Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.440
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Immunity ; 57(8): 1828-1847.e11, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39002541

ABSTRACT

Interaction of mast cells (MCs) with fibroblasts is essential for MC maturation within tissue microenvironments, although the underlying mechanism is incompletely understood. Through a phenotypic screening of >30 mouse lines deficient in lipid-related genes, we found that deletion of the lysophosphatidic acid (LPA) receptor LPA1, like that of the phospholipase PLA2G3, the prostaglandin D2 (PGD2) synthase L-PGDS, or the PGD2 receptor DP1, impairs MC maturation and thereby anaphylaxis. Mechanistically, MC-secreted PLA2G3 acts on extracellular vesicles (EVs) to supply lysophospholipids, which are converted by fibroblast-derived autotaxin (ATX) to LPA. Fibroblast LPA1 then integrates multiple pathways required for MC maturation by facilitating integrin-mediated MC-fibroblast adhesion, IL-33-ST2 signaling, L-PGDS-driven PGD2 generation, and feedforward ATX-LPA1 amplification. Defective MC maturation resulting from PLA2G3 deficiency is restored by supplementation with LPA1 agonists or PLA2G3-modified EVs. Thus, the lipid-orchestrated paracrine circuit involving PLA2G3-driven lysophospholipid, eicosanoid, integrin, and cytokine signaling fine-tunes MC-fibroblast communication, ensuring MC maturation.


Subject(s)
Anaphylaxis , Fibroblasts , Lysophospholipids , Mast Cells , Mice, Knockout , Paracrine Communication , Phosphoric Diester Hydrolases , Receptors, Lysophosphatidic Acid , Signal Transduction , Animals , Mast Cells/immunology , Mast Cells/metabolism , Anaphylaxis/immunology , Anaphylaxis/metabolism , Mice , Fibroblasts/metabolism , Lysophospholipids/metabolism , Receptors, Lysophosphatidic Acid/metabolism , Receptors, Lysophosphatidic Acid/genetics , Phosphoric Diester Hydrolases/metabolism , Phosphoric Diester Hydrolases/genetics , Prostaglandin D2/metabolism , Extracellular Vesicles/metabolism , Interleukin-33/metabolism , Intramolecular Oxidoreductases/metabolism , Intramolecular Oxidoreductases/genetics , Receptors, Prostaglandin/metabolism , Receptors, Prostaglandin/genetics , Cell Differentiation , Mice, Inbred C57BL , Interleukin-1 Receptor-Like 1 Protein , Lipocalins
2.
Cell ; 161(7): 1633-43, 2015 Jun 18.
Article in English | MEDLINE | ID: mdl-26091040

ABSTRACT

Lipid biology continues to emerge as an area of significant therapeutic interest, particularly as the result of an enhanced understanding of the wealth of signaling molecules with diverse physiological properties. This growth in knowledge is epitomized by lysophosphatidic acid (LPA), which functions through interactions with at least six cognate G protein-coupled receptors. Herein, we present three crystal structures of LPA1 in complex with antagonist tool compounds selected and designed through structural and stability analyses. Structural analysis combined with molecular dynamics identified a basis for ligand access to the LPA1 binding pocket from the extracellular space contrasting with the proposed access for the sphingosine 1-phosphate receptor. Characteristics of the LPA1 binding pocket raise the possibility of promiscuous ligand recognition of phosphorylated endocannabinoids. Cell-based assays confirmed this hypothesis, linking the distinct receptor systems through metabolically related ligands with potential functional and therapeutic implications for treatment of disease.


Subject(s)
Crystallography, X-Ray , Binding Sites , Chromatography, Gel , Humans , Ligands , Models, Molecular , Receptors, Lysophosphatidic Acid/antagonists & inhibitors , Receptors, Lysosphingolipid/chemistry , Small Molecule Libraries
3.
Immunol Rev ; 317(1): 203-222, 2023 08.
Article in English | MEDLINE | ID: mdl-37096808

ABSTRACT

Lysophosphatidic acid (LPA) is an endogenous bioactive lipid that is produced extracellularly and signals to cells via cognate LPA receptors, which are G-protein coupled receptors (GPCRs). Mature lymphocytes in mice and humans express three LPA receptors, LPA2 , LPA5, and LPA6 , and work from our group has determined that LPA5 signaling by T lymphocytes inhibits specific antigen-receptor signaling pathways that ultimately impair lymphocyte activation, proliferation, and function. In this review, we discuss previous and ongoing work characterizing the ability of an LPA-LPA5 axis to serve as a peripheral immunological tolerance mechanism that restrains adaptive immunity but is subverted during settings of chronic inflammation. Specifically, LPA-LPA5 signaling is found to regulate effector cytotoxic CD8 T cells by (at least) two mechanisms: (i) regulating the actin-microtubule cytoskeleton in a manner that impairs immunological synapse formation between an effector CD8 T cell and antigen-specific target cell, thus directly impairing cytotoxic activity, and (ii) shifting T-cell metabolism to depend on fatty-acid oxidation for mitochondrial respiration and reducing metabolic efficiency. The in vivo outcome of LPA5 inhibitory activity impairs CD8 T-cell killing and tumor immunity in mouse models providing impetus to consider LPA5 antagonism for the treatment of malignancies and chronic infections.


Subject(s)
Antineoplastic Agents , CD8-Positive T-Lymphocytes , Humans , Mice , Animals , Lysophospholipids/metabolism , Signal Transduction , Receptors, Lysophosphatidic Acid/metabolism
4.
Proc Natl Acad Sci U S A ; 119(28): e2204174119, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35787042

ABSTRACT

Myocardial fibrosis is a key pathologic feature of hypertrophic cardiomyopathy (HCM). However, the fibrotic pathways activated by HCM-causing sarcomere protein gene mutations are poorly defined. Because lysophosphatidic acid is a mediator of fibrosis in multiple organs and diseases, we tested the role of the lysophosphatidic acid pathway in HCM. Lysphosphatidic acid receptor 1 (LPAR1), a cell surface receptor, is required for lysophosphatidic acid mediation of fibrosis. We bred HCM mice carrying a pathogenic myosin heavy-chain variant (403+/-) with Lpar1-ablated mice to create mice carrying both genetic changes (403+/- LPAR1 -/-) and assessed development of cardiac hypertrophy and fibrosis. Compared with 403+/- LPAR1WT, 403+/- LPAR1 -/- mice developed significantly less hypertrophy and fibrosis. Single-nucleus RNA sequencing of left ventricular tissue demonstrated that Lpar1 was predominantly expressed by lymphatic endothelial cells (LECs) and cardiac fibroblasts. Lpar1 ablation reduced the population of LECs, confirmed by immunofluorescence staining of the LEC markers Lyve1 and Ccl21a and, by in situ hybridization, for Reln and Ccl21a. Lpar1 ablation also altered the distribution of fibroblast cell states. FB1 and FB2 fibroblasts decreased while FB0 and FB3 fibroblasts increased. Our findings indicate that Lpar1 is expressed predominantly by LECs and fibroblasts in the heart and is required for development of hypertrophy and fibrosis in an HCM mouse model. LPAR1 antagonism, including agents in clinical trials for other fibrotic diseases, may be beneficial for HCM.


Subject(s)
Cardiomyopathy, Hypertrophic , Receptors, Lysophosphatidic Acid/genetics , Animals , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/pathology , Carrier Proteins , Disease Models, Animal , Endothelial Cells/pathology , Fibrosis , Hypertrophy/pathology , Mice
5.
Proc Natl Acad Sci U S A ; 119(15): e2118816119, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35394866

ABSTRACT

Cancer and chronic infections often increase levels of the bioactive lipid, lysophosphatidic acid (LPA), that we have demonstrated acts as an inhibitory ligand upon binding LPAR5 on CD8 T cells, suppressing cytotoxic activity and tumor control. This study, using human and mouse primary T lymphocytes, reveals how LPA disrupts antigen-specific CD8 T cell:target cell immune synapse (IS) formation and T cell function via competing for cytoskeletal regulation. Specifically, we find upon antigen-specific T cell:target cell formation, IP3R1 localizes to the IS by a process dependent on mDia1 and actin and microtubule polymerization. LPA not only inhibited IP3R1 from reaching the IS but also altered T cell receptor (TCR)­induced localization of RhoA and mDia1 impairing F-actin accumulation and altering the tubulin code. Consequently, LPA impeded calcium store release and IS-directed cytokine secretion. Thus, targeting LPA signaling in chronic inflammatory conditions may rescue T cell function and promote antiviral and antitumor immunity.


Subject(s)
CD8-Positive T-Lymphocytes , Immunological Synapses , Infections , Lysophospholipids , Neoplasms , Animals , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Cytoskeleton/drug effects , Cytoskeleton/immunology , Humans , Immunological Synapses/drug effects , Immunological Synapses/immunology , Infections/immunology , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Lysophospholipids/metabolism , Lysophospholipids/pharmacology , Mice , Neoplasms/immunology , Receptors, Lysophosphatidic Acid/metabolism
6.
BMC Bioinformatics ; 25(1): 208, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38849719

ABSTRACT

BACKGROUND: Drug design is a challenging and important task that requires the generation of novel and effective molecules that can bind to specific protein targets. Artificial intelligence algorithms have recently showed promising potential to expedite the drug design process. However, existing methods adopt multi-objective approaches which limits the number of objectives. RESULTS: In this paper, we expand this thread of research from the many-objective perspective, by proposing a novel framework that integrates a latent Transformer-based model for molecular generation, with a drug design system that incorporates absorption, distribution, metabolism, excretion, and toxicity prediction, molecular docking, and many-objective metaheuristics. We compared the performance of two latent Transformer models (ReLSO and FragNet) on a molecular generation task and show that ReLSO outperforms FragNet in terms of reconstruction and latent space organization. We then explored six different many-objective metaheuristics based on evolutionary algorithms and particle swarm optimization on a drug design task involving potential drug candidates to human lysophosphatidic acid receptor 1, a cancer-related protein target. CONCLUSION: We show that multi-objective evolutionary algorithm based on dominance and decomposition performs the best in terms of finding molecules that satisfy many objectives, such as high binding affinity and low toxicity, and high drug-likeness. Our framework demonstrates the potential of combining Transformers and many-objective computational intelligence for drug design.


Subject(s)
Algorithms , Drug Design , Humans , Molecular Docking Simulation , Receptors, Lysophosphatidic Acid/metabolism , Receptors, Lysophosphatidic Acid/chemistry , Artificial Intelligence
7.
Am J Physiol Gastrointest Liver Physiol ; 326(6): G631-G642, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38593468

ABSTRACT

Lysophosphatidic acid (LPA) is a bioactive lipid molecule that regulates a wide array of cellular functions, including proliferation, differentiation, and survival, via activation of cognate receptors. The LPA5 receptor is highly expressed in the intestinal epithelium, but its function in restoring intestinal epithelial integrity following injury has not been examined. Here, we use a radiation-induced injury model to study the role of LPA5 in regulating intestinal epithelial regeneration. Control mice (Lpar5f/f) and mice with an inducible, epithelial cell-specific deletion of Lpar5 in the small intestine (Lpar5IECKO) were subjected to 10 Gy total body X-ray irradiation and analyzed during recovery. Repair of the intestinal mucosa was delayed in Lpar5IECKO mice with reduced epithelial proliferation and increased crypt cell apoptosis. These effects were accompanied by reduced numbers of OLFM4+ intestinal stem cells (ISCs). The effects of LPA5 on ISCs were corroborated by studies using organoids derived from Lgr5-lineage tracking reporter mice with deletion of Lpar5 in Lgr5+-stem cells (Lgr5Cont or Lgr5ΔLpar5). Irradiation of organoids resulted in fewer numbers of Lgr5ΔLpar5 organoids retaining Lgr5+-derived progenitor cells compared with Lgr5Cont organoids. Finally, we observed that impaired regeneration in Lpar5IECKO mice was associated with reduced numbers of Paneth cells and decreased expression of Yes-associated protein (YAP), a critical factor for intestinal epithelial repair. Our study highlights a novel role for LPA5 in regeneration of the intestinal epithelium following irradiation and its effect on the maintenance of Paneth cells that support the stem cell niche.NEW & NOTEWORTHY We used mice lacking expression of the lysophosphatidic acid receptor 5 (LPA5) in intestinal epithelial cells and intestinal organoids to show that the LPA5 receptor protects intestinal stem cells and progenitors from radiation-induced injury. We show that LPA5 induces YAP signaling and regulates Paneth cells.


Subject(s)
Intestinal Mucosa , Receptors, Lysophosphatidic Acid , Regeneration , Signal Transduction , Animals , Mice , Apoptosis/radiation effects , Cell Proliferation/radiation effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/radiation effects , Intestine, Small/radiation effects , Intestine, Small/metabolism , Lysophospholipids/metabolism , Mice, Knockout , Organoids/metabolism , Organoids/radiation effects , Radiation Injuries, Experimental/metabolism , Radiation Injuries, Experimental/pathology , Receptors, Lysophosphatidic Acid/metabolism , Receptors, Lysophosphatidic Acid/genetics , Regeneration/radiation effects , Stem Cells/radiation effects , Stem Cells/metabolism , YAP-Signaling Proteins/metabolism
8.
Biochem Biophys Res Commun ; 715: 149982, 2024 06 30.
Article in English | MEDLINE | ID: mdl-38676998

ABSTRACT

The tumor microenvironment is an extremely complex composed of cancer cells and various non-cancer cells, including lymphatic endothelial cells. Lysophosphatidic acid (LPA) receptors (LPA1 to LPA6) activate a variety of malignant properties in human malignancies. In the present study, we examined the roles of LPA receptor-mediated signaling in biological responses of lymphatic endothelial SVEC4-10 cells induced by hypoxia. Lpar1, Lpar2 and Lpar3 expressions were decreased in SVEC4-10 cells cultured at hypoxic conditions (1 % O2). LPA had no impact on the cell growth activity of SVEC4-10 cells in 21 % O2 culture conditions. Conversely, the cell growth activity of SVEC4-10 cells in 1 % O2 culture conditions was reduced by LPA. The cell motile activity of SVEC4-10 cells was elevated by 1 % O2 culture conditions. GRI-977143 (LPA2 agonist) and (2S)-OMPT (LPA3 agonist) stimulated SVEC4-10 cell motility as well as AM966 (LPA1 antagonist). In tube formation assay, the tube formation of SVEC4-10 cells in 1 % O2 culture conditions was markedly increased, in comparison with 21 % O2. GRI-977143 and (2S)-OMPT elevated the tube formation of SVEC4-10 cells. Furthermore, the tube formation of SVEC4-10 cells was increased by AM966. These results suggest that LPA receptor-mediated signaling contributes to the modulation of hypoxic-induced biological functions of lymphatic endothelial cells.


Subject(s)
Cell Hypoxia , Cell Movement , Endothelial Cells , Lysophospholipids , Receptors, Lysophosphatidic Acid , Animals , Humans , Mice , Cell Line , Cell Movement/drug effects , Cell Proliferation/drug effects , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Lysophospholipids/metabolism , Receptors, Lysophosphatidic Acid/metabolism , Receptors, Lysophosphatidic Acid/genetics , Signal Transduction , Lymphoid Tissue/cytology , Lymphoid Tissue/metabolism
9.
J Bioenerg Biomembr ; 56(4): 475-482, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38886303

ABSTRACT

Lysophosphatidic acid (LPA) is a simple lipid which is endogenously synthesized from lysophosphatidylcholine (LPC) by autotaxin (ATX). LPA mediates a variety of cellular responses through the binding of G protein-coupled LPA receptors (LPA1 to LPA6). It is considered that LPA receptor-mediated signaling plays an important role in the pathogenesis of human malignancy. Genetic alterations and epigenetic changes of LPA receptors have been detected in some cancer cells as well as LPA per se. Moreover, LPA receptors contribute to the promotion of tumor progression, including cell proliferation, invasion, metastasis, tumorigenicity, and angiogenesis. In recent studies, the activation of LPA receptor-mediated signaling regulates chemoresistance and radiosensitivity in cancer cells. This review provides an updated overview on the roles of LPA receptor-mediated signaling in the regulation of cancer cell functions and its potential utility as a molecular target for novel therapies in clinical cancer approaches.


Subject(s)
Neoplasms , Receptors, Lysophosphatidic Acid , Signal Transduction , Humans , Receptors, Lysophosphatidic Acid/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Lysophospholipids/metabolism , Animals
10.
BMC Cancer ; 24(1): 325, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459434

ABSTRACT

INTRODUCTION: T-cell acute lymphoblastic leukemia (T-ALL) is a genetically heterogeneous disease with poor prognosis and inferior outcome. Although multiple studies have been perform on genomics of T-ALL, data from Indian sub-continent is scarce. METHODS: In the current study we aimed to identify the genetic variability of T-ALL in an Indian cohort of pediatric (age ≤ 12 years) T-ALL patients (n = 25) by whole transcriptome sequencing along with whole exome sequencing and correlated the findings with clinical characteristics and disease outcome. RESULTS: The median age was 7 years (range 3 -12 years). RNA sequencing revealed a definitive fusion event in 14 cases (56%) (including a novel fusions) with STIL::TAL1 in 4 (16%), followed by NUP21::ABL1, TCF7::SPI1, ETV6::HDAC8, LMO1::RIC3, DIAPH1::JAK2, SETD2::CCDC12 and RCBTB2::LPAR6 in 1 (4%) case each. Significant aberrant expression was noted in RAG1 (64%), RAG2 (80%), MYCN (52%), NKX3-1 (52%), NKX3-2 (32%), TLX3 (28%), LMO1 (20%) and MYB (16%) genes. WES data showed frequent mutations in NOTCH1 (35%) followed by WT1 (23%), FBXW7 (12%), KRAS (12%), PHF6 (12%) and JAK3 (12%). Nearly 88.2% of cases showed a deletion of CDKN2A/CDKN2B/MTAP genes. Clinically significant association of a better EFS and OS (p=0.01) was noted with RAG2 over-expression at a median follow up of 22 months, while a poor EFS (p=0.041) and high relapse rate (p=0.045) was observed with MYB over-expression. CONCLUSION: Overall, the present study demonstrates the frequencies of transcriptomic and genetic alterations from Indian cohort of pediatric T-ALL and is a salient addition to current genomics data sets available in T-ALL.


Subject(s)
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Child , Humans , Child, Preschool , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Transcriptome , Tertiary Care Centers , Transcription Factors/genetics , Mutation , T-Lymphocytes , Prognosis , Formins/genetics , Histone Deacetylases , Repressor Proteins/genetics , Receptors, Lysophosphatidic Acid/genetics
11.
Anticancer Drugs ; 35(8): 741-751, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38820067

ABSTRACT

OBJECTIVE: To explore the mechanism of anlotinib resistance in thyroid carcinoma. METHODS: We constructed an anlotinib-resistant thyroid carcinoma cell line and observed the effect of drug resistance on the functional activity of these cell lines. Transcriptome sequencing and metabolomic sequencing combined with biosynthesis analysis were used to explore and screen possible drug resistance regulatory pathways. RESULTS: Through transcriptomic sequencing analysis of drug-resistant cell lines, it was found that the differentially expressed genes of drug-resistant strains were enriched mainly in the interleukin 17, transforming growth factor-ß, calcium, peroxisome proliferator activated receptor, and other key signaling pathways. A total of 354 differentially expressed metabolic ions were screened using liquid chromatography-mass spectrometry/mass spectrometry to determine the number of metabolic ions in the drug-resistant strains. The results of the Venn diagram correlation analysis showed that glutamate is closely related to multiple pathways and may be an important regulatory factor of anlotinib resistance in thyroid carcinoma. In addition, eight common differentially expressed genes were screened by comparing the gene expression profiling interactive analysis database and sequencing results. Further quantitative real time polymerase chain reaction verification, combined with reports in the literature, showed that LPAR1 may be an important potential target. CONCLUSION: This is the first study in which the drug resistance of thyroid cancer to anlotinib was preliminarily discussed. We confirmed that anlotinib resistance in thyroid cancer promotes the progression of malignant biological behavior. We conclude that glutamate may be a potential factor for anlotinib resistance in thyroid cancer and that LPAR1 is also a potentially important target.


Subject(s)
Drug Resistance, Neoplasm , Glutamic Acid , Indoles , Quinolines , Thyroid Neoplasms , Transcriptome , Humans , Thyroid Neoplasms/genetics , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/pathology , Thyroid Neoplasms/metabolism , Quinolines/pharmacology , Indoles/pharmacology , Glutamic Acid/metabolism , Cell Line, Tumor , Metabolome , Receptors, Lysophosphatidic Acid/genetics , Receptors, Lysophosphatidic Acid/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Gene Expression Regulation, Neoplastic
12.
Circ Res ; 131(5): 388-403, 2022 08 19.
Article in English | MEDLINE | ID: mdl-35920162

ABSTRACT

RATIONALE: Myocardial infarction (MI) is one of the most dangerous adverse cardiovascular events. Our previous study found that lysophosphatidic acid (LPA) is increased in human peripheral blood after MI, and LPA has a protective effect on the survival and proliferation of various cell types. However, the role of LPA and its receptors in MI is less understood. OBJECTIVES: To study the unknown role of LPA and its receptors in heart during MI. METHODS AND RESULTS: In this study, we found that mice also had elevated LPA level in peripheral blood, as well as increased cardiac expression of its receptor LPA2 in the early stages after MI. With adult and neonate MI models in global Lpar2 knockout (Lpar2-KO) mice, we found Lpar2 deficiency increased vascular leak leading to disruption of its homeostasis, so as to impaired heart function and increased early mortality. Histological examination revealed larger scar size, increased fibrosis, and reduced vascular density in the heart of Lpar2-KO mice. Furthermore, Lpar2-KO also attenuated blood flow recovery after femoral artery ligation with decreased vascular density in gastrocnemius. Our study revealed that Lpar2 was mainly expressed and altered in cardiac endothelial cells during MI, and use of endothelial-specific Lpar2 knockout mice phenocopied the global knockout mice. Additionally, adenovirus-Lpar2 and pharmacologically activated LPA2 significantly improved heart function, reduced scar size, increased vascular formation, and alleviated early mortality by maintaining vascular homeostasis owing to protecting vessels from leakage. Mechanistic studies demonstrated that LPA-LPA2 signaling could promote endothelial cell proliferation through PI3K-Akt/PLC-Raf1-Erk pathway and enhanced endothelial cell tube formation via PKD1-CD36 signaling. CONCLUSIONS: Our results indicate that endothelial LPA-LPA2 signaling promotes angiogenesis and maintains vascular homeostasis, which is vital for restoring blood flow and repairing tissue function in ischemic injuries. Targeting LPA-LPA2 signal might have clinical therapeutic potential to protect the heart from ischemic injury.


Subject(s)
Myocardial Infarction , Receptors, Lysophosphatidic Acid , Animals , Cicatrix , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Homeostasis , Humans , Lysophospholipids , Mice , Mice, Knockout , Myocardial Infarction/genetics , Phosphatidylinositol 3-Kinases , Receptors, Lysophosphatidic Acid/genetics , Receptors, Lysophosphatidic Acid/metabolism , Ventricular Remodeling
13.
Pharmacol Res ; 203: 107172, 2024 May.
Article in English | MEDLINE | ID: mdl-38583685

ABSTRACT

Although anti-TNF antibodies are extensively used to treat Crohn's disease (CD), a significant proportion of patients, up to 40%, exhibit an inadequate response to this therapy. Our objective was to identify potential targets that could improve the effectiveness of anti-TNF therapy in CD. Through the integration and analysis of transcriptomic data from various CD databases, we found that the expression of AQP9 was significantly increased in anti-TNF therapy-resistant specimens. The response to anti-TNF therapy in the CD mouse model was significantly enhanced by specifically inhibiting AQP9. Further experiments found that the blockade of AQP9, which is dominantly expressed in macrophages, decreased inflamed macrophage functions and cytokine expression. Mechanistic studies revealed that AQP9 transported glycerol into macrophages, where it was metabolized to LPA, which was further metabolized to LPA, resulting in the activation of the LPAR2 receptor and downstream hippo pathway, finally promoting the expression of cytokines, especially IL23 and IL1ß⊡ Taken together, the expansion of AQP9+ macrophages is associated with resistance to anti-TNF therapy in Crohn's disease. These findings indicated that AQP9 could be a potential target for enhancing anti-TNF therapy in Crohn's disease.


Subject(s)
Aquaporins , Crohn Disease , Hippo Signaling Pathway , Lysophospholipids , Macrophages , Animals , Humans , Male , Mice , Aquaporins/metabolism , Aquaporins/genetics , Aquaporins/antagonists & inhibitors , Crohn Disease/drug therapy , Crohn Disease/metabolism , Cytokines/metabolism , Hippo Signaling Pathway/drug effects , Lysophospholipids/metabolism , Macrophages/metabolism , Macrophages/drug effects , Mice, Inbred C57BL , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Receptors, Lysophosphatidic Acid/antagonists & inhibitors , Receptors, Lysophosphatidic Acid/metabolism , Signal Transduction/drug effects , Tumor Necrosis Factor Inhibitors/therapeutic use , Tumor Necrosis Factor Inhibitors/pharmacology , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/metabolism
14.
Prostaglandins Other Lipid Mediat ; 174: 106863, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38936540

ABSTRACT

Myocardial ischemia/reperfusion (MI/R) injury is a detrimental disease with high mortality worldwide. We aimed to explore the role of G protein-coupled receptor 4 (GPR4) and lysophosphatidic acid receptor 1 (LPAR1) in MI/R injury in vitro. H9c2 cells were exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) conditions to simulate the MI/R injury and GPR4 expression was detected. Then, GPR4 was knocked down and cell viability was examined with a CCK-8 assay. The activities of LDH, CK and CK-MB were detected to evaluate the damage of OGD/R-induced H9c2 cells. ELISA kits and TUNEL staining were used to examine the inflammation and apoptosis of H9c2 cells exposed to OGD/R conditions. Western blot was employed to detect the expression of proteins related to apoptosis and NLRP3 inflammasome signaling. Additionally, Co-IP analyzed the binding between GPR4 and LPAR1. Finally, LPAR1 was overexpressed to conduct the rescue experiments. Results revealed that GPR4 was upregulated in OGD/R-treated H9c2 cells and GPR4 knockdown attenuated the damage of H9c2 cells. OGD/R induced inflammation and apoptosis were markedly inhibited by GPR4 silencing, as evidenced by the decreased TNF-α, IL-6 and IL-8 levels as well as the elevated Bcl-2 expression and reduced Bax and cleaved caspase3 expression. Moreover, GPR4 bound to LPAR1 and upregulated LPAR1 expression. Interference with GPR4 inactivated the NLRP3 inflammasome signaling. Besides, LPAR1 overexpression abrogated the effects of GPR4 silencing on the damage, inflammation and apoptosis of H9c2 cells induced by OGD/R. Particularly, LPAR1 upregulation promoted the activation of NLRP3 inflammasome signaling in GPR4-silenced H9c2 cells induced by OGD/R. To be concluded, GPR4 deficiency inactivates NLRP3 inflammasome signaling by inhibiting LPAR1 expression to ameliorate OGD/R -induced inflammation and apoptosis of cardiomyocytes.


Subject(s)
Apoptosis , Glucose , Inflammation , Myocytes, Cardiac , NLR Family, Pyrin Domain-Containing 3 Protein , Oxygen , Receptors, Lysophosphatidic Acid , Signal Transduction , Animals , Rats , Cell Line , Glucose/metabolism , Glucose/deficiency , Inflammasomes/metabolism , Inflammation/metabolism , Inflammation/pathology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/genetics , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Oxygen/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, Lysophosphatidic Acid/metabolism , Receptors, Lysophosphatidic Acid/genetics
15.
Cell ; 138(6): 1222-35, 2009 Sep 18.
Article in English | MEDLINE | ID: mdl-19766573

ABSTRACT

Plasticity related gene-1 (PRG-1) is a brain-specific membrane protein related to lipid phosphate phosphatases, which acts in the hippocampus specifically at the excitatory synapse terminating on glutamatergic neurons. Deletion of prg-1 in mice leads to epileptic seizures and augmentation of EPSCs, but not IPSCs. In utero electroporation of PRG-1 into deficient animals revealed that PRG-1 modulates excitation at the synaptic junction. Mutation of the extracellular domain of PRG-1 crucial for its interaction with lysophosphatidic acid (LPA) abolished the ability to prevent hyperexcitability. As LPA application in vitro induced hyperexcitability in wild-type but not in LPA(2) receptor-deficient animals, and uptake of phospholipids is reduced in PRG-1-deficient neurons, we assessed PRG-1/LPA(2) receptor-deficient animals, and found that the pathophysiology observed in the PRG-1-deficient mice was fully reverted. Thus, we propose PRG-1 as an important player in the modulatory control of hippocampal excitability dependent on presynaptic LPA(2) receptor signaling.


Subject(s)
Proteoglycans/metabolism , Synapses/metabolism , Vesicular Transport Proteins/metabolism , Animals , Electroencephalography , Hippocampus/chemistry , Hippocampus/cytology , Hippocampus/metabolism , Lysophospholipids/metabolism , Mice , Mice, Knockout , Proteoglycans/analysis , Proteoglycans/genetics , Receptors, AMPA/metabolism , Receptors, Lysophosphatidic Acid/metabolism , Signal Transduction , Vesicular Transport Proteins/analysis , Vesicular Transport Proteins/genetics
16.
Acta Pharmacol Sin ; 45(2): 339-353, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37816857

ABSTRACT

Lysophosphatidic acid (LPA) is a bioactive phospholipid mediator that has been found to ameliorate nonsteroidal anti-inflammatory drug (NSAID)-induced gastric injury by acting on lysophosphatidic acid type 2 receptor (LPAR2). In this study, we investigated whether LPAR2 signaling was implicated in the development of NSAID-induced small intestinal injury (enteropathy), another major complication of NSAID use. Wild-type (WT) and Lpar2 deficient (Lpar2-/-) mice were treated with a single, large dose (20 or 30 mg/kg, i.g.) of indomethacin (IND). The mice were euthanized at 6 or 24 h after IND treatment. We showed that IND-induced mucosal enteropathy and neutrophil recruitment occurred much earlier (at 6 h after IND treatment) in Lpar2-/- mice compared to WT mice, but the tissue levels of inflammatory mediators (IL-1ß, TNF-α, inducible COX-2, CAMP) remained at much lower levels. Administration of a selective LPAR2 agonist DBIBB (1, 10 mg/kg, i.g., twice at 24 h and 30 min before IND treatment) dose-dependently reduced mucosal injury and neutrophil activation in enteropathy, but it also enhanced IND-induced elevation of several proinflammatory chemokines and cytokines. By assessing caspase-3 activation, we found significantly increased intestinal apoptosis in IND-treated Lpar2-/- mice, but it was attenuated after DBIBB administration, especially in non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice. Finally, we showed that IND treatment reduced the plasma activity and expression of autotaxin (ATX), the main LPA-producing enzyme, and also reduced the intestinal expression of Lpar2 mRNA, which preceded the development of mucosal damage. We conclude that LPAR2 has a dual role in NSAID enteropathy, as it contributes to the maintenance of mucosal integrity after NSAID exposure, but also orchestrates the inflammatory responses associated with ulceration. Our study suggests that IND-induced inhibition of the ATX-LPAR2 axis is an early event in the pathogenesis of enteropathy.


Subject(s)
Diabetes Mellitus, Type 2 , Intestinal Diseases , Lysophospholipids , Mice , Animals , Receptors, Lysophosphatidic Acid/genetics , Receptors, Lysophosphatidic Acid/metabolism , Mice, Inbred NOD , Mice, SCID , Anti-Inflammatory Agents, Non-Steroidal , Indomethacin/adverse effects , Intestinal Diseases/chemically induced
17.
Mol Ther ; 31(9): 2633-2650, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37482682

ABSTRACT

Chromatin remodeling and N6-methyladenosine (m6A) modification are two critical layers in controlling gene expression and DNA damage signaling in most eukaryotic bioprocesses. Here, we report that poly(ADP-ribose) polymerase 1 (PARP1) controls the chromatin accessibility of METTL3 to regulate its transcription and subsequent m6A methylation of poly(A)+ RNA in response to DNA damage induced by radiation. The transcription factors nuclear factor I-C (NFIC) and TATA binding protein (TBP) are dependent on PARP1 to access the METTL3 promoter to activate METTL3 transcription. Upon irradiation or PARP1 inhibitor treatment, PARP1 disassociated from METTL3 promoter chromatin, which resulted in attenuated accessibility of NFIC and TBP and, consequently, suppressed METTL3 expression and RNA m6A methylation. Lysophosphatidic Acid Receptor 5 (LPAR5) mRNA was identified as a target of METTL3, and m6A methylation was located at A1881. The level of m6A methylation of LPAR5 significantly decreased, along with METTL3 depression, in cells after irradiation or PARP1 inhibition. Mutation of the LPAR5 A1881 locus in its 3' UTR results in loss of m6A methylation and, consequently, decreased stability of LPAR5 mRNA. METTL3-targeted small-molecule inhibitors depress murine xenograft tumor growth and exhibit a synergistic effect with radiotherapy in vivo. These findings advance our comprehensive understanding of PARP-related biological roles, which may have implications for developing valuable therapeutic strategies for PARP1 inhibitors in oncology.


Subject(s)
Chromatin , Neoplasms , Humans , Mice , Animals , Chromatin/genetics , Methylation , RNA/metabolism , Transcription Factors/genetics , RNA, Messenger/genetics , Neoplasms/genetics , Neoplasms/radiotherapy , Methyltransferases/genetics , Methyltransferases/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , Receptors, Lysophosphatidic Acid/genetics , Receptors, Lysophosphatidic Acid/metabolism
18.
Lipids Health Dis ; 23(1): 204, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943207

ABSTRACT

Malignant bone tumors, including primary bone cancer and metastatic bone tumors, are a significant clinical challenge due to their high frequency of presentation, poor prognosis and lack of effective treatments and therapies. Bone tumors are often accompanied by skeletal complications such as bone destruction and cancer-induced bone pain. However, the mechanisms involved in bone cancer progression, bone metastasis and skeletal complications remain unclear. Lysophosphatidic acid (LPA), an intercellular lipid signaling molecule that exerts a wide range of biological effects mainly through specifically binding to LPA receptors (LPARs), has been found to be present at high levels in the ascites of bone tumor patients. Numerous studies have suggested that LPA plays a role in primary malignant bone tumors, bone metastasis, and skeletal complications. In this review, we summarize the role of LPA signaling in primary bone cancer, bone metastasis and skeletal complications. Modulating LPA signaling may represent a novel avenue for future therapeutic treatments for bone cancer, potentially improving patient prognosis and quality of life.


Subject(s)
Bone Neoplasms , Lysophospholipids , Receptors, Lysophosphatidic Acid , Signal Transduction , Humans , Lysophospholipids/metabolism , Bone Neoplasms/secondary , Bone Neoplasms/metabolism , Bone Neoplasms/drug therapy , Bone Neoplasms/pathology , Signal Transduction/drug effects , Receptors, Lysophosphatidic Acid/metabolism , Receptors, Lysophosphatidic Acid/genetics , Animals
19.
Am J Respir Crit Care Med ; 207(10): 1345-1357, 2023 05 15.
Article in English | MEDLINE | ID: mdl-36622818

ABSTRACT

Rationale and Objectives: Up to 20% of idiopathic interstitial lung disease is familial, referred to as familial pulmonary fibrosis (FPF). An integrated analysis of FPF genetic risk was performed by comprehensively evaluating for genetic rare variants (RVs) in a large cohort of FPF kindreds. Methods: Whole-exome sequencing and/or candidate gene sequencing from affected individuals in 569 FPF kindreds was performed, followed by cosegregation analysis in large kindreds, gene burden analysis, gene-based risk scoring, cell-type enrichment analysis, and coexpression network construction. Measurements and Main Results: It was found that 14.9-23.4% of genetic risk in kindreds could be explained by RVs in genes previously linked to FPF, predominantly telomere-related genes. New candidate genes were identified in a small number of families-including SYDE1, SERPINB8, GPR87, and NETO1-and tools were developed for evaluation and prioritization of RV-containing genes across kindreds. Several pathways were enriched for RV-containing genes in FPF, including focal adhesion and mitochondrial complex I assembly. By combining single-cell transcriptomics with prioritized candidate genes, expression of RV-containing genes was discovered to be enriched in smooth muscle cells, type II alveolar epithelial cells, and endothelial cells. Conclusions: In the most comprehensive FPF genetic study to date, the prevalence of RVs in known FPF-related genes was defined, and new candidate genes and pathways relevant to FPF were identified. However, new RV-containing genes shared across multiple kindreds were not identified, thereby suggesting that heterogeneous genetic variants involving a variety of genes and pathways mediate genetic risk in most FPF kindreds.


Subject(s)
Lung Diseases, Interstitial , Pulmonary Fibrosis , Humans , Pulmonary Fibrosis/genetics , Endothelial Cells , Lung Diseases, Interstitial/genetics , Risk Factors , Telomere , Genetic Predisposition to Disease/genetics , Receptors, Lysophosphatidic Acid/genetics
20.
Int J Mol Sci ; 25(4)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38397002

ABSTRACT

Ferroptosis, a unique form of programmed cell death trigged by lipid peroxidation and iron accumulation, has been implicated in embryonic erythropoiesis and aging. Our previous research demonstrated that lysophosphatidic acid receptor 3 (LPA3) activation mitigated oxidative stress in progeria cells and accelerated the recovery of acute anemia in mice. Given that both processes involve iron metabolism, we hypothesized that LPA3 activation might mediate cellular ferroptosis. In this study, we used an LPA3 agonist, 1-Oleoyl-2-O-methyl-rac-glycerophosphothionate (OMPT), to activate LPA3 and examine its effects on the ferroptosis process. OMPT treatment elevated anti-ferroptosis gene protein expression, including solute carrier family 7 member 11 (SLC7A11), glutathione peroxidase 4 (GPX4), heme oxygenase-1 (HO-1), and ferritin heavy chain (FTH1), in erastin-induced cells. Furthermore, OMPT reduced lipid peroxidation and intracellular ferrous iron accumulation, as evidenced by C11 BODIPY™ 581/591 Lipid Peroxidation Sensor and FerroOrange staining. These observations were validated by applying LPAR3 siRNA in the experiments mentioned above. In addition, the protein expression level of nuclear factor erythroid 2-related factor (NRF2), a key regulator of oxidative stress, was also enhanced in OMPT-treated cells. Lastly, we verified that LPA3 plays a critical role in erastin-induced ferroptotic human erythroleukemia K562 cells. OMPT rescued the erythropoiesis defect caused by erastin in K562 cells based on a Gly A promoter luciferase assay. Taken together, our findings suggest that LPA3 activation inhibits cell ferroptosis by suppressing lipid oxidation and iron accumulation, indicating that ferroptosis could potentially serve as a link among LPA3, erythropoiesis, and aging.


Subject(s)
Ferroptosis , Receptors, Lysophosphatidic Acid , Mice , Animals , Humans , Receptors, Lysophosphatidic Acid/genetics , Receptors, Lysophosphatidic Acid/metabolism , Apoptosis , Oxidative Stress , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Iron/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL