Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 465
Filter
Add more filters

Publication year range
1.
Cell ; 171(3): 522-539.e20, 2017 Oct 19.
Article in English | MEDLINE | ID: mdl-28942923

ABSTRACT

Understanding the organizational logic of neural circuits requires deciphering the biological basis of neuronal diversity and identity, but there is no consensus on how neuron types should be defined. We analyzed single-cell transcriptomes of a set of anatomically and physiologically characterized cortical GABAergic neurons and conducted a computational genomic screen for transcriptional profiles that distinguish them from one another. We discovered that cardinal GABAergic neuron types are delineated by a transcriptional architecture that encodes their synaptic communication patterns. This architecture comprises 6 categories of ∼40 gene families, including cell-adhesion molecules, transmitter-modulator receptors, ion channels, signaling proteins, neuropeptides and vesicular release components, and transcription factors. Combinatorial expression of select members across families shapes a multi-layered molecular scaffold along the cell membrane that may customize synaptic connectivity patterns and input-output signaling properties. This molecular genetic framework of neuronal identity integrates cell phenotypes along multiple axes and provides a foundation for discovering and classifying neuron types.


Subject(s)
GABAergic Neurons/cytology , Gene Expression Profiling , Single-Cell Analysis , Animals , Cell Adhesion Molecules, Neuronal/metabolism , Extracellular Matrix/metabolism , GABAergic Neurons/metabolism , Mice , Receptors, GABA/metabolism , Receptors, Ionotropic Glutamate/metabolism , Signal Transduction , Synapses , Transcription, Genetic , Zinc/metabolism , gamma-Aminobutyric Acid/metabolism
2.
Nature ; 605(7908): 172-178, 2022 05.
Article in English | MEDLINE | ID: mdl-35444281

ABSTRACT

Ionotropic glutamate receptors (iGluRs) are tetrameric ligand-gated ion channels that open their pores in response to binding of the agonist glutamate1-3. An ionic current through a single iGluR channel shows up to four discrete conductance levels (O1-O4)4-6. Higher conductance levels have been associated with an increased number of agonist molecules bound to four individual ligand-binding domains (LBDs)6-10. Here we determine structures of a synaptic complex of AMPA-subtype iGluR and the auxiliary subunit γ2 in non-desensitizing conditions with various occupancy of the LBDs by glutamate. We show that glutamate binds to LBDs of subunits B and D only after it is already bound to at least the same number of LBDs that belong to subunits A and C. Our structures combined with single-channel recordings, molecular dynamics simulations and machine-learning analysis suggest that channel opening requires agonist binding to at least two LBDs. Conversely, agonist binding to all four LBDs does not guarantee maximal channel conductance and favours subconductance states O1 and O2, with O3 and O4 being rare and not captured structurally. The lack of subunit independence and low efficiency coupling of glutamate binding to channel opening underlie the gating of synaptic complexes to submaximal conductance levels, which provide a potential for upregulation of synaptic activity.


Subject(s)
Receptors, Glutamate , Receptors, Ionotropic Glutamate , Glutamic Acid/metabolism , Molecular Dynamics Simulation , Protein Domains , Receptors, Glutamate/metabolism , Receptors, Ionotropic Glutamate/metabolism
3.
Nature ; 595(7866): 261-265, 2021 07.
Article in English | MEDLINE | ID: mdl-34135511

ABSTRACT

Ionotropic glutamate delta receptors 1 (GluD1) and 2 (GluD2) exhibit the molecular architecture of postsynaptic ionotropic glutamate receptors, but assemble into trans-synaptic adhesion complexes by binding to secreted cerebellins that in turn interact with presynaptic neurexins1-4. It is unclear whether neurexin-cerebellin-GluD1/2 assemblies serve an adhesive synapse-formation function or mediate trans-synaptic signalling. Here we show in hippocampal synapses, that binding of presynaptic neurexin-cerebellin complexes to postsynaptic GluD1 controls glutamate receptor activity without affecting synapse numbers. Specifically, neurexin-1-cerebellin-2 and neurexin-3-cerebellin-2 complexes differentially regulate NMDA (N-methyl-D-aspartate) receptors and AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors by activating distinct postsynaptic GluD1 effector signals. Of note, minimal GluD1 and GluD2 constructs containing only their N-terminal cerebellin-binding and C-terminal cytoplasmic domains, joined by an unrelated transmembrane region, fully control the levels of NMDA and AMPA receptors. The distinct signalling specificity of presynaptic neurexin-1 and neurexin-35,6 is encoded by their alternatively spliced splice site 4 sequences, whereas the regulatory functions of postsynaptic GluD1 are mediated by conserved cytoplasmic sequence motifs spanning 5-13 residues. Thus, GluDs are signalling molecules that regulate NMDA and AMPA receptors by an unexpected transduction mechanism that bypasses their ionotropic receptor architecture and directly converts extracellular neurexin-cerebellin signals into postsynaptic receptor responses.


Subject(s)
Glutamate Dehydrogenase/metabolism , Receptors, Ionotropic Glutamate/metabolism , Signal Transduction , Amino Acid Motifs , Animals , Calcium-Binding Proteins/metabolism , Cell Membrane/metabolism , Excitatory Postsynaptic Potentials , Female , Male , Mice , Nerve Tissue Proteins/metabolism , Neural Cell Adhesion Molecules/metabolism , Protein Precursors/metabolism , Receptors, AMPA/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Synapses/metabolism
4.
Proc Natl Acad Sci U S A ; 121(6): e2313853121, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38285949

ABSTRACT

Ionotropic glutamate receptors (iGluRs) mediate excitatory signals between cells by binding neurotransmitters and conducting cations across the cell membrane. In the mammalian brain, most of these signals are mediated by two types of iGluRs: AMPA and NMDA (i.e. iGluRs sensitive to 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)propanoic acid and N-methyl-D-aspartic acid, respectively). Delta-type iGluRs of mammals also form neurotransmitter-binding channels in the cell membrane, but in contrast, their channel is not activated by neurotransmitter binding, raising biophysical questions about iGluR activation and biological questions about the role of delta iGluRs. We therefore investigated the divergence of delta iGluRs from their iGluR cousins using molecular phylogenetics, electrophysiology, and site-directed mutagenesis. We find that delta iGluRs are found in numerous bilaterian animals (e.g., worms, starfish, and vertebrates) and are closely related to AMPA receptors, both genetically and functionally. Surprisingly, we observe that many iGluRs of the delta family are activated by the classical inhibitory neurotransmitter, γ-aminobutyric acid (GABA). Finally, we identify nine amino acid substitutions that likely gave rise to the inactivity of today's mammalian delta iGluRs, and these mutations abolish activity when engineered into active invertebrate delta iGluRs, partly by inducing receptor desensitization. These results offer biophysical insight into iGluR activity and point to a role for GABA in excitatory signaling in invertebrates.


Subject(s)
Receptors, Ionotropic Glutamate , Vertebrates , Animals , Receptors, Ionotropic Glutamate/metabolism , Vertebrates/metabolism , Receptors, AMPA/genetics , Invertebrates , Mammals/metabolism , N-Methylaspartate , Neurotransmitter Agents , gamma-Aminobutyric Acid
5.
Proc Natl Acad Sci U S A ; 121(35): e2407394121, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39159375

ABSTRACT

Aedes aegypti mosquitoes are major vectors of dengue, chikungunya, and other arboviral diseases. Ae. aegypti's capacity to reproduce and to spread disease depends on the female mosquitoes' ability to obtain blood meals and find water-filled containers in which to lay eggs (oviposit). While humidity sensation (hygrosensation) has been implicated in these behaviors, the specific hygrosensory pathways involved have been unclear. Here, we establish the distinct molecular requirements and anatomical locations of Ae. aegypti Dry Cells and Moist Cells and examine their contributions to behavior. We show that Dry Cell and Moist Cell responses to humidity involve different ionotropic receptor (IR) family sensory receptors, with dry air-activated Dry Cells reliant upon the IR Ir40a, and humid air-activated Moist Cells upon Ir68a. Both classes of hygrosensors innervate multiple antennal sensilla, including sensilla ampullacea near the antennal base as well as two classes of coeloconic sensilla near the tip. Dry Cells and Moist Cells each support behaviors linked to mosquito reproduction but contribute differently: Ir40a-dependent Dry Cells act in parallel with Ir68a-dependent Moist Cells to promote blood feeding, while oviposition site seeking is driven specifically by Ir68a-dependent Moist Cells. Together these findings reveal the importance of distinct hygrosensory pathways in blood feeding and oviposition site seeking and suggest Ir40a-dependent Dry Cells and Ir68a-dependent Moist Cells as potential targets for vector control strategies.


Subject(s)
Aedes , Feeding Behavior , Humidity , Mosquito Vectors , Oviposition , Animals , Aedes/physiology , Oviposition/physiology , Female , Feeding Behavior/physiology , Mosquito Vectors/physiology , Sensilla/physiology , Receptors, Ionotropic Glutamate/metabolism , Arthropod Antennae/physiology
6.
Proc Natl Acad Sci U S A ; 119(23): e2112385119, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35648836

ABSTRACT

Anopheline mosquitoes rely on their highly sensitive chemosensory apparatus to detect diverse chemical stimuli that drive the host-seeking and blood-feeding behaviors required to vector pathogens for malaria and other diseases. This process incorporates a variety of chemosensory receptors and transduction pathways. We used advanced in vivo gene-editing and -labeling approaches to localize and functionally characterize the ionotropic coreceptor AcIr76b in the malaria mosquito Anopheles coluzzii, where it impacts both olfactory and gustatory systems. AcIr76b has a broad expression pattern in female adult antennal grooved pegs, coeloconic sensilla, and T1 and T2 sensilla on the labellum, stylets, and tarsi, as well as the larval sensory peg. AcIr76b is colocalized with the Orco odorant receptor (OR) coreceptor in a subset of cells across the female antennae and labella. In contrast to Orco and Ir8a, chemosensory coreceptors that appear essential for the activity of their respective sets of chemosensory neurons in mosquitoes, AcIr76b−/− mutants maintain wild-type peripheral responses to volatile amines on the adult palps, labellum, and larval sensory cone. Interestingly, AcIr76b−/− mutants display significantly increased responses to amines in antennal grooved peg sensilla, while coeloconic sensilla reveal significant deficits in responses to several acids and amines. Behaviorally, AcIr76b mutants manifest significantly female-specific insemination deficits, and although AcIr76b−/− mutant females can locate, alight on, and probe artificial blood hosts, they are incapable of blood feeding successfully. Taken together, our findings reveal a multidimensional functionality of Ir76b in anopheline olfactory and gustatory pathways that directly impacts the vectorial capacity of these mosquitoes.


Subject(s)
Anopheles , Feeding Behavior , Malaria , Mosquito Vectors , Receptors, Ionotropic Glutamate , Animals , Anopheles/genetics , Anopheles/physiology , Blood , Female , Gene Editing , Malaria/parasitology , Malaria/transmission , Mosquito Vectors/genetics , Mosquito Vectors/physiology , Receptors, Ionotropic Glutamate/genetics , Receptors, Ionotropic Glutamate/physiology , Sensilla/physiology , Smell
7.
Proc Natl Acad Sci U S A ; 119(25): e2204238119, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35700364

ABSTRACT

The Anthropocene Epoch poses a critical challenge for organisms: they must cope with new threats at a rapid rate. These threats include toxic chemical compounds released into the environment by human activities. Here, we examine elevated concentrations of heavy metal ions as an example of anthropogenic stressors. We find that the fruit fly Drosophila avoids nine metal ions when present at elevated concentrations that the flies experienced rarely, if ever, until the Anthropocene. We characterize the avoidance of feeding and egg laying on metal ions, and we identify receptors, neurons, and taste organs that contribute to this avoidance. Different subsets of taste receptors, including members of both Ir (Ionotropic receptor) and Gr (Gustatory receptor) families contribute to the avoidance of different metal ions. We find that metal ions activate certain bitter-sensing neurons and inhibit sugar-sensing neurons. Some behavioral responses are mediated largely through neurons of the pharynx. Feeding avoidance remains stable over 10 generations of exposure to copper and zinc ions. Some responses to metal ions are conserved across diverse dipteran species, including the mosquito Aedes albopictus. Our results suggest mechanisms that may be essential to insects as they face challenges from environmental changes in the Anthropocene.


