also retains antigens on follicular dendritic cells (FDCs). Display of antigen on FDCs is critical for clonal selection and affinity maturation of activated B cells. This review will discuss the role of complement in adaptive immunity in general with a focus on the interplay between CR2-associated antigen on B cells with CR2 expressed on FDCs. This latter interaction provides an opportunity for memory B cells to sample antigen over prolonged periods. The cocrystal structure of CR2 with its ligand C3d provides insight into how the complement system regulates access of antigen by B cells with implications for therapeutic manipulations to modulate aberrant B cell responses in the case of autoimmunity.


Subject(s)
B-Lymphocytes/immunology , Complement C3d/immunology , Dendritic Cells, Follicular/immunology , Immunity, Humoral/immunology , Receptors, Complement 3d/immunology , Animals , Antigen Presentation/immunology , Antigens/immunology , Antigens, CD19/immunology , Autoimmunity/immunology , CD4-Positive T-Lymphocytes/immunology , Complement Activation/immunology , Complement C3d/chemistry , Complement C3d/metabolism , Dendritic Cells, Follicular/metabolism , Humans , Immunity, Innate , Lymphocyte Activation/immunology , Mice , Mice, Knockout , Receptors, Complement 3d/chemistry , Receptors, Complement 3d/metabolism , Tetraspanin 28/immunology
16.
J Immunol ; 202(11): 3137-3142, 2019 06 01.
Article in English | MEDLINE | ID: mdl-31028119

ABSTRACT

The DNA damage response protein ATM has long been known to influence class switch recombination in ex vivo-cultured B cells. However, an assessment of B cell-intrinsic requirement of ATM in humoral responses in vivo was confounded by the fact that its germline deletion affects T cell function, and B:T cell interactions are critical for in vivo immune responses. In this study, we demonstrate that B cell-specific deletion of ATM in mice leads to reduction in germinal center (GC) frequency and size in response to immunization. We find that loss of ATM induces apoptosis of GC B cells, likely due to unresolved DNA lesions in cells attempting to undergo class-switch recombination. Accordingly, suboptimal GC responses in ATM-deficient animals are characterized by decreased titers of class-switched Abs and decreased rates of somatic hypermutation. These results unmask the critical B cell-intrinsic role of ATM in maintaining an optimal GC response following immunization.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/metabolism , B-Lymphocytes/physiology , Germinal Center/physiology , T-Lymphocytes/physiology , Animals , Ataxia Telangiectasia Mutated Proteins/genetics , Cells, Cultured , DNA Repair/genetics , Immunoglobulin Class Switching , Mice , Mice, Knockout , Receptors, Complement 3d/genetics , Somatic Hypermutation, Immunoglobulin
17.
J Immunol ; 203(11): 2837-2849, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31659014

ABSTRACT

Interstitial lung disease (ILD) is a well-known extra-articular manifestation of rheumatoid arthritis (RA). RA-associated ILD (RA-ILD) exists on a wide spectrum, with variable levels of inflammatory and fibrotic activity, although all subtypes are regarded as irreversible pathologic conditions. In both articular and pulmonary manifestations, TNF is a significant pathogenic factor. Whereas anti-TNF therapy alleviates joint pathologic conditions, it exacerbates fibrotic RA-ILD. The TNF-transgenic (TNF-Tg) murine model of RA develops both inflammatory arthritis and an ILD that mimics a cellular nonspecific interstitial pneumonia pattern dominated by an interstitial accumulation of inflammatory cells with minimal-to-absent fibrosis. Given the model's potential to elucidate the genesis of inflammatory RA-ILD, we aim to achieve the following: 1) characterize the cellular accumulations in TNF-Tg lungs, and 2) assess the reversibility of inflammatory ILD following anti-TNF therapy known to resolve TNF-Tg inflammatory arthritis. TNF-Tg mice with established disease were randomized to anti-TNF or placebo therapy and evaluated with imaging, histology, and flow cytometric analyses, together with wild-type controls. Flow cytometry of TNF-Tg versus wild-type lungs revealed significant increases in activated monocytes, conventional dendritic cells, and CD21+/CD23- B cells that are phenotypically distinct from the B cells in inflamed nodes, which are known to accumulate in joint-draining lymph nodes. In contrast to human RA-ILD, anti-TNF treatment significantly alleviated both joint and lung inflammation. These results identify a potential role for activated monocytes, conventional dendritic cells, and CD21+/CD23- B cells in the genesis of RA-ILD, which exist in a previously unknown, reversible, prefibrotic stage of the disease.


Subject(s)
Arthritis, Rheumatoid/immunology , B-Lymphocytes/immunology , Disease Models, Animal , Lung Diseases, Interstitial/immunology , Receptors, Complement 3d/metabolism , Receptors, IgE/metabolism , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/immunology , Animals , B-Lymphocytes/metabolism , Dendritic Cells/immunology , Humans , Mice , Mice, Transgenic , Monocytes/immunology
18.
Am J Respir Crit Care Med ; 202(7): 1013-1023, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32501729

ABSTRACT

Rationale: A subpopulation of B cells (age-associated B cells [ABCs]) is increased in mice and humans with infections or autoimmune diseases. Because depletion of these cells might be valuable in patients with certain lung diseases, the goal was to find out if ABC-like cells were at elevated levels in such patients.Objectives: To measure ABC-like cell percentages in patients with lung granulomatous diseases.Methods: Peripheral blood and BAL cells from patients with sarcoidosis, beryllium sensitivity, or hypersensitivity pneumonitis and healthy subjects were analyzed for the percentage of B cells that were ABC-like, defined by expression of CD11c, low levels of CD21, FcRL 1-5 (Fc receptor-like protein 1-5) expression, and, in some cases, T-bet.Measurements and Main Results: ABC-like cells in blood were at low percentages in healthy subjects and higher percentages in patients with sarcoidosis as well as at high percentages among BAL cells of patients with sarcoidosis, beryllium disease, and hypersensitivity pneumonitis. Treatment of patients with sarcoidosis led to reduced percentages of ABC-like cells in blood.Conclusions: Increased levels of ABC-like cells in patients with sarcoidosis may be useful in diagnosis. The increase in percentage of ABC-like cells in patients with lung granulomatous diseases and decrease in treated patients suggests that depletion of these cells may be valuable.


Subject(s)
Alveolitis, Extrinsic Allergic/blood , B-Lymphocyte Subsets/metabolism , Berylliosis/blood , Bronchoalveolar Lavage Fluid/cytology , Sarcoidosis, Pulmonary/blood , Adult , Aged , Aged, 80 and over , Alveolitis, Extrinsic Allergic/immunology , B-Lymphocyte Subsets/immunology , Berylliosis/immunology , CD11c Antigen/metabolism , Case-Control Studies , Female , Humans , Male , Membrane Proteins/metabolism , Middle Aged , Receptors, Cell Surface/metabolism , Receptors, Complement 3d/metabolism , Receptors, Fc/metabolism , Receptors, Immunologic/metabolism , Sarcoidosis, Pulmonary/immunology , T-Box Domain Proteins/metabolism , Young Adult
19.
Genes Immun ; 21(4): 249-259, 2020 08.
Article in English | MEDLINE | ID: mdl-32518420

ABSTRACT

We aimed to assess expression of genes encoding the heterodimeric IL-27 cytokine and constituent subunits of the Il-27 receptor in rheumatoid arthritis (RA), including in extra-articular, subcutaneous rheumatoid nodules. Comparing between nodules and joint synovia, significantly elevated expression of IL27A within nodules, and comparable IL27B expression, identified nodules as a significant source of IL-27 in RA. T-lymphocytes were the main source of IL27RA transcript, and IL27RA expression correlated with a number of plasma cytokines, as well as tissue TNF expression in both nodules and RA synovia. In synovia, correlations between IL27A, IL27RA IL17A and CD21L expression, and significantly elevated expression of the genes encoding IL-27, associated the presence of IL-27 with B cell-dominated synovial inflammation. Impact from nodule derived IL-27 on systemic or synovial inflammation in RA remains unknown and further study of these implications is required. Our study raises questions regarding the appropriate circumstances for the blockade or administration of IL-27 as a potential therapeutic adjunct in RA.


Subject(s)
Arthritis, Rheumatoid/genetics , Inflammation/genetics , Interleukin-17/metabolism , Interleukins/genetics , Interleukins/metabolism , Receptors, Complement 3d/metabolism , Aged , Arthritis, Rheumatoid/immunology , B-Lymphocytes/metabolism , Female , Gene Expression , Humans , Interleukin-17/genetics , Male , Middle Aged , Receptors, Complement 3d/genetics , Rheumatoid Nodule/immunology , Rheumatoid Nodule/pathology , Synovial Membrane/immunology , Synovial Membrane/pathology
20.
Clin Immunol ; 213: 108364, 2020 04.
Article in English | MEDLINE | ID: mdl-32087329

ABSTRACT

OBJECTIVES: To evaluate expansion of CD21low B cells and their role in B cell homeostasis, apoptosis, clinical manifestations and serum vascular endothelial growth factor (VEGF) in systemic sclerosis (SSc). MATERIALS AND METHODS: B-cells subpopulations and apoptosis have been assessed in 74 SSc patients and 20 healthy donors. Renal Doppler ultrasound, echocardiography, pulmonary function test and VEGF were performed. RESULTS: SSc patients with expanded CD21low B cells (SSc-CD21low) show a distinct B cell profile with increased memory B cells compared to patients without CD21low B cells (SSc-CD21+). Renal resistive index, systolic pulmonary arterial pressure and FVC/DLCO ratio were significantly higher in SSc-CD21low group than SSc-CD21+, DLCO was lower in SSc-CD21low group than SSc-CD21+. We found a positive linear correlation between CD21low and sPAP, RI and FVC/DLCO ratio whereas a negative correlation was observed between CD21low and DLCO and VEGF levels. CONCLUSIONS: CD21low B cells are increased in SSc patients with visceral vascular manifestations.


Subject(s)
B-Lymphocyte Subsets/immunology , Scleroderma, Systemic/complications , Scleroderma, Systemic/immunology , Vascular Diseases/etiology , Aged , Female , Heart Diseases/etiology , Humans , Kidney Diseases/etiology , Lung Diseases/etiology , Male , Middle Aged , Receptors, Complement 3d/immunology , Scleroderma, Systemic/pathology , Vascular Endothelial Growth Factor A/blood
SELECTION OF CITATIONS
SEARCH DETAIL