ABSTRACT
The nucleolus is the most prominent nuclear body and serves a fundamentally important biological role as a site of ribonucleoprotein particle assembly, primarily dedicated to ribosome biogenesis. Despite being one of the first intracellular structures visualized historically, the biophysical rules governing its assembly and function are only starting to become clear. Recent studies have provided increasing support for the concept that the nucleolus represents a multilayered biomolecular condensate, whose formation by liquid-liquid phase separation (LLPS) facilitates the initial steps of ribosome biogenesis and other functions. Here, we review these biophysical insights in the context of the molecular and cell biology of the nucleolus. We discuss how nucleolar function is linked to its organization as a multiphase condensate and how dysregulation of this organization could provide insights into still poorly understood aspects of nucleolus-associated diseases, including cancer, ribosomopathies and neurodegeneration as well as ageing. We suggest that the LLPS model provides the starting point for a unifying quantitative framework for the assembly, structural maintenance and function of the nucleolus, with implications for gene regulation and ribonucleoprotein particle assembly throughout the nucleus. The LLPS concept is also likely useful in designing new therapeutic strategies to target nucleolar dysfunction.
Subject(s)
Cell Nucleolus/chemistry , Aging/genetics , Aging/metabolism , Aging/pathology , Animals , Cell Cycle/physiology , Cell Nucleolus/genetics , Cell Nucleolus/metabolism , Chemical Fractionation , Gene Expression , Humans , Liquid-Liquid Extraction , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Ribonucleoproteins/metabolism , Ribosomes/physiologyABSTRACT
The elucidation of the genetic code remains among the most influential discoveries in biology. While innumerable studies have validated the general universality of the code and its value in predicting and analyzing protein coding sequences, established and emerging work has also suggested that full genome decryption may benefit from a greater consideration of a codon's neighborhood within an mRNA than has been broadly applied. This Review examines the evidence for context cues in translation, with a focus on several recent studies that reveal broad roles for mRNA context in programming translation start sites, the rate of translation elongation, and stop codon identity.
Subject(s)
Codon , Eukaryota/physiology , Protein Biosynthesis , RNA, Messenger/chemistry , Ribosomes/physiology , Molecular Imaging , Prokaryotic Cells/physiology , RNA, Messenger/physiology , RNA, Transfer/physiologyABSTRACT
The ribosome has recently transitioned from being viewed as a passive, indiscriminate machine to a more dynamic macromolecular complex with specialized roles in the cell. Here, we discuss the historical milestones from the discovery of the ribosome itself to how this ancient machinery has gained newfound appreciation as a more regulatory participant in the central dogma of gene expression. The first emerging examples of direct changes in ribosome composition at the RNA and protein level, coupled with an increased awareness of the role individual ribosomal components play in the translation of specific mRNAs, is opening a new field of study centered on ribosome-mediated control of gene regulation. In this Perspective, we discuss our current understanding of the known functions for ribosome heterogeneity, including specialized translation of individual transcripts, and its implications for the regulation and expression of key gene regulatory networks. In addition, we suggest what the crucial next steps are to ascertain the extent of ribosome heterogeneity and specialization and its importance for regulation of the proteome within subcellular space, across different cell types, and during multi-cellular organismal development.
Subject(s)
Ribosomes/metabolism , Ribosomes/physiology , Animals , Gene Expression Regulation , Gene Regulatory Networks , Humans , Internal Ribosome Entry Sites/physiology , Protein Biosynthesis , RNA/metabolism , RNA, Messenger/metabolism , Ribosomal Proteins/metabolismABSTRACT
Aberrantly slow translation elicits quality control pathways initiated by the ubiquitin ligase ZNF598. How ZNF598 discriminates physiologic from pathologic translation complexes and ubiquitinates stalled ribosomes selectively is unclear. Here, we find that the minimal unit engaged by ZNF598 is the collided di-ribosome, a molecular species that arises when a trailing ribosome encounters a slower leading ribosome. The collided di-ribosome structure reveals an extensive 40S-40S interface in which the ubiquitination targets of ZNF598 reside. The paucity of 60S interactions allows for different ribosome rotation states, explaining why ZNF598 recognition is indifferent to how the leading ribosome has stalled. The use of ribosome collisions as a proxy for stalling allows the degree of tolerable slowdown to be tuned by the initiation rate on that mRNA; hence, the threshold for triggering quality control is substrate specific. These findings illustrate how higher-order ribosome architecture can be exploited by cellular factors to monitor translation status.
Subject(s)
Carrier Proteins/physiology , Protein Biosynthesis/physiology , Ribosomes/physiology , Carrier Proteins/metabolism , HEK293 Cells , Humans , RNA, Messenger , Ubiquitin , Ubiquitin-Protein Ligases , UbiquitinationABSTRACT
Copy-number changes generate phenotypic variability in health and disease. Whether organisms protect against copy-number changes is largely unknown. Here, we show that Saccharomyces cerevisiae monitors the copy number of its ribosomal DNA (rDNA) and rapidly responds to copy-number loss with the clonal amplification of extrachromosomal rDNA circles (ERCs) from chromosomal repeats. ERC formation is replicative, separable from repeat loss, and reaches a dynamic steady state that responds to the addition of exogenous rDNA copies. ERC levels are also modulated by RNAPI activity and diet, suggesting that rDNA copy number is calibrated against the cellular demand for rRNA. Last, we show that ERCs reinsert into the genome in a dosage-dependent manner, indicating that they provide a reservoir for ultimately increasing rDNA array length. Our results reveal a DNA-based mechanism for rapidly restoring copy number in response to catastrophic gene loss that shares fundamental features with unscheduled copy-number amplifications in cancer cells.
Subject(s)
DNA Copy Number Variations/physiology , DNA, Circular/physiology , DNA, Ribosomal/physiology , DNA Copy Number Variations/genetics , DNA Replication/physiology , DNA, Circular/genetics , DNA, Circular/metabolism , DNA, Ribosomal/genetics , DNA-Binding Proteins/physiology , Genomics , RNA, Ribosomal/genetics , Recombination, Genetic/genetics , Ribosomes/physiology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/geneticsABSTRACT
The integrated stress response (ISR) facilitates cellular adaptation to stress conditions via the common target eIF2α. During ISR, the selective translation of stress-related mRNAs often relies on alternative mechanisms, such as leaky scanning or reinitiation, but the underlying mechanism remains incompletely understood. Here we report that, in response to amino acid starvation, the reinitiation of ATF4 is not only governed by the eIF2α signaling pathway, but is also subjected to regulation by mRNA methylation in the form of N6-methyladenosine (m6A). While depleting m6A demethylases represses ATF4 reinitiation, knocking down m6A methyltransferases promotes ATF4 translation. We demonstrate that m6A in the 5' UTR controls ribosome scanning and subsequent start codon selection. Global profiling of initiating ribosomes reveals widespread alternative translation events influenced by dynamic mRNA methylation. Consistently, Fto transgenic mice manifest enhanced ATF4 expression, highlighting the critical role of m6A in translational regulation of ISR at cellular and organismal levels.
Subject(s)
Adenosine/analogs & derivatives , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/physiology , Eukaryotic Initiation Factor-2/metabolism , Peptide Chain Initiation, Translational , RNA, Messenger/genetics , Ribosomes/physiology , Stress, Physiological , 5' Untranslated Regions , Adenosine/pharmacology , Animals , Cells, Cultured , Codon, Initiator , Eukaryotic Initiation Factor-2/genetics , Fibroblasts , Gene Expression Regulation , HEK293 Cells , Humans , Mice , Mice, Transgenic , Phosphorylation , RNA, Messenger/metabolismABSTRACT
Sixty-one codons specify 20 amino acids, offering cells many options for encoding a polypeptide sequence. Two new studies (Cannarrozzi et al., 2010; Tuller et al., 2010) now foster the idea that patterns of codon usage can control ribosome speed, fine-tuning translation to increase the efficiency of protein synthesis.
Subject(s)
Codon , Protein Biosynthesis , Ribosomes/physiology , Base SequenceABSTRACT
Researchers commonly anneal metals, alloys, and semiconductors to repair defects and improve microstructures via recrystallization. Theoretical studies indicate that simulated annealing on biological macromolecules helps predict the final structures with minimum free energy. Experimental validation of this homogenizing effect and further exploration of its applications are fascinating scientific questions that remain elusive. Here, we chose the apo-state 70S ribosome from Escherichia coli as a model, wherein the 30S subunit undergoes a thermally driven intersubunit rotation and exhibits substantial structural flexibility as well as distinct free energy. We experimentally demonstrate that annealing at a fast cooling rate enhances the 70S ribosome homogeneity and improves local resolution on the 30S subunit. After annealing, the 70S ribosome is in a nonrotated state with respect to corresponding intermediate structures in unannealed or heated ribosomes. Manifold-based analysis further indicates that the annealed 70S ribosome takes a narrow conformational distribution and exhibits a minimum-energy state in the free-energy landscape. Our experimental results offer a facile yet robust approach to enhance protein stability, which is ideal for high-resolution cryogenic electron microscopy. Beyond structure determination, annealing shows great potential for synchronizing proteins on a single-molecule level and can be extended to study protein folding and explore conformational and energy landscapes.
Subject(s)
Protein Conformation , Ribosomal Proteins/ultrastructure , Ribosomes/physiology , Cryoelectron Microscopy , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Models, Molecular , RNA, Ribosomal/metabolism , RNA, Ribosomal/ultrastructure , Ribosomal Proteins/metabolism , Ribosomes/ultrastructureABSTRACT
Recently discovered simple quantitative relations, known as bacterial growth laws, hint at the existence of simple underlying principles at the heart of bacterial growth. In this work, we provide a unifying picture of how these known relations, as well as relations that we derive, stem from a universal autocatalytic network common to all bacteria, facilitating balanced exponential growth of individual cells. We show that the core of the cellular autocatalytic network is the transcription-translation machinery-in itself an autocatalytic network comprising several coupled autocatalytic cycles, including the ribosome, RNA polymerase, and transfer RNA (tRNA) charging cycles. We derive two types of growth laws per autocatalytic cycle, one relating growth rate to the relative fraction of the catalyst and its catalysis rate and the other relating growth rate to all the time scales in the cycle. The structure of the autocatalytic network generates numerous regimes in state space, determined by the limiting components, while the number of growth laws can be much smaller. We also derive a growth law that accounts for the RNA polymerase autocatalytic cycle, which we use to explain how growth rate depends on the inducible expression of the rpoB and rpoC genes, which code for the RpoB and C protein subunits of RNA polymerase, and how the concentration of rifampicin, which targets RNA polymerase, affects growth rate without changing the RNA-to-protein ratio. We derive growth laws for tRNA synthesis and charging and predict how growth rate depends on temperature, perturbation to ribosome assembly, and membrane synthesis.
Subject(s)
Bacteria/metabolism , Cell Proliferation/physiology , Gene Expression Regulation, Bacterial/physiology , RNA, Bacterial/metabolism , Bacteria/genetics , Bacterial Physiological Phenomena , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Models, Biological , RNA, Bacterial/genetics , RNA, Transfer/genetics , RNA, Transfer/metabolism , Ribosomes/physiology , Transcription, GeneticABSTRACT
A universal property of all rRNAs explored to date is the prevalence of post-transcriptional ("epitranscriptional") modifications, which expand the chemical and topological properties of the four standard nucleosides. Are these modifications an inert, constitutive part of the ribosome? Or could they, in part, also regulate the structure or function of the ribosome? In this review, we summarize emerging evidence that rRNA modifications are more heterogeneous than previously thought, and that they can also vary from one condition to another, such as in the context of a cellular response or a developmental trajectory. We discuss the implications of these results and key open questions on the path toward connecting such heterogeneity with function.
Subject(s)
Epigenesis, Genetic , RNA Processing, Post-Transcriptional , RNA, Ribosomal/metabolism , Ribosomes/physiology , Transcriptome , Methylation , RNA, Ribosomal/geneticsABSTRACT
Stress-induced molecular damage to ribosomes can impact protein synthesis in cells, but cell-based assays do not provide a clear way to distinguish the effects of ribosome damage from stress responses and damage to other parts of the translation machinery. Here we describe a detailed protocol for the separation of yeast ribosomes from other translational machinery constituents, followed by reconstitution of the translation mixture in vitro. This technique, which we refer to as ribosome separation and reconstitution (RSR), allows chemical modifications of yeast ribosomes without compromising other key translational components. In addition to the characterization of stress-induced ribosome damage, RSR can be applied to a broad range of experimental problems in studies of yeast translation.
Subject(s)
Peptide Chain Elongation, Translational , RNA, Messenger/metabolism , Ribosomes/physiology , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Cell-Free System , In Vitro Techniques , RNA, Messenger/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/geneticsABSTRACT
Mammalian cells present a fingerprint of their proteome to the adaptive immune system through the display of endogenous peptides on MHC-I complexes. MHC-I-bound peptides originate from protein degradation by the proteasome, suggesting that stably folded, long-lived proteins could evade monitoring. Here, we investigate the role in antigen presentation of the ribosome-associated quality control (RQC) pathway for the degradation of nascent polypeptides that are encoded by defective messenger RNAs and undergo stalling at the ribosome during translation. We find that degradation of model proteins by RQC results in efficient MHC-I presentation, independent of their intrinsic folding properties. Quantitative profiling of MHC-I peptides in wild-type and RQC-deficient cells by mass spectrometry showed that RQC substantially contributes to the composition of the immunopeptidome. Our results also identify endogenous substrates of the RQC pathway in human cells and provide insight into common principles causing ribosome stalling under physiological conditions.
Subject(s)
Antigen Presentation/physiology , Epitopes/metabolism , Histocompatibility Antigens Class I/physiology , Ribosomes/physiology , Animals , Gene Deletion , Gene Expression Regulation , HeLa Cells , Humans , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ubiquitin-Protein Ligases/metabolismABSTRACT
Several recent studies have shown that the concept of proteome constraint, i.e., the need for the cell to balance allocation of its proteome between different cellular processes, is essential for ensuring proper cell function. However, there have been no attempts to elucidate how cells' maximum capacity to grow depends on protein availability for different cellular processes. To experimentally address this, we cultivated Saccharomyces cerevisiae in bioreactors with or without amino acid supplementation and performed quantitative proteomics to analyze global changes in proteome allocation, during both anaerobic and aerobic growth on glucose. Analysis of the proteomic data implies that proteome mass is mainly reallocated from amino acid biosynthetic processes into translation, which enables an increased growth rate during supplementation. Similar findings were obtained from both aerobic and anaerobic cultivations. Our findings show that cells can increase their growth rate through increasing its proteome allocation toward the protein translational machinery.
Subject(s)
Gene Expression Regulation, Fungal/genetics , Protein Biosynthesis/genetics , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Amino Acids/biosynthesis , Amino Acids/metabolism , Biochemical Phenomena , Biological Phenomena , Gene Expression Profiling/methods , Gene Expression Regulation, Fungal/physiology , Glucose/metabolism , Proteome/metabolism , Proteomics , Ribosomes/metabolism , Ribosomes/physiology , Saccharomyces cerevisiae Proteins/metabolismABSTRACT
Eukaryotic cells maintain proteostasis through mechanisms that require cytoplasmic and mitochondrial translation. Genetic defects affecting cytoplasmic translation perturb synapse development, neurotransmission, and are causative of neurodevelopmental disorders, such as Fragile X syndrome. In contrast, there is little indication that mitochondrial proteostasis, either in the form of mitochondrial protein translation and/or degradation, is required for synapse development and function. Here we focus on two genes deleted in a recurrent copy number variation causing neurodevelopmental disorders, the 22q11.2 microdeletion syndrome. We demonstrate that SLC25A1 and MRPL40, two genes present in the microdeleted segment and whose products localize to mitochondria, interact and are necessary for mitochondrial ribosomal integrity and proteostasis. Our Drosophila studies show that mitochondrial ribosome function is necessary for synapse neurodevelopment, function, and behavior. We propose that mitochondrial proteostasis perturbations, either by genetic or environmental factors, are a pathogenic mechanism for neurodevelopmental disorders.SIGNIFICANCE STATEMENT The balance between cytoplasmic protein synthesis and degradation, or cytoplasmic proteostasis, is required for normal synapse function and neurodevelopment. Cytoplasmic and mitochondrial ribosomes are necessary for two compartmentalized, yet interdependent, forms of proteostasis. Proteostasis dependent on cytoplasmic ribosomes is a well-established target of genetic defects that cause neurodevelopmental disorders, such as autism. Here we show that the mitochondrial ribosome is a neurodevelopmentally regulated organelle whose function is required for synapse development and function. We propose that defective mitochondrial proteostasis is a mechanism with the potential to contribute to neurodevelopmental disease.
Subject(s)
Developmental Disabilities , Mitochondria/physiology , Mitochondrial Proteins/genetics , Organic Anion Transporters/genetics , Proteostasis/genetics , Ribonucleoproteins/genetics , Ribosomal Proteins/genetics , Animals , Cell Line , Developmental Disabilities/genetics , Developmental Disabilities/metabolism , Developmental Disabilities/physiopathology , Drosophila , Gene Expression Regulation/genetics , Humans , Neurogenesis/physiology , Protein Biosynthesis/genetics , Rats , Rats, Sprague-Dawley , Ribosomes/physiologyABSTRACT
The canonical model of eukaryotic translation posits that efficient translation initiation increases protein expression and mRNA stability. Contrary to this model, we find that increasing initiation rate can decrease both protein expression and stability of certain mRNAs in the budding yeast Saccharomyces cerevisiae. These mRNAs encode a stretch of polybasic residues that cause ribosome stalling. Our computational modeling predicts that the observed decrease in gene expression at high initiation rates occurs when ribosome collisions at stalls stimulate abortive termination of the leading ribosome or cause endonucleolytic mRNA cleavage. Consistent with this prediction, the collision-associated quality-control factors Asc1 and Hel2 (orthologs of human RACK1 and ZNF598, respectively) decrease gene expression from stall-containing mRNAs only at high initiation rates. Remarkably, hundreds of S. cerevisiae mRNAs that contain ribosome stall sequences also exhibit lower translation efficiency. We propose that inefficient translation initiation allows these stall-containing endogenous mRNAs to escape collision-stimulated reduction in gene expression.
Subject(s)
Peptide Chain Initiation, Translational , RNA, Messenger/physiology , Ribosomes/physiology , Adaptor Proteins, Signal Transducing/physiology , GTP-Binding Proteins/physiology , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/physiology , Ubiquitin-Protein Ligases/physiologyABSTRACT
Workflow management systems represent, manage, and execute multistep computational analyses and offer many benefits to bioinformaticians. They provide a common language for describing analysis workflows, contributing to reproducibility and to building libraries of reusable components. They can support both incremental build and re-entrancy-the ability to selectively re-execute parts of a workflow in the presence of additional inputs or changes in configuration and to resume execution from where a workflow previously stopped. Many workflow management systems enhance portability by supporting the use of containers, high-performance computing (HPC) systems, and clouds. Most importantly, workflow management systems allow bioinformaticians to delegate how their workflows are run to the workflow management system and its developers. This frees the bioinformaticians to focus on what these workflows should do, on their data analyses, and on their science. RiboViz is a package to extract biological insight from ribosome profiling data to help advance understanding of protein synthesis. At the heart of RiboViz is an analysis workflow, implemented in a Python script. To conform to best practices for scientific computing which recommend the use of build tools to automate workflows and to reuse code instead of rewriting it, the authors reimplemented this workflow within a workflow management system. To select a workflow management system, a rapid survey of available systems was undertaken, and candidates were shortlisted: Snakemake, cwltool, Toil, and Nextflow. Each candidate was evaluated by quickly prototyping a subset of the RiboViz workflow, and Nextflow was chosen. The selection process took 10 person-days, a small cost for the assurance that Nextflow satisfied the authors' requirements. The use of prototyping can offer a low-cost way of making a more informed selection of software to use within projects, rather than relying solely upon reviews and recommendations by others.
Subject(s)
Computational Biology/education , Computing Methodologies , User-Computer Interface , Workflow , Algorithms , Data Analysis , Genomics , Language , Programming Languages , Reproducibility of Results , Ribosomes/physiology , SoftwareABSTRACT
During protein synthesis, nascent polypeptide chains within the ribosomal tunnel can act in cis to induce ribosome stalling and regulate expression of downstream genes. The Staphylococcus aureus ErmCL leader peptide induces stalling in the presence of clinically important macrolide antibiotics, such as erythromycin, leading to the induction of the downstream macrolide resistance methyltransferase ErmC. Here, we present a cryo-electron microscopy (EM) structure of the erythromycin-dependent ErmCL-stalled ribosome at 3.9 Å resolution. The structure reveals how the ErmCL nascent chain directly senses the presence of the tunnel-bound drug and thereby induces allosteric conformational rearrangements at the peptidyltransferase center (PTC) of the ribosome. ErmCL-induced perturbations of the PTC prevent stable binding and accommodation of the aminoacyl-tRNA at the A-site, leading to inhibition of peptide bond formation and translation arrest.
Subject(s)
Erythromycin/chemistry , Protein Biosynthesis , Protein Synthesis Inhibitors/chemistry , Ribosomes/chemistry , Bacterial Proteins/chemistry , Catalytic Domain , Cryoelectron Microscopy , Models, Molecular , Peptide Fragments/chemistry , Protein Binding , Protein Sorting Signals , Protein Structure, Quaternary , Ribosomes/physiologyABSTRACT
The speed of protein synthesis can dramatically change when consecutively charged residues are incorporated into an elongating nascent protein by the ribosome. The molecular origins of this class of allosteric coupling remain unknown. We demonstrate, using multiscale simulations, that positively charged residues generate large forces that move the P-site amino acid away from the A-site amino acid. Negatively charged residues generate forces of similar magnitude but move the A- and P-sites closer together. These conformational changes, respectively, increase and decrease the transition state barrier height to peptide bond formation, explaining how charged residues mechanochemically alter translation speed. This mechanochemical mechanism is consistent with in vivo ribosome profiling data exhibiting proportionality between translation speed and the number of charged residues, experimental data characterizing nascent chain conformations, and a previously published cryo-EM structure of a ribosome-nascent chain complex containing consecutive lysines. These results expand the role of mechanochemistry in translation and provide a framework for interpreting experimental results on translation speed.
Subject(s)
Protein Biosynthesis/genetics , Protein Biosynthesis/physiology , Ribosomes/physiology , Amino Acids/metabolism , Kinetics , Models, Chemical , Models, Theoretical , Protein Conformation , Ribosomes/metabolism , Ribosomes/ultrastructure , Static ElectricityABSTRACT
Regulation at the post-transcriptional level is an important mode of gene expression control in bacteria. Small RNA regulators (sRNAs) that act via intramolecular base-pairing with target mRNAs are key players in this process and most often sequester the target's ribosome binding site (RBS) to down-regulate translation initiation. Over the past few years, several exceptions from this mechanism have been reported, revealing that sRNAs are able to influence translation initiation from a distance. In this issue of Molecular Microbiology, Azam and Vanderpool show that repression of the manY mRNA by the sRNA SgrS relies on an unconventional mechanism involving a translational enhancer element and ribosomal protein S1. Binding of S1 to an AU-rich sequence within the 5' untranslated region of the manY transcript promotes translation of the mRNA, and base-pairing of SgrS to the same site can interfere with this process. Therefore, instead of blocking translation initiation by occluding the manY RBS, SgrS reduces ManY synthesis by inhibiting S1-dependent translation activation. These findings increase the base-pairing window for sRNA-mediated gene expression control in bacteria and highlight the role of ribosomal protein S1 for translation initiation.
Subject(s)
Bacteria/genetics , Peptide Chain Initiation, Translational , RNA, Bacterial/physiology , RNA, Small Untranslated/genetics , Ribosomal Proteins/genetics , 5' Untranslated Regions , Base Pairing/genetics , Binding Sites , Enhancer Elements, Genetic , Gene Expression Regulation, Bacterial , Protein Biosynthesis , RNA, Messenger/genetics , Ribosomes/physiologyABSTRACT
Many bacterial small RNAs (sRNAs) efficiently inhibit translation of target mRNAs by forming a duplex that sequesters the Shine-Dalgarno (SD) sequence or start codon and prevents formation of the translation initiation complex. There are a growing number of examples of sRNA-mRNA binding interactions distant from the SD region, but how these mediate translational regulation remains unclear. Our previous work in Escherichia coli and Salmonella identified a mechanism of translational repression of manY mRNA by the sRNA SgrS through a binding interaction upstream of the manY SD. Here, we report that SgrS forms a duplex with a uridine-rich translation-enhancing element in the manY 5' untranslated region. Notably, we show that the enhancer is ribosome-dependent and that the small ribosomal subunit protein S1 interacts with the enhancer to promote translation of manY. In collaboration with the chaperone protein Hfq, SgrS interferes with the interaction between the translation enhancer and ribosomal protein S1 to repress translation of manY mRNA. Since bacterial translation is often modulated by enhancer-like elements upstream of the SD, sRNA-mediated enhancer silencing could be a common mode of gene regulation.