Subject(s)
Anthropogenic Effects , Drosophila melanogaster , Environmental Exposure , Escape Reaction , Metals, Heavy , Taste Perception , Taste , Aedes/physiology , Animals , Avoidance Learning , Cations/toxicity , Drosophila Proteins/metabolism , Drosophila melanogaster/physiology , Humans , Metals, Heavy/toxicity , Receptors, Ionotropic Glutamate/metabolism , Taste/physiology , Taste Perception/physiology
8.
Eur J Neurosci ; 59(9): 2260-2275, 2024 May.
Article in English | MEDLINE | ID: mdl-38411499

ABSTRACT

The anterior retrosplenial cortex (aRSC) integrates multimodal sensory information into cohesive associative recognition memories. Little is known about how information is integrated during different learning phases (i.e., encoding and retrieval). Additionally, sex differences are observed in performance of some visuospatial memory tasks; however, inconsistent findings warrant more research. We conducted three experiments using the 1-h delay object-in-place (1-h OiP) test to assess recognition memory retrieval in male and female Long-Evans rats. (i) We found both sexes performed equally in three repeated 1-h OiP test sessions. (ii) We showed infusions of a mixture of muscimol/baclofen (GABAA/B receptor agonists) into the aRSC ~15-min prior to the test phase disrupted 1-h OiP in both sexes. (iii) We assessed the role of aRSC ionotropic glutamate receptors in 1-h OiP retrieval using another squad of cannulated rats and confirmed that infusions of either the competitive AMPA/Kainate receptor antagonist CNQX (3 mM) or competitive NMDA receptor antagonist AP-5 (30 mM) (volumes = 0.50 uL/side) significantly impaired 1-h OiP retrieval in both sexes compared to controls. Taken together, findings challenge reported sex differences and clearly establish a role for aRSC ionotropic glutamate receptors in short-term visuospatial recognition memory retrieval. Thus, modulating neural activity in the aRSC may alleviate some memory processing impairments in related disorders.


Subject(s)
Muscimol , Rats, Long-Evans , Recognition, Psychology , Animals , Male , Female , Rats , Recognition, Psychology/drug effects , Recognition, Psychology/physiology , Muscimol/pharmacology , GABA-A Receptor Agonists/pharmacology , Baclofen/pharmacology , Memory, Short-Term/drug effects , Memory, Short-Term/physiology , Receptors, Ionotropic Glutamate/metabolism , Receptors, Ionotropic Glutamate/antagonists & inhibitors , Mental Recall/drug effects , Mental Recall/physiology , Excitatory Amino Acid Antagonists/pharmacology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/metabolism , Sex Characteristics , GABA-B Receptor Agonists/pharmacology
9.
Nature ; 564(7736): 420-424, 2018 12.
Article in English | MEDLINE | ID: mdl-30464346

ABSTRACT

Carbon dioxide is produced by many organic processes and is a convenient volatile cue for insects1 that are searching for blood hosts2, flowers3, communal nests4, fruit5 and wildfires6. Although Drosophila melanogaster feed on yeast that produce CO2 and ethanol during fermentation, laboratory experiments7-12 suggest that walking flies avoid CO2. Here we resolve this paradox by showing that both flying and walking Drosophila find CO2 attractive, but only when they are in an active state associated with foraging. Their aversion to CO2 at low-activity levels may be an adaptation to avoid parasites that seek CO2, or to avoid succumbing to respiratory acidosis in the presence of high concentrations of CO2 that exist in nature13,14. In contrast to CO2, flies are attracted to ethanol in all behavioural states, and invest twice the time searching near ethanol compared to CO2. These behavioural differences reflect the fact that ethanol is a unique signature of yeast fermentation, whereas CO2 is generated by many natural processes. Using genetic tools, we determined that the evolutionarily conserved ionotropic co-receptor IR25a is required for CO2 attraction, and that the receptors necessary for CO2 avoidance are not involved in this attraction. Our study lays the foundation for future research to determine the neural circuits that underlie both state- and odorant-dependent decision-making in Drosophila.


Subject(s)
Avoidance Learning , Carbon Dioxide/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/physiology , Feeding Behavior , Receptors, Ionotropic Glutamate/metabolism , Animals , Decision Making , Drosophila Proteins/genetics , Ethanol/metabolism , Female , Fermentation , Flight, Animal , Male , Neural Pathways , Odorants/analysis , Receptors, Ionotropic Glutamate/genetics , Walking , Yeasts/metabolism
10.
PLoS Genet ; 17(4): e1009499, 2021 04.
Article in English | MEDLINE | ID: mdl-33826603

ABSTRACT

Temperature sensation guides animals to avoid temperature extremes and to seek their optimal temperatures. The larval stage of Drosophila development has a dramatic effect on temperature preference. While early-stage Drosophila larvae pursue a warm temperature, late-stage larvae seek a significantly lower temperature. Previous studies suggest that this transition depends on multiple rhodopsins at the late larval stage. Here, we show that early-stage larvae, in which dorsal organ cool cells (DOCCs) are functionally blocked, exhibit similar cool preference to that of wild type late-stage larvae. The molecular thermoreceptors in DOCCs are formed by three members of the Ionotropic Receptor (IR) family, IR21a, IR93a, and IR25a. Early-stage larvae of each Ir mutant pursue a cool temperature, similar to that of wild type late-stage larvae. At the late larval stage, DOCCs express decreased IR proteins and exhibit reduced cool responses. Importantly, late-stage larvae that overexpress IR21a, IR93a, and IR25a in DOCCs exhibit similar warm preference to that of wild type early-stage larvae. These data suggest that IR21a, IR93a, and IR25a in DOCCs navigate early-stage larvae to avoid cool temperatures and the reduction of these IR proteins in DOCCs results in animals remaining in cool regions during the late larval stage. Together with previous studies, we conclude that multiple temperature-sensing systems are regulated for the transition of temperature preference in fruit fly larvae.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Embryonic Development/genetics , Receptors, Ionotropic Glutamate/genetics , Animals , Drosophila melanogaster/growth & development , Embryonic Development/physiology , Gene Expression Regulation, Developmental/genetics , Hot Temperature , Larva/genetics , Larva/growth & development
11.
Pharmacol Rev ; 73(4): 298-487, 2021 10.
Article in English | MEDLINE | ID: mdl-34753794

ABSTRACT

Many physiologic effects of l-glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, are mediated via signaling by ionotropic glutamate receptors (iGluRs). These ligand-gated ion channels are critical to brain function and are centrally implicated in numerous psychiatric and neurologic disorders. There are different classes of iGluRs with a variety of receptor subtypes in each class that play distinct roles in neuronal functions. The diversity in iGluR subtypes, with their unique functional properties and physiologic roles, has motivated a large number of studies. Our understanding of receptor subtypes has advanced considerably since the first iGluR subunit gene was cloned in 1989, and the research focus has expanded to encompass facets of biology that have been recently discovered and to exploit experimental paradigms made possible by technological advances. Here, we review insights from more than 3 decades of iGluR studies with an emphasis on the progress that has occurred in the past decade. We cover structure, function, pharmacology, roles in neurophysiology, and therapeutic implications for all classes of receptors assembled from the subunits encoded by the 18 ionotropic glutamate receptor genes. SIGNIFICANCE STATEMENT: Glutamate receptors play important roles in virtually all aspects of brain function and are either involved in mediating some clinical features of neurological disease or represent a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of this class of receptors will advance our understanding of many aspects of brain function at molecular, cellular, and system levels and provide new opportunities to treat patients.


Subject(s)
Receptors, Glutamate , Receptors, Ionotropic Glutamate , Animals , Central Nervous System , Glutamic Acid , Humans , Neurotransmitter Agents , Receptors, Ionotropic Glutamate/genetics
12.
Int J Mol Sci ; 25(8)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38674138

ABSTRACT

The Japanese pine sawyer Monochamus alternatus serves as the primary vector for pine wilt disease, a devastating pine disease that poses a significant threat to the sustainable development of forestry in the Eurasian region. Currently, trap devices based on informational compounds have played a crucial role in monitoring and controlling the M. alternatus population. However, the specific proteins within M. alternatus involved in recognizing the aforementioned informational compounds remain largely unclear. To elucidate the spatiotemporal distribution of M. alternatus chemosensory-related genes, this study conducted neural transcriptome analyses to investigate gene expression patterns in different body parts during the feeding and mating stages of both male and female beetles. The results revealed that 15 genes in the gustatory receptor (GR) gene family exhibited high expression in the mouthparts, most genes in the odorant binding protein (OBP) gene family exhibited high expression across all body parts, 22 genes in the odorant receptor (OR) gene family exhibited high expression in the antennae, a significant number of genes in the chemosensory protein (CSP) and sensory neuron membrane protein (SNMP) gene families exhibited high expression in both the mouthparts and antennae, and 30 genes in the ionotropic receptors (IR) gene family were expressed in the antennae. Through co-expression analyses, it was observed that 34 genes in the IR gene family were co-expressed across the four developmental stages. The Antenna IR subfamily and IR8a/Ir25a subfamily exhibited relatively high expression levels in the antennae, while the Kainate subfamily, NMDA subfamily, and Divergent subfamily exhibited predominantly high expression in the facial region. MalIR33 is expressed only during the feeding stage of M. alternatus, the MalIR37 gene exhibits specific expression in male beetles, the MalIR34 gene exhibits specific expression during the feeding stage in male beetles, the MalIR8 and MalIR39 genes exhibit specific expression during the feeding stage in female beetles, and MalIR8 is expressed only during two developmental stages in male beetles and during the mating stage in female beetles. The IR gene family exhibits gene-specific expression in different spatiotemporal contexts, laying the foundation for the subsequent selection of functional genes and facilitating the full utilization of host plant volatiles and insect sex pheromones, thereby enabling the development of more efficient attractants.


Subject(s)
Coleoptera , Insect Proteins , Receptors, Odorant , Transcriptome , Animals , Coleoptera/genetics , Coleoptera/metabolism , Coleoptera/growth & development , Male , Female , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , Insect Proteins/genetics , Insect Proteins/metabolism , Gene Expression Profiling , Arthropod Antennae/metabolism , Receptors, Ionotropic Glutamate/genetics , Receptors, Ionotropic Glutamate/metabolism
13.
Int J Mol Sci ; 25(15)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39125997

ABSTRACT

The transmembrane protein ß-amyloid precursor protein (APP) is central to the pathophysiology of Alzheimer's disease (AD). The ß-amyloid hypothesis posits that aberrant processing of APP forms neurotoxic ß-amyloid aggregates, which lead to the cognitive impairments observed in AD. Although numerous additional factors contribute to AD, there is a need to better understand the synaptic function of APP. We have found that Drosophila APP-like (APPL) has both shared and non-shared roles at the synapse with Kismet (Kis), a chromatin helicase binding domain (CHD) protein. Kis is the homolog of CHD7 and CHD8, both of which are implicated in neurodevelopmental disorders including CHARGE Syndrome and autism spectrum disorders, respectively. Loss of function mutations in kis and animals expressing human APP and BACE in their central nervous system show reductions in the glutamate receptor subunit, GluRIIC, the GTPase Rab11, and the bone morphogenetic protein (BMP), pMad, at the Drosophila larval neuromuscular junction (NMJ). Similarly, processes like endocytosis, larval locomotion, and neurotransmission are deficient in these animals. Our pharmacological and epistasis experiments indicate that there is a functional relationship between Kis and APPL, but Kis does not regulate appl expression at the larval NMJ. Instead, Kis likely influences the synaptic localization of APPL, possibly by promoting rab11 transcription. These data identify a potential mechanistic connection between chromatin remodeling proteins and aberrant synaptic function in AD.


Subject(s)
Amyloid beta-Protein Precursor , Drosophila Proteins , Neuromuscular Junction , rab GTP-Binding Proteins , Animals , Neuromuscular Junction/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Protein Precursor/genetics , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Synaptic Transmission , Synapses/metabolism , Receptors, Glutamate/metabolism , Receptors, Glutamate/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Humans , DNA Helicases/metabolism , DNA Helicases/genetics , Membrane Proteins , Nerve Tissue Proteins , Homeodomain Proteins , Receptors, Ionotropic Glutamate
14.
Biophys J ; 122(12): 2383-2395, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37177782

ABSTRACT

In this article, we review contemporary evidence that GluD receptors are functional ion channels whose depolarizing currents contribute to their biological functions, akin to all other members of the ionotropic glutamate receptor (iGluR) family.


Subject(s)
Receptors, Ionotropic Glutamate
15.
Development ; 147(24)2020 12 16.
Article in English | MEDLINE | ID: mdl-33234716

ABSTRACT

The balance among different subtypes of glutamate receptors (GluRs) is crucial for synaptic function and plasticity at excitatory synapses. However, the mechanisms balancing synaptic GluR subtypes remain unclear. Herein, we show that the two subtypes of GluRs (A and B) expressed at Drosophila neuromuscular junction synapses mutually antagonize each other in terms of their relative synaptic levels and affect subsynaptic localization of each other, as shown by super-resolution microscopy. Upon temperature shift-induced neuromuscular junction plasticity, GluR subtype A increased but subtype B decreased with a timecourse of hours. Inhibition of the activity of GluR subtype A led to imbalance of GluR subtypes towards more GluRIIA. To gain a better understanding of the signalling pathways underlying the balance of GluR subtypes, we performed an RNA interference screen of candidate genes and found that postsynaptic-specific knockdown of dunce, which encodes cAMP phosphodiesterase, increased levels of GluR subtype A but decreased subtype B. Furthermore, bidirectional alterations of postsynaptic cAMP signalling resulted in the same antagonistic regulation of the two GluR subtypes. Our findings thus identify a direct role of postsynaptic cAMP signalling in control of the plasticity-related balance of GluRs.


Subject(s)
Drosophila Proteins/genetics , Neuronal Plasticity/genetics , Receptors, Ionotropic Glutamate/genetics , Synapses/genetics , Animals , Cyclic AMP/genetics , Drosophila melanogaster/genetics , Neuromuscular Junction/genetics , Neuromuscular Junction/growth & development , Receptors, Glutamate/genetics , Signal Transduction/genetics , Synaptic Transmission/genetics
16.
Biochem Soc Trans ; 51(4): 1713-1731, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37431773

ABSTRACT

N-methyl-d-aspartate receptors (NMDARs) comprise a subfamily of ionotropic glutamate receptors that form heterotetrameric ligand-gated ion channels and play fundamental roles in neuronal processes such as synaptic signaling and plasticity. Given their critical roles in brain function and their therapeutic importance, enormous research efforts have been devoted to elucidating the structure and function of these receptors and developing novel therapeutics. Recent studies have resolved the structures of NMDARs in multiple functional states, and have revealed the detailed gating mechanism, which was found to be distinct from that of other ionotropic glutamate receptors. This review provides a brief overview of the recent progress in understanding the structures of NMDARs and the mechanisms underlying their function, focusing on subtype-specific, ligand-induced conformational dynamics.


Subject(s)
Receptors, Ionotropic Glutamate , Receptors, N-Methyl-D-Aspartate , Receptors, N-Methyl-D-Aspartate/chemistry , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, Ionotropic Glutamate/chemistry , Signal Transduction , Cell Communication
17.
Org Biomol Chem ; 21(8): 1653-1656, 2023 02 22.
Article in English | MEDLINE | ID: mdl-36723220

ABSTRACT

The stereo-controlled total synthesis of (-)-domoic acid is described. The critical construction of the C1'-C2' Z-configuration was accomplished by taking advantage of an unsaturated lactam structure. The side chain fragment was introduced in the final stages of synthesis through a modified Julia-Kocienski reaction, aiming for its efficient derivatization.


Subject(s)
Harmful Algal Bloom , Receptors, Ionotropic Glutamate , Kainic Acid
18.
Nature ; 549(7670): 91-95, 2017 09 07.
Article in English | MEDLINE | ID: mdl-28737761

ABSTRACT

Glutamate receptors are well characterized channels that mediate cell-to-cell communication during neurotransmission in animals, but their functional role in organisms without a nervous system remains unclear. In plants, genes of the GLUTAMATE RECEPTOR-LIKE (GLR) family have been implicated in defence against pathogens, reproduction, control of stomata aperture and light signal transduction. However, the large number of GLR genes present in angiosperm genomes (20 to 70) has prevented the observation of strong phenotypes in loss-of-function mutants. Here we show that in the basal land plant Physcomitrella patens, mutation of the GLR genes GLR1 and GLR2 causes failure of sperm cells to target the female reproductive organs. In addition, we show that GLR genes encode non-selective Ca2+-permeable channels that can regulate cytoplasmic Ca2+ and are needed to induce the expression of a BELL1-like transcription factor essential for zygote development. Our work reveals functions for GLR channels in sperm chemotaxis and transcriptional regulation. Sperm chemotaxis is essential for fertilization in both animals and early land plants such as bryophytes and pteridophytes. Therefore, our results suggest that ionotropic glutamate receptors may have been conserved throughout plant evolution to mediate cell-to-cell communication during sexual reproduction.


Subject(s)
Bryopsida/metabolism , Chemotaxis , Receptors, Ionotropic Glutamate/metabolism , Bryopsida/embryology , Bryopsida/genetics , Calcium/metabolism , Cell Communication/genetics , Chemotaxis/genetics , Gene Expression Regulation , Genes, Essential , Mutation , Receptors, Ionotropic Glutamate/genetics , Reproduction/genetics , Transcription Factors/metabolism , Transcription, Genetic , Zygote/metabolism
19.
Proc Natl Acad Sci U S A ; 117(41): 25851-25858, 2020 10 13.
Article in English | MEDLINE | ID: mdl-32999066

ABSTRACT

Ionotropic glutamate receptors (iGluRs) are key molecules for synaptic signaling in the central nervous system, which makes them promising drug targets. Intensive efforts are being devoted to the development of subunit-selective ligands, which should enable more precise pharmacologic interventions while limiting the effects on overall neuronal circuit function. However, many AMPA and kainate receptor complexes in vivo are heteromers composed of different subunits. Despite their importance, little is known about how subunit-selective ligands affect the gating of heteromeric iGluRs, namely their activation and desensitization properties. Using fast ligand application experiments, we studied the effects of competitive antagonists that block glutamate from binding at part of the four subunits. We found that UBP-310, a kainate receptor antagonist with high selectivity for GluK1 subunits, reduces the desensitization of GluK1/GluK2 heteromers and fully abolishes the desensitization of GluK1/GluK5 heteromers. This effect is mirrored by subunit-selective agonists and heteromeric receptors that contain binding-impaired subunits, as we show for both kainate and GluA2 AMPA receptors. These findings are consistent with a model in which incomplete agonist occupancy at the four receptor subunits can provide activation without inducing desensitization. However, we did not detect significant steady-state currents during UBP-310 dissociation from GluK1 homotetramers, indicating that antagonist dissociation proceeds in a nonuniform and cooperativity-driven manner, which disfavors nondesensitizing occupancy states. Besides providing mechanistic insights, these results have direct implications for the use of subunit-selective antagonists in neuroscience research and envisioned therapeutic interventions.


Subject(s)
Protein Subunits/antagonists & inhibitors , Receptors, Ionotropic Glutamate/chemistry , Receptors, Ionotropic Glutamate/metabolism , Dimerization , HEK293 Cells , Humans , Ligands , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , Receptors, Ionotropic Glutamate/antagonists & inhibitors , Receptors, Ionotropic Glutamate/genetics
20.
Int J Mol Sci ; 24(18)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37762075

ABSTRACT

Glutamate ionotropic receptors mediate fast excitation processes in the central nervous system of vertebrates and play an important role in synaptic plasticity, learning, and memory. Here, we describe the action of two azobenene-containing compounds, AAQ (acrylamide-azobenzene-quaternary ammonium) and QAQ (quaternary ammonium-azobenzene-quaternary ammonium), which produced rapid and fully reversible light-dependent inhibition of glutamate ionotropic receptors. The compounds demonstrated voltage-dependent inhibition with only minor voltage-independent allosteric action. Calcium-impermeable AMPA receptors had weaker sensitivity compared to NMDA and calcium-permeable AMPA receptors. We further revealed that the compounds bound to NMDA and calcium-permeable AMPA receptors in different modes. They were able to enter the wide selectivity filter of AMPA receptors, and strong negative voltages caused permeation into the cytoplasm. The narrow selectivity filter of the NMDA receptors did not allow the molecules to bypass them; therefore, QAQ and AAQ bound to the shallow channel site and prevented channel closure by a foot-in-the-door mechanism. Computer simulations employing available AMPA and NMDA receptor structures readily reproduced the experimental findings, allowing for the structure-based design of more potent and selective drugs in the future. Thus, our work creates a framework for the development of light-sensitive blockers of calcium-permeable AMPA receptors, which are desirable tools for neuroscience.


Subject(s)
Ammonium Compounds , Receptors, AMPA , Animals , Receptors, AMPA/metabolism , Receptors, Ionotropic Glutamate , Ammonium Compounds/pharmacology , Ammonium Compounds/metabolism , N-Methylaspartate , Calcium/metabolism , Receptors, Glutamate/metabolism , Receptors, N-Methyl-D-Aspartate , Glutamates
SELECTION OF CITATIONS
SEARCH DETAIL