Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Lipids Health Dis ; 23(1): 52, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38378566

ABSTRACT

BACKGROUND: Type 2 diabetes mellitus (T2DM) is closely linked to metabolic syndrome, characterised by insulin resistance, hyperglycaemia, abnormal lipid metabolism, and chronic inflammation. Diabetic ulcers (DUs) comprise consequential complications that arise as a result of T2DM. To investigate, db/db mice were used for the disease model. The findings demonstrated that a scaffold made from a combination of rhubarb charcoal-crosslinked chitosan and silk fibroin, designated as RCS/SF, was able to improve the healing process of diabetic wounds in db/db mice. However, previous studies have primarily concentrated on investigating the impacts of the RSC/SF scaffold on wound healing only, while its influence on the entire body has not been fully elucidated. MATERIAL AND METHODS: The silk fibroin/chitosan sponge scaffold containing rhubarb charcoal was fabricated in the present study using a freeze-drying approach. Subsequently, an incision with a diameter of 8 mm was made on the dorsal skin of the mice, and the RCS/SF scaffold was applied directly to the wound for 14 days. Subsequently, the impact of RCS/SF scaffold therapy on hepatic lipid metabolism was assessed through analysis of serum and liver biochemistry, histopathology, quantitative real-time PCR (qRT-PCR), immunohistochemistry, and Western blotting. RESULTS: The use of the RCS/SF scaffold led to an enhancement in the conditions associated with serum glucolipid metabolism in db/db mice. An assessment of hepatic histopathology further confirmed this enhancement. Additionally, the qRT-PCR analysis revealed that treatment with RCS/SF scaffold resulted in the downregulation of genes associated with fatty acid synthesis, fatty acid uptake, triglyceride (TG) synthesis, gluconeogenesis, and inflammatory factors. Moreover, the beneficial effect of the RCS/SF scaffold on oxidative stress was shown by assessing antioxidant enzymes and lipid peroxidation. Additionally, the network pharmacology analysis verified that the adenosine monophosphate-activated protein kinase (AMPK) signalling pathway had a vital function in mitigating non-alcoholic fatty liver disease (NAFLD) by utilizing R. officinale. The measurement of AMPK, sterol regulatory element binding protein 1 (SREBP1), fatty acid synthase (FASN), and acetyl CoA carboxylase (ACC) gene and protein expression provided support for this discovery. Furthermore, the molecular docking investigations revealed a robust affinity between the active components of rhubarb and the downstream targets of AMPK (SREBP1 and FASN). CONCLUSION: By regulating the AMPK signalling pathway, the RCS/SF scaffold applied topically effectively mitigated hepatic lipid accumulation, decreased inflammation, and attenuated oxidative stress. The present study, therefore, emphasises the crucial role of the topical RCS/SF scaffold in regulating hepatic lipid metabolism, thereby confirming the concept of "external and internal reshaping".


Subject(s)
Chitosan , Diabetes Complications , Diabetes Mellitus, Type 2 , Fibroins , Non-alcoholic Fatty Liver Disease , Rheum , Mice , Animals , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Rheum/metabolism , Charcoal/metabolism , Charcoal/pharmacology , Charcoal/therapeutic use , Fibroins/metabolism , Fibroins/pharmacology , Fibroins/therapeutic use , Diabetes Mellitus, Type 2/metabolism , Molecular Docking Simulation , Ulcer/metabolism , Ulcer/pathology , Liver/metabolism , Lipid Metabolism , Non-alcoholic Fatty Liver Disease/pathology , Diabetes Complications/pathology , Inflammation/pathology , Fatty Acids/metabolism , Lipids/therapeutic use
2.
Plant Mol Biol ; 110(1-2): 187-197, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35943640

ABSTRACT

Flower color variation is ubiquitous in many plant species, and several studies have been conducted to elucidate the underlying molecular mechanism. There are two flower color variants (yellowish-white and fuchsia) in the Rheum palmatum complex, however, few studies have investigated this phenomenon. Here, we used transcriptome sequencing of the two color variants to shed light on the molecular and biochemical basis for these color morphs. Comparison of the two transcriptomes identified 9641 differentially expressed unigenes (DEGs), including 6477 up-regulated and 3163 down-regulated genes. Functional analyses indicated that several DEGs were related to the anthocyanin biosynthesis pathway, and the expression profiles of these DEGs were coincident with the qRT-PCR validation results, indicating that expression levels of structural genes have a profound effect on the color variation in the R. palmatum complex. Our results suggested that the interaction of transcription factors (MYB, bHLH and WRKY) also regulated the anthocyanin biosynthesis in the R. palmatum complex. Estimation of selection pressures using the dN/dS ratio showed that 1106 pairs of orthologous genes have undergone positive selection. Of these positively selected genes, 21 were involved in the anthocyanin biosynthetic pathway, indicating that they may encode the proteins for structural alteration and affect flower color in the R. palmatum complex.


Subject(s)
Rheum , Transcriptome , Anthocyanins , Color , Flowers/genetics , Flowers/metabolism , Gene Expression Profiling/methods , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Rheum/genetics , Rheum/metabolism
3.
J Transl Med ; 20(1): 294, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35765026

ABSTRACT

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases and has become a huge public health issue worldwide. Inhibition of nucleotide oligomerization domain-like receptors containing pyrin domain 3 (NLRP3) inflammasome is a potential therapeutic strategy for NAFLD. Currently, there are no drugs targeting NLRP3 inflammasome for clinical treatment of NAFLD. In this study, we explored the efficacy and mechanism of rhubarb free anthraquinones (RFAs) in treating NAFLD by inhibiting NLRP3 inflammasome. METHODS: First, NLRP3 inflammasome was established in mouse bone marrow-derived macrophages (BMDMs), Kuffer cells and primary hepatocytes stimulated by lipopolysaccharide (LPS) and inflammasome inducers to evaluate the effect of RFAs on inhibiting NLRP3 inflammasome and explore the possible mechanism. Further, Mice NAFLD were established by methionine and choline deficiency diet (MCD) to verify the effect of RFAs on ameliorating NAFLD by inhibiting NLRP3 inflammasome. RESULTS: Our results demonstrated that RFAs including rhein/diacerein, emodin, aloe emodin and 1,8-dihydroxyanthraquinone inhibited interleukin-1 beta (IL-1ß) but had no effect on tumor necrosis factor-alpha (TNF-α). Similar results were also showed in mouse primary hepatocytes and Kuffer cells. RFAs inhibited cleavage of caspase-1, formation of apoptosis-associated speck-like protein containing a CARD (ASC) speck, and the combination between NLRP3 and ASC. Moreover, RFAs improved liver function, serum inflammation, histopathological inflammation score and liver fibrosis. CONCLUSIONS: RFAs including rhein/diacerein, emodin, aloe emodin and 1,8-dihydroxyanthraquinone ameliorated NAFLD by inhibiting NLRP3 inflammasome. RFAs might be a potential therapeutic agent for NAFLD.


Subject(s)
Emodin , Non-alcoholic Fatty Liver Disease , Rheum , Animals , Anthraquinones/pharmacology , Anthraquinones/therapeutic use , Inflammasomes/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Rheum/metabolism
4.
Int J Mol Sci ; 24(1)2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36614049

ABSTRACT

Dormancy development in micropropagated plantlets at the acclimatization stage and early growth ex vitro is undesirable as it lowers their survival rate and restricts the efficient year-round production of planting material. Thus far, little is known about the factors and mechanisms involved in the dormancy development of micropropagated herbaceous perennials, including rhubarb. This study determined physiological and molecular changes in the Rheum rhaponticum (culinary rhubarb) 'Raspberry' planting material in response to photoperiod and temperature. We found that the rhubarb plantlets that were grown under a 16-h photoperiod (LD) and a temperature within the normal growth range (17-23 °C) showed active growth of leaves and rhizomes and did not develop dormancy. Rapid growth cessation and dormancy development were observed in response to a 10-h photoperiod (SD) or elevated temperature under LD. These morphological changes were accompanied by enhanced abscisic acid (ABA) and starch levels and also the upregulation of various genes involved in carbohydrate synthesis and transport (SUS3, AMY3, BMY3, BGLU17) and ABA synthesis and signaling (ZEP and ABF2). We also found enhanced expression levels of heat shock transcription factors (HSFA2 and HSFA6B), heat shock proteins (HSP22, HSP70.1, HSP90.2 and HSP101) and antioxidant enzymes (PRX12, APX2 and GPX). This may suggest that dormancy induction in micropropagated rhubarb plantlets is a stress response to light deficiency and high temperatures and is endogenously coordinated by the ABA, carbohydrate and ROS pathways.


Subject(s)
Rheum , Temperature , Rheum/metabolism , Photoperiod , Abscisic Acid/metabolism , Hot Temperature , Gene Expression Regulation, Plant , Plant Dormancy
5.
Int J Mol Sci ; 23(3)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35163404

ABSTRACT

Culinary rhubarb is a vegetable crop, valued for its stalks, very rich in different natural bioactive ingredients. In commercial rhubarb stalk production, the bud dormancy development and release are crucial processes that determine the yields and quality of stalks. To date, reports on rhubarb bud dormancy regulation, however, are lacking. It is known that dormancy status depends on cultivars. The study aimed to determine the dormancy regulation in a valuable selection of rhubarb 'Malinowy'. Changes in carbohydrate, total phenolic, endogenous hormone levels, and gene expression levels during dormancy development and release were studied in micropropagated rhubarb plantlets. Dormancy developed at high temperature (25.5 °C), and long day. Leaf senescence and dying were consistent with a significant increase in starch, total phenolics, ABA, IAA and SA levels. Five weeks of cooling at 4 °C were sufficient to break dormancy, but rhizomes stored for a longer duration showed faster and more uniformity leaf growing, and higher stalk length. No growth response was observed for non-cooled rhizomes. The low temperature activated carbohydrate and hormone metabolism and signalling in the buds. The increased expression of AMY3, BMY3, SUS3, BGLU17, GAMYB genes were consistent with a decrease in starch and increase in soluble sugars levels during dormancy release. Moreover, some genes (ZEP, ABF2, GASA4, GA2OX8) related to ABA and GA metabolism and signal transduction were activated. The relationship between auxin (IAA, IBA, 5-Cl-IAA), and phenolic, including SA levels and dormancy status was also observed.


Subject(s)
Gene Expression Regulation, Plant , Plant Dormancy , Plant Growth Regulators/metabolism , Plant Proteins/metabolism , Rheum/metabolism , Signal Transduction , Plant Growth Regulators/genetics , Plant Proteins/genetics , Rheum/genetics
6.
Int J Mol Sci ; 23(3)2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35163617

ABSTRACT

Rheum palmatum L. is an important traditional Chinese medicinal herb now in demand worldwide. Recently, the theoretical framework suggested that sucrose triggers colonization of PGPM (plant growth-promoting microbes) in the rhizosphere, but their interactions on the plant remain largely unknown. Here, we applied three concentrations of both Bacillus amyloliquefaciens EZ99 inoculant (1.0 × 105, 1.0 × 106, and 1.0 × 107 colony-forming units (CFU)/mL, denoted as LB, MB, and HB, respectively) and sucrose (0.15, 1.5, and 15 g/L, denoted as LS, MS, and HS, respectively) to investigate their co-effects on R. palmatum in a field experiment. The results showed that LB + MS (1.0 × 105 CFU/mL Bacillus + 1.5 g/L sucrose) and LB + LS (1.0 × 105 CFU/mL Bacillus + 0.15 g/L sucrose) treatments significantly increased root fresh weight (p ≤ 0.05). Metabolite analysis revealed that the treatment LB + LS significantly increased the relative content of major active components in rhubarb, namely anthraquinones and phenolic compounds, by 1.5% and 2.3%. Although high sucrose addition increased the activities of certain soil enzymes, the LB + LS treatment significantly increased total potassium (TK), whereas it decreased available potassium (AK), which facilitated the potassium utilization in rhizosphere soil. Furthermore, rhizosphere microbiomes revealed that fungal diversity was augmented in LB + LS treatment, in which the common causative fungal pathogen Fusarium spp. showed an effective suppression. Additionally, the redundancy analysis and Spearman correlations revealed a positive relationship of Sphingomonas associated with change in potassium bioavailability. Altogether, our findings suggest that the combined application of a bacterial inoculant and sucrose can improve the growth and quality of R. palmatum, and stimulate uptake of plant nutrients that contribute to alter the microbial community for biocontrol potential. Hence, this work not only has broad application prospects across economical plants, but also emphasizes agroecological practices for sustainable agriculture.


Subject(s)
Bacillus amyloliquefaciens/physiology , Microbiota , Plant Roots/growth & development , Rheum/metabolism , Rhizosphere , Sucrose , Fusarium , Plant Roots/microbiology , Rheum/microbiology , Rheum/physiology , Soil Microbiology
7.
BMC Genomics ; 22(1): 542, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34266380

ABSTRACT

BACKGROUND: Lysine 2-hydroxyisobutyrylation (Khib) is a newly discovered protein posttranslational modification (PTM) and is involved in the broad-spectrum regulation of cellular processes that are found in both prokaryotic and eukaryotic cells, including in plants. The Chinese herb rhubarb (Dahuang) is one of the most widely used traditional Chinese medicines in clinical applications. To better understand the physiological activities and mechanism of treating diseases with the herb, it is necessary to conduct intensive research on rhubarb. However, Khib modification has not been reported thus far in rhubarb. RESULTS: In this study, we performed the first global analysis of Khib-modified proteins in rhubarb by using sensitive affinity enrichment combined with high-accuracy HPLC-MS/MS tandem spectrometry. A total of 4333 overlapping Khib modification peptides matched on 1525 Khib-containing proteins were identified in three independent tests. Bioinformatics analysis showed that these Khib-containing proteins are involved in a wide range of cellular processes, particularly in protein biosynthesis and central carbon metabolism and are distributed mainly in chloroplasts, cytoplasm, nucleus and mitochondria. In addition, the amino acid sequence motif analysis showed that a negatively charged side chain residue (E), a positively charged residue (K), and an uncharged residue with the smallest side chain (G) were strongly preferred around the Khib site, and a total of 13 Khib modification motifs were identified. These identified motifs can be classified into three motif patterns, and some motif patterns are unique to rhubarb and have not been identified in other plants to date. CONCLUSIONS: A total of 4333 Khib-modified peptides on 1525 proteins were identified. The Khib-modified proteins are mainly distributed in the chloroplast, cytoplasm, nucleus and mitochondria, and involved in a wide range of cellular processes. Moreover, three types of amino acid sequence motif patterns, including EKhib/KhibE, GKhib and k.kkk….Khib….kkkkk, were extracted from a total of 13 Khib-modified peptides. This study provides comprehensive Khib-proteome resource of rhubarb. The findings from the study contribute to a better understanding of the physiological roles of Khib modification, and the Khib proteome data will facilitate further investigations of the roles and mechanisms of Khib modification in rhubarb.


Subject(s)
Haemophilus influenzae type b , Rheum , China , Haemophilus influenzae type b/metabolism , Lysine/metabolism , Protein Processing, Post-Translational , Proteome/metabolism , Rheum/metabolism , Tandem Mass Spectrometry
8.
Mol Biol Rep ; 46(2): 1985-2002, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30706357

ABSTRACT

Hydrogen peroxide (H2O2) is known to accumulate in plants during abiotic stress conditions and also acts as a signalling molecule. In this study, Arabidopsis thaliana transgenics overexpressing cytosolic CuZn-superoxide dismutase (PaSOD) from poly-extremophile high-altitude Himalayan plant Potentilla atrosanguinea, cytosolic ascorbate peroxidase (RaAPX) from Rheum australe and dual transgenics overexpressing both the genes were developed and analyzed under salt stress. In comparison to wild-type (WT) or single transgenics, the performance of dual transgenics under salt stress was better with higher biomass accumulation and cellulose content. We identified genes involved in cell wall biosynthesis, including nine cellulose synthases (CesA), seven cellulose synthase-like proteins together with other wall-related genes. RNA-seq analysis and qPCR revealed differential regulation of genes (CesA 4, 7 and 8) and transcription factors (MYB46 and 83) involved in secondary cell wall cellulose biosynthesis, amongst which most of the cellulose biosynthesis gene showed upregulation in single (PaSOD line) and dual transgenics at 100 mM salt stress. A positive correlation between cellulose content and H2O2 accumulation was observed in these transgenic lines. Further, cellulose content was 1.6-2 folds significantly higher in PaSOD and dual transgenic lines, 1.4 fold higher in RaAPX lines as compared to WT plants under stress conditions. Additionally, transgenics overexpressing PaSOD and RaAPX also displayed higher amounts of phenolics as compared to WT. The novelty of present study is that H2O2 apart from its role in signalling, it also provides mechanical strength to plants and aid in plant biomass production during salt stress by transcriptional activation of cellulose biosynthesis pathway. This modulation of the cellulose biosynthetic machinery in plants has the potential to provide insight into plant growth, morphogenesis and to create plants with enhanced cellulose content for biofuel use.


Subject(s)
Ascorbate Peroxidases/metabolism , Cellulose/biosynthesis , Superoxide Dismutase/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Ascorbate Peroxidases/genetics , Carbohydrate Metabolism , Cell Wall/metabolism , Cellulose/metabolism , Ectopic Gene Expression/genetics , Gene Expression Regulation, Plant/genetics , Glucosyltransferases , Hydrogen Peroxide/metabolism , Plant Proteins/genetics , Plants, Genetically Modified/metabolism , Potentilla/genetics , Potentilla/metabolism , Rheum/genetics , Rheum/metabolism , Salt Tolerance/genetics , Salt-Tolerant Plants/genetics , Salt-Tolerant Plants/metabolism , Stress, Physiological , Superoxide Dismutase/genetics , Transcription Factors/genetics
9.
Environ Toxicol ; 34(12): 1292-1302, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31436023

ABSTRACT

Rhein (4,5-dihydroxyanthraquinone-2-carboxylic acid) is a major component of many medicinal herbs such as Rheum palmatum L. and Polygonum multiflorum. Despite being widely used, intoxication cases associated with rhein-containing herbs are often reported. Currently, there are no available reports addressing the effects of rhein on apoptosis in human liver L02 cells. Thus, the aim of this study is to determine the cytotoxic effects and the underlying mechanism of rhein on human normal liver L02 cells. In the present study, the methyl thiazolyl tetrazolium assay demonstrated that rhein decreased the viability of L02 cells in dose-dependent and time-dependent ways. Rhein was found to trigger apoptosis in L02 cells as shown by Annexin V-fluoresceine isothiocyanate (FITC) apoptosis detection kit and cell mitochondrial membrane potential (MMP) assay, with nuclear morphological changes demonstrated by Hoechst 33258 staining. Detection of intracellular superoxide dismutase activity, lipid oxidation (malondialdehyde) content, and reactive oxygen species (ROS) levels showed that apoptosis was associated with oxidative stress. Moreover, it was observed that the mechanism implicated in rhein-induced apoptosis was presumably via the death receptor pathway and the mitochondrial pathway, as illustrated by upregulation of TNF-α, TNFR1, TRADD, and cleaved caspase-3, and downregulation of procaspase-8, and it is suggested that rhein may increase hepatocyte apoptosis by activating the increase of TNF-α level. Meanwhile, rhein upregulates the expression of Bax and downregulates the expression of procaspase-9 and -3, and it is suggested that the mitochondrial pathway is activated and rhein-induced apoptosis may be involved. In addition, we also want to explore whether rhein-induced apoptosis is related to the autophagic changes induced by rhein. The results showed that rhein treatment increased P62 and decreased LC3-II and beclin-1, which means that autophagy was weakened. The results of our studies indicated that rhein induced caspase-dependent apoptosis via both the Fas death pathway and the mitochondrial pathway by generating ROS, and meanwhile the autophagy tended to weaken.


Subject(s)
Anthraquinones/toxicity , Apoptosis/drug effects , Autophagy/drug effects , Death Domain Receptor Signaling Adaptor Proteins/metabolism , Mitochondria/drug effects , Caspase 3/metabolism , Cells, Cultured , Gene Expression Regulation/drug effects , Hepatocytes/cytology , Hepatocytes/metabolism , Humans , Membrane Potential, Mitochondrial/drug effects , Mitochondria/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Rheum/chemistry , Rheum/metabolism , Superoxide Dismutase/metabolism
10.
J Sci Food Agric ; 99(6): 2874-2882, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30460686

ABSTRACT

BACKGROUND: Rheum tanguticum Maxim. ex Balf is one of the plants generically known as rhubarb, a culinary vegetable that has long been used as a herbal remedy both in China and Europe. Increasing demand for rhubarb has triggered the overexploitation of Rh. tanguticum. Cultivation is therefore necessary for quality control and protection of wild resources. Nitrogen fertilizer plays an important role in cultivation. This study aimed to explore how nitrogen fertilizer affects the growth and quality of rhubarb on the Qinghai-Tibetan plateau. RESULTS: Nitrogen fertilizer promoted growth but had no significant influence on the active compounds of Rh. tanguticum. Generally, the N2 (150 kg ha-1 ) and N3 (225 kg ha-1 ) levels showed the most improved growth indexes, with no significant differences between them. The growth index and the amounts of eight of the nine studied active compounds in Rh. tanguticum increased from each year to the next and differed among growth stages. The contents of the active compounds were higher at the green stage and lower at the growth stage, which was opposite to the seasonal trends in root dry matter ratio. Gallic acid levels decreased with the growth of the plant. CONCLUSION: The N2 level (150 kg ha-1 ) was the recommended nitrogen fertilizer level in this study. It was revealed that seasonal changes rather than nitrogen fertilizer influenced active compounds in the root of Rh. tanguticum. © 2018 Society of Chemical Industry.


Subject(s)
Drugs, Chinese Herbal/analysis , Fertilizers/analysis , Nitrogen/metabolism , Rheum/chemistry , Rheum/growth & development , China , Drugs, Chinese Herbal/metabolism , Plant Roots/chemistry , Plant Roots/growth & development , Plant Roots/metabolism , Rheum/metabolism , Seasons
11.
Metabolomics ; 14(10): 137, 2018 10 04.
Article in English | MEDLINE | ID: mdl-30830440

ABSTRACT

INTRODUCTION: The pharmacological activities of medicinal plants are reported to be due to a wide range of metabolites, therein, the concentrations of which are greatly affected by many genetic and/or environmental factors. In this context, a metabolomics approach has been applied to reveal these relationships. The investigation of such complex networks that involve the correlation between multiple biotic and abiotic factors and the metabolome, requires the input of information acquired by more than one analytical platform. Thus, development of new metabolomics techniques or hyphenations is continuously needed. OBJECTIVES: Feasibility of high performance thin-layer chromatography (HPTLC) were investigated as a supplementary tool for medicinal plants metabolomics supporting 1H nuclear magnetic resonance (1H NMR) spectroscopy. METHOD: The overall metabolic difference of plant material collected from two species (Rheum palmatum and Rheum tanguticum) in different geographical locations and altitudes were analyzed by 1H NMR- and HPTLC-based metabolic profiling. Both NMR and HPTLC data were submitted to multivariate data analysis including principal component analysis and orthogonal partial least square analysis. RESULTS: The NMR and HPTLC profiles showed that while chemical variations of rhubarb are in some degree affected by all the factors tested in this study, the most influential factor was altitude of growth. The metabolites responsible for altitude differentiation were chrysophanol, emodin and sennoside A, whereas aloe emodin, catechin, and rhein were the key species-specific markers. CONCLUSION: These results demonstrated the potential of HTPLC as a supporting tool for metabolomics due to its high profiling capacity of targeted metabolic groups and preparative capability.


Subject(s)
Metabolomics , Plant Roots/metabolism , Rheum/metabolism , Chromatography, Thin Layer , Plant Roots/chemistry , Proton Magnetic Resonance Spectroscopy , Rheum/chemistry , Species Specificity
12.
Anal Chem ; 89(3): 1411-1415, 2017 02 07.
Article in English | MEDLINE | ID: mdl-28208307

ABSTRACT

Nonaqueous capillary electrophoresis (NACE) is very well suited for online coupling with mass spectrometry due to the relatively high volatility and low surface tension of most organic solvents. Here we present a quantitative NACE-ESI-MS/MS method for separating and determining physcion, chrysophanol, and aloe-emodin in rhubarb. Dantron was used as an internal standard to ensure accuracy and reproducibility in quantitative analyses. Parameters including the pH, background electrolyte (BGE) composition, flow-through microvial chemical modifier solution composition, and modifier solution flow rate were carefully optimized. The developed method was validated by assessing its precision, LODs, and linear range. The contents of physcion, chrysophanol, and aloe-emodin in rhubarb were determined to be 0.22%, 1.0%, and 0.17%, respectively.


Subject(s)
Electrophoresis, Capillary/methods , Plant Extracts/chemistry , Rheum/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Anthraquinones/analysis , Electrolytes/chemistry , Emodin/analogs & derivatives , Emodin/analysis , Limit of Detection , Rheum/metabolism
13.
Environ Toxicol ; 30(7): 852-63, 2015 Jul.
Article in English | MEDLINE | ID: mdl-24497447

ABSTRACT

Crude extract of Rheum palmatum L. (CERP) has been used to treat different diseases in the Chinese population for decades. In this study, we investigated the anti-metastasis effects of CERP on LS1034 human colorectal cancer cells in vitro and examined potential mechanisms of its effects. CERP significantly inhibited cell migration and invasion of LS1034 cells. We also found that CERP inhibited protein levels of matrix metalloproteinases-2 (MMP-2) and matrix metalloproteinases-9 (MMP-9), and cytosolic NF-kB p65, RHO A, ROCK 1. Furthermore, we found CERP inhibited protein levels of GRB2, SOS1, MKK7, FAK, Rho A, ROCK 1, VEGF, PKC, AKT, phosphor-AKT (Thr308), Cyclin D, iNOS, COX2, NF-kB p65, p-ERK1/2, p-JNK1/2, p-p38, p-c-jun, MMP-2, MMP-9, MMP-1, MMP-7, MMP-10, UPA and increased the protein level of Ras in LS1034 cells. In conclusion, our results suggest that CERP may be used as a novel anti-metastasis agent for the treatment of human colon cancer cells.


Subject(s)
MAP Kinase Signaling System/drug effects , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Plant Extracts/pharmacology , Rheum/chemistry , Cell Culture Techniques , Cell Line, Tumor , Cell Movement/drug effects , Cell Survival/drug effects , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Humans , Plant Extracts/chemistry , Rheum/metabolism , Transcription Factor RelA/metabolism , Wound Healing/drug effects , rho-Associated Kinases/metabolism , rhoA GTP-Binding Protein/metabolism
14.
J Sep Sci ; 37(18): 2499-503, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24981550

ABSTRACT

As a specific item mentioned in traditional Chinese medicine theory, processing can fulfill different requirements of therapies. Crude and wine-processed rhubarbs are used as drastic and mild laxatives, respectively. In this study, a practical method based on ultra-fast liquid chromatography coupled with diode-array detection and ion trap time-of-flight mass spectrometry was developed to screen and analyze multiple absorbed bioactive components and metabolites in the serum of both normal and acute blood stasis rats after oral administration of crude or wine-processed rhubarbs. A total of 16 compounds, mainly including phase II metabolites, were tentatively identified. Possible explanations for the processing-induced changes in pharmacological effects of traditional Chinese medicines were first explored at serum pharmacochemistry level.


Subject(s)
Blood Chemical Analysis , Drugs, Chinese Herbal/analysis , Drugs, Chinese Herbal/pharmacology , Rheum/chemistry , Rheum/metabolism , Wine/analysis , Administration, Oral , Animals , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal/administration & dosage , Male , Mass Spectrometry , Medicine, Chinese Traditional , Rats , Rats, Sprague-Dawley , Time Factors
15.
Zhongguo Zhong Yao Za Zhi ; 39(9): 1607-13, 2014 May.
Article in Zh | MEDLINE | ID: mdl-25095370

ABSTRACT

Untargeted metabolomics analysis of rhubarb and stewed rhubarb samples shows that the determined samples clearly clustered in to two groups, indicating that the processing procedures caused changes in the composition and/or content of components in rhubarb. Ten components were identified by UHPLC-Q-TOF-MS/MS and references, which intensity declined in rhubarb after processing. Targeted metabolomics analysis of rhubarb and stewed rhubarb samples indicated that aloe-emodin, rhein, emodin and physcion were detected with lower intensity in stewed rhubarb samples than in rhubarb samples. Metabolomics analysis of rhubarb and stewed rhubarb indicated the various components of rhubarb changed after processing.


Subject(s)
Food Handling/methods , Metabolomics/methods , Rheum/chemistry , Rheum/metabolism , Anthraquinones/analysis , Chromatography, High Pressure Liquid , Emodin/analogs & derivatives , Emodin/analysis , Food Preservation/methods , Multivariate Analysis , Principal Component Analysis , Tandem Mass Spectrometry
16.
Phytomedicine ; 126: 155254, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38342016

ABSTRACT

BACKGROUND: The gut-brain axis (GBA) plays a central role in cerebral ischaemia-reperfusion injury (CIRI). Rhubarb, known for its purgative properties, has demonstrated protective effects against CIRI. However, it remains unclear whether this protective effect is achieved through the regulation of the GBA. AIM: This study aims to investigate the mechanism by which rhubarb extract improves CIRI by modulating the GBA pathway. METHODS: We identified the active components of rhubarb extract using LC-MS/MS. The model of middle cerebral artery occlusion (MCAO) was established to evaluate the effect of rhubarb extract. We conducted 16S rDNA sequencing and untargeted metabolomics to analyze intestinal contents. Additionally, we employed HE staining, TUNEL staining, western blot, and ELISA to assess intestinal barrier integrity. We measured the levels of inflammatory cytokines in serum via ELISA. We also examined blood-brain barrier (BBB) integrity using Evans blue (EB) penetration, transmission electron microscopy (TEM), western blot, and ELISA. Neurological function scores and TTC staining were utilized to evaluate neurological outcomes. RESULTS: We identified twenty-six active components in rhubarb. Rhubarb extract enhanced α-diversity, reduced the abundance of Enterobacteriaceae, and partially rectified metabolic disorders in CIRI rats. It also ameliorated pathological changes, increased the expressions of ZO-1, Occludin, and Claudin 1 in the colon, and reduced levels of LPS and d-lac in serum. Furthermore, it lowered the levels of IL-1ß, IL-6, IL-10, IL-17, and TNF-α in serum. Rhubarb extract mitigated BBB dysfunction, as evidenced by reduced EB penetration and improved hippocampal microstructure. It upregulated the expressions of ZO-1, Occludin, Claudin 1, while downregulating the expressions of TLR4, MyD88, and NF-κB. Similarly, rhubarb extract decreased the levels of IL-1ß, IL-6, and TNF-α in the hippocampus. Ultimately, it reduced neurological function scores and cerebral infarct volume. CONCLUSION: Rhubarb effectively treats CIRI, potentially by inhibiting harmful bacteria, correcting metabolic disorders, repairing intestinal barrier function, alleviating BBB dysfunction, and ultimately improving neurological outcomes.


Subject(s)
Brain Ischemia , Metabolic Diseases , Neuroprotective Agents , Reperfusion Injury , Rheum , Rats , Animals , Neuroprotection , Rheum/metabolism , Occludin/metabolism , Interleukin-6 , Tumor Necrosis Factor-alpha/genetics , Brain-Gut Axis , Chromatography, Liquid , Claudin-1 , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Tandem Mass Spectrometry , Brain Ischemia/drug therapy , Brain Ischemia/pathology , Evans Blue/therapeutic use , Reperfusion Injury/metabolism , Metabolic Diseases/drug therapy , Infarction, Middle Cerebral Artery/drug therapy
17.
Int J Biochem Cell Biol ; 169: 106549, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38340950

ABSTRACT

BACKGROUND: Chronic kidney disease (CKD) has a high incidence and poor prognosis; however, no effective treatment is currently available. Our previous study found that the improvement effect of the herb pair of Rhubarb-Astragalus on CKD is likely related to the inhibition of the TGF-ß1/p38-MAPK pathway. In the present study, a p38-MAPK inhibitor was used to further investigate the inhibitory effect of Rhubarb-Astragalus on the TGF-ß1/p38-MAPK pathway and its relationship with autophagy. METHODS: A rat model of unilateral ureteral obstruction (UUO) was established, and a subgroup of rats was administered Rhubarb-Astragalus. Renal function and renal interstitial fibrosis (RIF) were assessed 21 d after UUO induction. In vitro, HK-2 cells were treated with TGF-ß1 and a subset of cells were treated with Rhubarb-Astragalus or p38-MAPK inhibitor. Western blotting, immunohistochemistry, and qRT-PCR analyses were used to detect the relevant protein and mRNA levels. Transmission electron microscopy was used to observe autophagosomes. RESULTS: Rhubarb-Astragalus treatment markedly decreased the elevated levels of blood urea nitrogen, serum creatinine, and urinary N-acetyl-ß-D-glucosaminidase; attenuated renal damage and RIF induced by UUO; and reduced the number of autophagosomes and lysosomes in UUO-induced renal tissues. Additionally, Rhubarb-Astragalus reduced the protein and mRNA levels of α-SMA, collagen I, LC3, Atg3, TGF-ß1, p38-MAPK, smad2/3, and TAK1 in renal tissues of UUO rats. Rhubarb-Astragalus also reduced protein and mRNA levels of these indicators in vitro. Importantly, the effect of the p38-MAPK inhibitor was similar to that of Rhubarb-Astragalus. CONCLUSIONS: Rhubarb-Astragalus improves CKD possibly by downregulating autophagy via the p38-MAPK/TGF-ß1 and p38-MAPK/smad2/3 pathways.


Subject(s)
Kidney Diseases , Renal Insufficiency, Chronic , Rheum , Ureteral Obstruction , Rats , Animals , Transforming Growth Factor beta1/metabolism , Rheum/metabolism , Down-Regulation , p38 Mitogen-Activated Protein Kinases/metabolism , Signal Transduction , Kidney Diseases/drug therapy , Kidney Diseases/etiology , Kidney Diseases/metabolism , Kidney/pathology , Ureteral Obstruction/metabolism , Ureteral Obstruction/pathology , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Fibrosis , Autophagy , RNA, Messenger/metabolism
18.
Electrophoresis ; 34(19): 2918-27, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23580246

ABSTRACT

This study developed CE and ultra-high-pressure LC (UHPLC) methods coupled with UV detectors to characterize the metabolomic profiles of different rhubarb species. The optimal CE conditions used a BGE with 15 mM sodium tetraborate, 15 mM sodium dihydrogen phosphate monohydrate, 30 mM sodium deoxycholate, and 30% ACN v/v at pH 8.3. The optimal UHPLC conditions used a mobile phase composed of 0.05% phosphate buffer and ACN with gradient elution. The gradient profile increased linearly from 10 to 21% ACN within the first 25 min, then increased to 33% ACN for the next 10 min. It took another 5 min to reach the 65% ACN, then for the next 5 min, it stayed unchanged. Sixteen samples of Rheum officinale and Rheum tanguticum collected from various locations were analyzed by CE and UHPLC methods. The metabolite profiles of CE were aligned and baseline corrected before chemometric analysis. Metabolomic signatures of rhubarb species from CE and UHPLC were clustered using principle component analysis and distance-based redundancy analysis; the clusters were not only able to discriminate different species but also different cultivation regions. Similarity measurements were performed by calculating the correlation coefficient of each sample with the authentic samples. Hybrid rhizome was clearly identified through similarity measurement of UHPLC metabolite profile and later confirmed by gene sequencing. The present study demonstrated that CE and UHPLC are efficient and effective tools to identify and authenticate herbs even coupled with simple detectors.


Subject(s)
Electrophoresis, Capillary/methods , Metabolome , Metabolomics/methods , Rheum/metabolism , Chromatography, High Pressure Liquid/methods , Cluster Analysis , Principal Component Analysis , Rheum/chemistry
19.
Anal Bioanal Chem ; 405(12): 4199-212, 2013 May.
Article in English | MEDLINE | ID: mdl-23494272

ABSTRACT

Evaluating the quality of herbal medicines by morphological features is a convenient, quick, and practical method compared with other methods that mostly depend on modern instruments. Here, laser microdissection and ultra-performance liquid chromatography are combined with mass spectrometry to map the distribution of secondary metabolites in cells or tissues of a herb itself for correlating its bioactive components and morphological features. The root and rhizome of Rheum palmatum L. were taken as research target, which is the Chinese medicine, Radix et Rhizoma Rhei. According to fluorescent microscopic characteristics, 12 herbal cells or tissues of Radix et Rhizoma Rhei were separated by laser microdissection. Thirty-eight compounds were identified or tentatively characterized in the microdissected tissues. (+)-Catechin, 1-O-galloyl-2-O-cinnamoyl-ß-D-glucose, and emodin were found to be the major components in most of the tissues. The brown ergastic substances found in rays of normal and anomalous vascular bundles as well as the parenchymatous cells of rhizome pith and the parenchymatous cells of root xylem contained higher than average amounts of these three components and more kinds of secondary metabolites. Overall, results suggest that Radix et Rhizoma Rhei of larger size and with conspicuous "brocaded patterns" and star spots are of higher quality as they tend to have greater contents of bioactive components. The study provides quantitative and specific criteria by which the quality of Radix et Rhizoma Rhei can be judged. This research also established a new, reliable, and practical method for direct profiling and imaging of secondary metabolites in any herbal tissue.


Subject(s)
Drugs, Chinese Herbal/chemistry , Plant Roots/chemistry , Plant Roots/ultrastructure , Rheum/chemistry , Rheum/ultrastructure , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal/metabolism , Laser Capture Microdissection , Mass Spectrometry , Plant Roots/metabolism , Rheum/metabolism , Rhizome/chemistry , Rhizome/metabolism , Rhizome/ultrastructure
20.
Gut Microbes ; 15(1): 2178796, 2023.
Article in English | MEDLINE | ID: mdl-36803220

ABSTRACT

Consumption of prebiotics and plant-based compounds have many beneficial health effects through modulation of gut microbiota composition and are considered as promising nutritional strategy for the treatment of metabolic diseases. In the present study, we assessed the separated and combined effects of inulin and rhubarb on diet-induced metabolic disease in mice. We showed that supplementation with both inulin and rhubarb abolished the total body and fat mass gain upon high-fat and high-sucrose diet (HFHS) as well as several obesity-associated metabolic disorders. These effects were associated with increased energy expenditure, lower whitening of the brown adipose tissue, higher mitochondria activity and increased expression of lipolytic markers in white adipose tissue. Despite modifications of intestinal gut microbiota and bile acid compositions by inulin or rhubarb alone, combination of both inulin and rhubarb had minor additional impact on these parameters. However, the combination of inulin and rhubarb increased the expression of several antimicrobial peptides and higher goblet cell numbers, thereby suggesting a reinforcement of the gut barrier. Together, these results suggest that the combination of inulin and rhubarb in mice potentiates beneficial effects of separated rhubarb and inulin on HFHS-related metabolic disease and could be considered as nutritional strategy for the prevention and treatment of obesity and related pathologies.


Subject(s)
Gastrointestinal Microbiome , Metabolic Diseases , Rheum , Animals , Mice , Adipose Tissue, Brown , Inulin/pharmacology , Inulin/metabolism , Rheum/metabolism , Sugars/metabolism , Obesity/metabolism , Diet, High-Fat/adverse effects , Energy Metabolism , Prebiotics , Metabolic Diseases/metabolism , Mice, Inbred C57BL , Adipose Tissue/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL