Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 546
Filter
Add more filters

Publication year range
1.
Mol Cell ; 82(17): 3151-3165.e9, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35907401

ABSTRACT

Rifamycin antibiotics such as rifampin are potent inhibitors of prokaryotic RNA polymerase (RNAP) used to treat tuberculosis and other bacterial infections. Although resistance arises in the clinic principally through mutations in RNAP, many bacteria possess highly specific enzyme-mediated resistance mechanisms that modify and inactivate rifamycins. The expression of these enzymes is controlled by a 19-bp cis-acting rifamycin-associated element (RAE). Guided by the presence of RAE sequences, we identify a helicase-like protein, HelR, in Streptomyces venezuelae that confers broad-spectrum rifamycin resistance. We show that HelR also promotes tolerance to rifamycins, enabling bacterial evasion of the toxic properties of these antibiotics. HelR forms a complex with RNAP and rescues transcription inhibition by displacing rifamycins from RNAP, thereby providing resistance by target protection . Furthermore, HelRs are broadly distributed in Actinobacteria, including several opportunistic Mycobacterial pathogens, offering yet another challenge for developing new rifamycin antibiotics.


Subject(s)
Rifamycins , Tuberculosis , Anti-Bacterial Agents/pharmacology , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Humans , Rifampin/metabolism , Rifampin/pharmacology , Rifamycins/pharmacology , Streptomyces/enzymology
2.
Nature ; 622(7981): 180-187, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37648864

ABSTRACT

Antibiotic binding sites are located in important domains of essential enzymes and have been extensively studied in the context of resistance mutations; however, their study is limited by positive selection. Using multiplex genome engineering1 to overcome this constraint, we generate and characterize a collection of 760 single-residue mutants encompassing the entire rifampicin binding site of Escherichia coli RNA polymerase (RNAP). By genetically mapping drug-enzyme interactions, we identify an alpha helix where mutations considerably enhance or disrupt rifampicin binding. We find mutations in this region that prolong antibiotic binding, converting rifampicin from a bacteriostatic to bactericidal drug by inducing lethal DNA breaks. The latter are replication dependent, indicating that rifampicin kills by causing detrimental transcription-replication conflicts at promoters. We also identify additional binding site mutations that greatly increase the speed of RNAP.Fast RNAP depletes the cell of nucleotides, alters cell sensitivity to different antibiotics and provides a cold growth advantage. Finally, by mapping natural rpoB sequence diversity, we discover that functional rifampicin binding site mutations that alter RNAP properties or confer drug resistance occur frequently in nature.


Subject(s)
Anti-Bacterial Agents , Binding Sites , DNA-Directed RNA Polymerases , Escherichia coli , Mutation , Rifampin , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Binding Sites/drug effects , Binding Sites/genetics , DNA Breaks/drug effects , DNA Replication/drug effects , DNA-Directed RNA Polymerases/antagonists & inhibitors , DNA-Directed RNA Polymerases/chemistry , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Drug Resistance, Bacterial/genetics , Escherichia coli/drug effects , Escherichia coli/enzymology , Escherichia coli/genetics , Nucleotides/deficiency , Nucleotides/metabolism , Promoter Regions, Genetic , Rifampin/chemistry , Rifampin/metabolism , Rifampin/pharmacology , Time Factors , Transcription, Genetic/drug effects
3.
Mol Cell ; 66(2): 169-179.e8, 2017 Apr 20.
Article in English | MEDLINE | ID: mdl-28392175

ABSTRACT

Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, which kills 1.8 million annually. Mtb RNA polymerase (RNAP) is the target of the first-line antituberculosis drug rifampin (Rif). We report crystal structures of Mtb RNAP, alone and in complex with Rif, at 3.8-4.4 Å resolution. The results identify an Mtb-specific structural module of Mtb RNAP and establish that Rif functions by a steric-occlusion mechanism that prevents extension of RNA. We also report non-Rif-related compounds-Nα-aroyl-N-aryl-phenylalaninamides (AAPs)-that potently and selectively inhibit Mtb RNAP and Mtb growth, and we report crystal structures of Mtb RNAP in complex with AAPs. AAPs bind to a different site on Mtb RNAP than Rif, exhibit no cross-resistance with Rif, function additively when co-administered with Rif, and suppress resistance emergence when co-administered with Rif.


Subject(s)
Bacterial Proteins/metabolism , DNA-Directed RNA Polymerases/metabolism , Gene Expression Regulation, Bacterial , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/genetics , Transcription, Genetic , Antitubercular Agents/metabolism , Antitubercular Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/chemistry , Binding Sites , DNA-Directed RNA Polymerases/antagonists & inhibitors , DNA-Directed RNA Polymerases/chemistry , Drug Resistance, Bacterial , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Gene Expression Regulation, Bacterial/drug effects , Models, Molecular , Mycobacterium tuberculosis/drug effects , Protein Binding , Protein Conformation , Rifampin/metabolism , Rifampin/pharmacology , Structure-Activity Relationship , Transcription, Genetic/drug effects
4.
Chembiochem ; 25(2): e202300627, 2024 01 15.
Article in English | MEDLINE | ID: mdl-37947295

ABSTRACT

Antibiotics are micropollutants accumulating in our rivers and wastewaters, potentially leading to bacterial antibiotic resistance, a worldwide problem to which there is no current solution. Here, we have developed an environmentally friendly two-step process to transform the antibiotic rifampicin (RIF) into non-antimicrobial compounds. The process involves an enzymatic oxidation step by the bacterial CotA-laccase and a hydrogen peroxide bleaching step. NMR identified rifampicin quinone as the main product of the enzymatic oxidation. Growth of Escherichia coli strains in the presence of final degradation products (FP) and minimum inhibitory concentration (MIC) measurements confirmed that FP are non-anti-microbial compounds, and bioassays suggest that FP is not toxic to eukaryotic organisms. Moreover, competitive fitness assays between susceptible and RIF-resistant bacteria show that susceptible bacteria is strongly favoured in the presence of FP. Our results show that we have developed a robust and environmentally friendly process to effectively remediate rifampicin from antibiotic contaminated environments.


Subject(s)
Hydrogen Peroxide , Laccase , Laccase/chemistry , Hydrogen Peroxide/metabolism , Rifampin/pharmacology , Rifampin/metabolism , Escherichia coli/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism
5.
Am J Pathol ; 193(1): 27-38, 2023 01.
Article in English | MEDLINE | ID: mdl-36309105

ABSTRACT

Inadequate DNA damage response related to ataxia telangiectasia mutated gene restricts hepatic regeneration in acute liver failure. Resolving mechanistic gaps in liver damage and repair requires additional animal models that are unconstrained by ultrarapid and unpredictable mortalities or substantial divergences from human pathology. This study used Fischer 344 rats primed with the antitubercular drug, rifampicin, plus phenobarbitone, and monocrotaline, a DNA adduct-forming alkaloid. Rifampicin and monocrotaline can cause liver failure in people. This regimen resulted in hepatic oxidative stress, necrosis, DNA double-strand breaks, liver test abnormalities, altered serum cytokine expression, and mortality. Healthy donor hepatocytes were transplanted ectopically in the peritoneal cavity to study whether they could supply metabolic support and rebalance inflammatory or protective cytokines affecting liver regeneration events. Hepatocyte transplantation increased candidate cytokine levels (granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, interferon-γ, IL-10, and IL-12), leading to Atm, Stat3, and Akt signaling in hepatocytes and nonparenchymal cells, lowering of inflammation, and improvements in intermediary metabolism, DNA repair, and hepatocyte proliferation. Such control of DNA damage and inflammation, along with stimulation of hepatic growth, offers paradigms for cell signaling to restore hepatic homeostasis and regeneration in acute liver failure. Further studies of molecular pathways of high pathobiological impact will advance the knowledge of liver regeneration.


Subject(s)
Ataxia Telangiectasia , Liver Failure, Acute , Rats , Humans , Animals , Ataxia Telangiectasia/metabolism , Ataxia Telangiectasia/pathology , Monocrotaline/metabolism , Rifampin/metabolism , Cytokines/metabolism , Liver Failure, Acute/metabolism , Liver/metabolism , Liver Regeneration/physiology , Hepatocytes/pathology , Rats, Inbred F344 , Inflammation/pathology
6.
Environ Sci Technol ; 58(15): 6519-6531, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38578272

ABSTRACT

Paralytic shellfish toxins (PSTs) are widely distributed neurotoxins, and the PST metabolic detoxification mechanism in bivalves has received increasing attention. To reveal the effect of phase I (cytochrome P450)-II (GST)-III (ABC transport) metabolic systems on the PST metabolism in Azumapecten farreri, this study amplified stress on the target systems using rifampicin, dl-α-tocopherol, and colchicine; measured PST levels; and conducted transcriptomic analyses. The highest toxin content reached 1623.48 µg STX eq/kg in the hepatopancreas and only 8.8% of that in the gills. Inducer intervention significantly decreased hepatopancreatic PST accumulation. The proportional reductions in the rifampicin-, dl-α-tocopherol-, and colchicine-induced groups were 55.3%, 50.4%, and 36.1%, respectively. Transcriptome analysis showed that 11 modules were significantly correlated with PST metabolism (six positive/five negative), with phase I CYP450 and phase II glutathione metabolism significantly enriched in negatively correlated pathways. Twenty-three phase I-II-III core genes were further validated using qRT-PCR and correlated with PST metabolism, revealing that CYP46A1, CYP4F6, GSTM1, and ABCF2 were significantly correlated, while CYP4F11 and ABCB1 were indirectly correlated. In conclusion, phase I-II-III detoxification enzyme systems jointly participate in the metabolic detoxification of PSTs in A. farreri. This study provides key data support to profoundly elucidate the PST metabolic detoxification mechanism in bivalves.


Subject(s)
Bivalvia , Dinoflagellida , Animals , Rifampin/metabolism , alpha-Tocopherol/metabolism , Shellfish/analysis , Colchicine/metabolism , Dinoflagellida/metabolism
7.
J Pharmacol Exp Ther ; 387(2): 135-149, 2023 11.
Article in English | MEDLINE | ID: mdl-37142442

ABSTRACT

Drug biliary clearance (CLbile) in vivo is among the most difficult pharmacokinetic parameters to predict accurately and quantitatively because biliary excretion is influenced by metabolic enzymes, transporters, and passive diffusion across hepatocyte membranes. The purpose of this study is to demonstrate the use of Hu-FRG mice [Fah-/-/Rag2-/-/Il2rg-/- (FRG) mice transplanted with human-derived hepatocytes] to quantitatively predict human organic anion transporting polypeptide (OATP)-mediated drug disposition and CLbile To predict OATP-mediated disposition, six OATP substrates (atorvastatin, fexofenadine, glibenclamide, pitavastatin, pravastatin, and rosuvastatin) were administered intravenously to Hu-FRG and Mu-FRG mice (FRG mice transplanted with mouse hepatocytes) with or without rifampicin as an OATP inhibitor. We calculated the hepatic intrinsic clearance (CLh,int) and the change of hepatic clearance (CLh) caused by rifampicin (CLh ratio). We compared the CLh,int of humans with that of Hu-FRG mice and the CLh ratio of humans with that of Hu-FRG and Mu-FRG mice. For predicting CLbile, 20 compounds (two cassette doses of 10 compounds) were administered intravenously to gallbladder-cannulated Hu-FRG and Mu-FRG mice. We evaluated the CLbile and investigated the correlation of human CLbile with that of Hu-FRG and Mu-FRG mice. We found good correlations between humans and Hu-FRG mice in CLh,int (100% within threefold) and CLh ratio (R2 = 0.94). Moreover, we observed a much better relationship between humans and Hu-FRG mice in CLbile (75% within threefold). Our results suggest that OATP-mediated disposition and CLbile can be predicted using Hu-FRG mice, making them a useful in vivo drug discovery tool for quantitatively predicting human liver disposition. SIGNIFICANCE STATEMENT: OATP-mediated disposition and biliary clearance of drugs are likely quantitatively predictable using Hu-FRG mice. The findings can enable the selection of better drug candidates and the development of more effective strategies for managing OATP-mediated DDIs in clinical studies.


Subject(s)
Organic Anion Transporters , Rifampin , Humans , Mice , Animals , Rifampin/pharmacology , Rifampin/metabolism , Liver/metabolism , Hepatocytes/metabolism , Bile , Organic Anion Transporters/metabolism
8.
Drug Metab Dispos ; 51(3): 276-284, 2023 03.
Article in English | MEDLINE | ID: mdl-36460477

ABSTRACT

Reliable in vitro to in vivo translation of cytochrome P450 (CYP) 3A4 induction potential is essential to support risk mitigation for compounds during pharmaceutical discovery and development. In this study, a linear correlation of CYP3A4 mRNA induction potential in human hepatocytes with the respective pregnane-X receptor (PXR) activation in a reporter gene assay using DPX2 cells was successfully demonstrated for 13 clinically used drugs. Based on this correlation, using rifampicin as a positive control, the magnitude of CYP3A4 mRNA induction for 71 internal compounds at several concentrations up to 10 µM (n = 90) was predicted within 2-fold error for 64% of cases with only a few false positives (19%). Furthermore, the in vivo area under the curve reduction of probe CYP substrates was reasonably predicted for eight marketed drugs (carbamazepine, dexamethasone, enzalutamide, nevirapine, phenobarbital, phenytoin, rifampicin, and rufinamide) using the static net effect model using both the PXR activation and CYP3A4 mRNA induction data. The liver exit concentrations were used for the model in place of the inlet concentrations to avoid false positive predictions and the concentration achieving twofold induction (F2) was used to compensate for the lack of full induction kinetics due to cytotoxicity and solubility limitations in vitro. These findings can complement the currently available induction risk mitigation strategy and potentially influence the drug interaction modeling work conducted at clinical stages. SIGNIFICANCE STATEMENT: The established correlation of CYP3A4 mRNA in human hepatocytes to PXR activation provides a clear cut-off to identify a compound showing an in vitro induction risk, complementing current regulatory guidance. Also, the demonstrated in vitro-in vivo translation of induction data strongly supports a clinical development program although limitations remain for drug candidates showing complex disposition pathways, such as involvement of auto-inhibition/induction, active transport and high protein binding.


Subject(s)
Cytochrome P-450 CYP3A , Receptors, Steroid , Humans , Cytochrome P-450 CYP3A/metabolism , Pregnane X Receptor/metabolism , Receptors, Steroid/genetics , Receptors, Steroid/metabolism , Cytochrome P-450 Enzyme System/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Rifampin/pharmacology , Rifampin/metabolism , Enzyme Induction , Hepatocytes/metabolism , RNA, Messenger/metabolism
9.
Pharm Res ; 40(12): 3025-3042, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37821766

ABSTRACT

OBJECTIVE: An in vitro relative activity factor (RAF) technique combined with mechanistic static modeling was examined to predict drug-drug interaction (DDI) magnitude and analyze contributions of different clearance pathways in complex DDIs involving transporter substrates. Atorvastatin and rifampicin were used as a model substrate and inhibitor pair. METHODS: In vitro studies were conducted with transfected HEK293 cells, hepatocytes and human liver microsomes. Prediction success was defined as predictions being within twofold of observations. RESULTS: The RAF method successfully translated atorvastatin uptake from transfected cells to hepatocytes, demonstrating its ability to quantify transporter contributions to uptake. Successful translation of atorvastatin's in vivo intrinsic hepatic clearance (CLint,h,in vivo) from hepatocytes to liver was only achieved through consideration of albumin facilitated uptake or through application of empirical scaling factors to transporter-mediated clearances. Transporter protein expression differences between hepatocytes and liver did not affect CLint,h,in vivo predictions. By integrating cis and trans inhibition of OATP1B1/OATP1B3, atorvastatin-rifampicin (single dose) DDI magnitude could be accurately predicted (predictions within 0.77-1.0 fold of observations). Simulations indicated that concurrent inhibition of both OATP1B1 and OATP1B3 caused approximately 80% of atorvastatin exposure increases (AUCR) in the presence of rifampicin. Inhibiting biliary elimination, hepatic metabolism, OATP2B1, NTCP, and basolateral efflux are predicted to have minimal to no effect on AUCR. CONCLUSIONS: This study demonstrates the effective application of a RAF-based translation method combined with mechanistic static modeling for transporter substrate DDI predictions and subsequent mechanistic interpretation.


Subject(s)
Organic Anion Transporters , Rifampin , Humans , Atorvastatin/metabolism , Rifampin/pharmacology , Rifampin/metabolism , HEK293 Cells , Liver-Specific Organic Anion Transporter 1/metabolism , Solute Carrier Organic Anion Transporter Family Member 1B3/metabolism , Membrane Transport Proteins/metabolism , Hepatocytes/metabolism , Liver/metabolism , Drug Interactions , Organic Anion Transporters/metabolism
10.
Mol Biol Rep ; 50(2): 1019-1031, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36383336

ABSTRACT

BACKGROUND: The antituberculosis drugs (ATDs), isoniazid, rifampicin, pyrazinamide and ethambutol prompt extreme hepatic and renal damage during treatment of tuberculosis. The present study aimed to investigate protective potential of naringenin against ATDs induced hepato-renal injury. METHODS: Rats were administered with ATDs (pyrazinamide; 210, ethambutol; 170, isoniazid; 85, rifampicin; 65 mg/kg b.wt) orally for 8 weeks (3 days/week) followed by naringenin at three different doses (10, 20 and 40 mg/kg b.wt) conjointly for 8 weeks (3 days/week alternately to ATDs administration) and silymarin (50 mg/kg b.wt) as positive control. RESULTS: Exposure to ATDs caused significant increase in interleukin-6 (IL-6), triglycerides, cholesterol, bilirubin whereas depletion in insulin like growth factor-1 (IGF-1), albumin and glucose in serum. Endogenous antioxidant enzymes glutathione reductase (GR), glutathione peroxidase (GPx) and glucose-6-phosphate-dehydrogenase (G-6-PDH) were diminished in liver and kidney tissues with parallel increase in triglycerides, cholesterol, microsomal LPO and aniline hydroxylase (CYP2E1 enzyme). Ultra-structural observations of liver and kidney showed marked deviation in plasma membranes of various cellular and sub-cellular organelles after 8 weeks of exposure to ATDs. CONCLUSIONS: Conjoint treatment of naringenin counteracted ATDs induced toxic manifestations by regulating IL-6, IGF-1, CYP2E1, biochemical and ultra-structural integrity in a dose dependent manner. Naringenin has excellent potential to protect ATDs induced hepato-renal injury by altering oxidative stress, modulation of antioxidant enzymes, serum cytokines and ultra-structural changes.


Subject(s)
Antitubercular Agents , Interleukin-6 , Rats , Animals , Antitubercular Agents/toxicity , Interleukin-6/metabolism , Isoniazid/toxicity , Isoniazid/metabolism , Pyrazinamide/metabolism , Pyrazinamide/pharmacology , Ethambutol/toxicity , Ethambutol/metabolism , Rifampin/toxicity , Rifampin/metabolism , Insulin-Like Growth Factor I/metabolism , Cytochrome P-450 CYP2E1/metabolism , Cytochrome P-450 CYP2E1/pharmacology , Rats, Wistar , Liver/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Oxidative Stress
11.
Nat Prod Rep ; 39(6): 1226-1263, 2022 06 22.
Article in English | MEDLINE | ID: mdl-35507039

ABSTRACT

Covering: 2016 to 2022RNA polymerase (RNAP) is the central enzyme in bacterial gene expression representing an attractive and validated target for antibiotics. Two well-known and clinically approved classes of natural product RNAP inhibitors are the rifamycins and the fidaxomycins. Rifampicin (Rif), a semi-synthetic derivative of rifamycin, plays a crucial role as a first line antibiotic in the treatment of tuberculosis and a broad range of bacterial infections. However, more and more pathogens such as Mycobacterium tuberculosis develop resistance, not only against Rif and other RNAP inhibitors. To overcome this problem, novel RNAP inhibitors exhibiting different target sites are urgently needed. This review includes recent developments published between 2016 and today. Particular focus is placed on novel findings concerning already known bacterial RNAP inhibitors, the characterization and development of new compounds isolated from bacteria and fungi, and providing brief insights into promising new synthetic compounds.


Subject(s)
Mycobacterium tuberculosis , RNA, Bacterial , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Drug Resistance, Bacterial , Fungi/metabolism , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , RNA, Bacterial/metabolism , RNA, Bacterial/pharmacology , Rifampin/metabolism , Rifampin/pharmacology
12.
Antimicrob Agents Chemother ; 66(5): e0228521, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35435709

ABSTRACT

We had earlier reported the de novo emergence of genetic resisters of Mycobacterium tuberculosis and Mycobacterium smegmatis to rifampicin and moxifloxacin from the antibiotic-surviving population containing elevated levels of the non-DNA-specific mutagenic reactive oxygen species (ROS) hydroxyl radical. Since hydroxyl radical is generated by Fenton reaction between Fe(II) and H2O2, which is produced by superoxide dismutation, we here report significantly elevated levels of these three ROS and Fe(II) in the M. smegmatis rifampicin-surviving population. Elevated levels of superoxide and the consequential formation of high levels of H2O2 and Fe(II) led to the generation of hydroxyl radical, facilitating de novo high frequency emergence of antibiotic resisters. The M. smegmatis cultures, exposed to nontoxic concentrations of the ROS scavenger, thiourea (TU), and the NADH oxidase (one of the superoxide producers) inhibitor, diphenyleneiodonium chloride (DPI), showed a reduction in the levels of the three ROS, Fe(II), and antibiotic resister generation frequency. The non-antibiotic-exposed cultures grown in the absence/presence of TU/DPI did not show increased ROS, Fe(II) levels, or antibiotic resister generation frequency. The antibiotic-surviving population showed significantly increased expression and activity of superoxide-producing genes and decreased expression of antioxidant and DNA repair genes, revealing an environment conducive for the acquisition and retention of mutations. Since we recently reported significant comparability between the antibiotic-survival gene expression profiles of the saprophyte-cum-opportunistic pathogens M. smegmatis and the M. tuberculosis in tuberculosis patients undergoing treatment, we discuss the clinical relevance of the findings on the mechanism of emergence of antibiotic-resistant mycobacterial strains.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Ferrous Compounds/pharmacology , Humans , Hydrogen Peroxide/metabolism , Hydroxyl Radical/metabolism , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/metabolism , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Reactive Oxygen Species/metabolism , Rifampin/metabolism , Rifampin/pharmacology , Superoxides/metabolism
13.
J Biomed Sci ; 29(1): 89, 2022 Oct 30.
Article in English | MEDLINE | ID: mdl-36310165

ABSTRACT

BACKGROUND: Understanding the mechanism of antimicrobial action is critical for improving antibiotic therapy. For the first time, we integrated correlative metabolomics and transcriptomics of Pseudomonas aeruginosa to elucidate the mechanism of synergistic killing of polymyxin-rifampicin combination. METHODS: Liquid chromatography-mass spectrometry and RNA-seq analyses were conducted to identify the significant changes in the metabolome and transcriptome of P. aeruginosa PAO1 after exposure to polymyxin B (1 mg/L) and rifampicin (2 mg/L) alone, or in combination over 24 h. A genome-scale metabolic network was employed for integrative analysis. RESULTS: In the first 4-h treatment, polymyxin B monotherapy induced significant lipid perturbations, predominantly to fatty acids and glycerophospholipids, indicating a substantial disorganization of the bacterial outer membrane. Expression of ParRS, a two-component regulatory system involved in polymyxin resistance, was increased by polymyxin B alone. Rifampicin alone caused marginal metabolic perturbations but significantly affected gene expression at 24 h. The combination decreased the gene expression of quorum sensing regulated virulence factors at 1 h (e.g. key genes involved in phenazine biosynthesis, secretion system and biofilm formation); and increased the expression of peptidoglycan biosynthesis genes at 4 h. Notably, the combination caused substantial accumulation of nucleotides and amino acids that last at least 4 h, indicating that bacterial cells were in a state of metabolic arrest. CONCLUSION: This study underscores the substantial potential of integrative systems pharmacology to determine mechanisms of synergistic bacterial killing by antibiotic combinations, which will help optimize their use in patients.


Subject(s)
Polymyxin B , Pseudomonas aeruginosa , Humans , Pseudomonas aeruginosa/genetics , Polymyxin B/pharmacology , Polymyxin B/metabolism , Rifampin/pharmacology , Rifampin/metabolism , Transcriptome , Polymyxins/pharmacology , Polymyxins/metabolism , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests
14.
Chem Pharm Bull (Tokyo) ; 70(11): 805-811, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36070932

ABSTRACT

The protective effect of phloridzin (PHL) and its potential mechanism were examined in mice with liver injury induced by isoniazid (INH) and rifampicin (RFP). The mice were randomly divided into normal control group, model group, low (80 mg/kg), medium (160 mg/kg) and high (320 mg/kg) phloridzin-treated groups. After 28 d treatment, blood and liver tissue were collected and analysed. The results revealed that PHL regulated liver function related indicators and reduced the pathological tissue damage, indicating that PHL significantly alleviated the liver injury. Furthermore, the level of CYP450 enzyme, the expression of CYP3A4, CYP2E1, heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf2) mRNA and protein were inhibited by PHL. These results indicated that PHL exerts a protecting effect against liver injury induced by combination of RFP and INH. The potential mechanisms may be concerned with the activation of Nrf2/HO-1 signaling pathway containing its key antioxidant enzymes and regulation of CYP3A4 and CYP2E1.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Chemical and Drug Induced Liver Injury , Mice , Animals , Isoniazid/metabolism , Isoniazid/pharmacology , Rifampin/metabolism , Rifampin/pharmacology , Phlorhizin/metabolism , Phlorhizin/pharmacology , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/pharmacology , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/pharmacology , Cytochrome P-450 CYP2E1/genetics , Cytochrome P-450 CYP2E1/metabolism , Cytochrome P-450 CYP2E1/pharmacology , Cytochrome P-450 CYP3A/metabolism , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Chemical and Drug Induced Liver Injury, Chronic/pathology , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Liver , Oxidative Stress
15.
Drug Metab Dispos ; 49(5): 361-368, 2021 05.
Article in English | MEDLINE | ID: mdl-33674270

ABSTRACT

The maintenance of homeostasis of cytochromes P450 enzymes (P450s) under both physiologic and xenobiotic exposure conditions is ensured by the action of positive and negative regulators. In the current study, the hepatocyte nuclear factor 4α (HNF4A) antisense RNA 1 (HNF4A-AS1), an antisense long noncoding RNA of HNF4A, was found to be a negative regulator of the basal and rifampicin (RIF)-induced expression of nuclear receptors and downstream P450s. In Huh7 cells, knockdown of HNF4A-AS1 resulted in elevated expression of HNF4A, pregnane X receptor (PXR), and P450s (including CYP3A4) under both basal and RIF-induced conditions. Conversely, overexpression of HNF4A-AS1 led to decreased basal expression of constitutive androstane receptor, aryl hydrocarbon receptor, PXR, and all studied P450s. Of note, significantly diminished induction levels of PXR and CYP1A2, 2C8, 2C19, and 3A4 by RIF were also observed in HNF4A-AS1 plasmid-transfected Huh7 cells. Moreover, the negative feedback of HNF4A on HNF4A-AS1-mediated gene expression was validated using a loss-of-function experiment in this study. Strikingly, our data showed that increased enrichment levels of histone 3 lysine 4 trimethylation and HNF4A in the CYP3A4 promoter contribute to the elevated CYP3A4 expression after HNF4A-AS1 knockdown. Overall, the current study reveals that histone modifications contribute to the negative regulation of nuclear receptors and P450s by HNF4A-AS1 in basal and drug-induced levels. SIGNIFICANCE STATEMENT: Utilizing loss-of-function and gain-of-function experiments, the current study systematically investigated the negative regulation of HNF4A-AS1 on the expression of nuclear receptors (including HNF4A, constitutive androstane receptor, aryl hydrocarbon receptor, and pregnane X receptor) and P450s (including CYP1A2, 2E1, 2B6, 2D6, 2C8, 2C9, 2C19, and 3A4) in both basal and rifampicin-induced levels in Huh7 cells. Notably, this study is the first to reveal the contribution of histone modification to the HNF4A-AS1-mediated expression of CYP3A4 in Huh7 cells.


Subject(s)
Cytochrome P-450 CYP3A/metabolism , Hepatocyte Nuclear Factor 4/metabolism , Histones/metabolism , RNA, Antisense/metabolism , Antibiotics, Antitubercular/metabolism , Antibiotics, Antitubercular/pharmacology , Cell Line , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Hepatocyte Nuclear Factor 4/genetics , Histones/genetics , Humans , RNA, Antisense/genetics , Rifampin/metabolism , Rifampin/pharmacology
16.
Drug Metab Dispos ; 49(3): 265-275, 2021 03.
Article in English | MEDLINE | ID: mdl-33355210

ABSTRACT

E7766 represents a novel class of macrocycle-bridged dinucleotides and is under clinical development for immuno-oncology. In this report, we identified mechanism of systemic clearance E7766 and investigated the hepatobiliary transporters involved in the disposition of E7766 and potential drug interactions of E7766 as a victim of organic anion-transporting polypeptide (OATP) inhibitors. In bile-duct cannulated rats and dogs, E7766 was mainly excreted unchanged in bile (>80%) and to a lesser extent in urine (<20%). Sandwich-cultured human hepatocytes (SCHHs), transfected cells, and vesicles were used to phenotype the hepatobiliary transporters involved in the clearance of E7766. SCHH data showed temperature-dependent uptake of E7766 followed by active biliary secretion. In vitro transport assays using transfected cells and membrane vesicles confirmed that E7766 was a substrate of OATP1B1, OATP1B3, and multidrug resistance-associated protein 2. Phenotyping studies suggested predominant contribution of OATP1B3 over OATP1B1 in the hepatic uptake of E7766. Studies in OATP1B1/1B3 humanized mice showed that plasma exposure of E7766 increased 4.5-fold when coadministered with Rifampicin. Physiologically based pharmacokinetic models built upon two independent bottom-up approaches predicted elevation of E7766 plasma exposure when administered with Rifampicin, a clinical OATP inhibitor. In conclusion, we demonstrate that OATP-mediated hepatic uptake is the major contributor to the clearance of E7766, and inhibition of OATP1B may increase its systemic exposure. Predominant contribution of OATP1B3 in the hepatic uptake of E7766 was observed, suggesting polymorphisms in OATP1B1 would be unlikely to cause variability in the exposure of E7766. SIGNIFICANCE STATEMENT: Understanding the clearance mechanisms of new chemical entities is critical to predicting human pharmacokinetics and drug interactions. A physiologically based pharmacokinetic model that incorporated parameters from mechanistic in vitro and in vivo experiments was used to predict pharmacokinetics and drug interactions of E7766, a novel dinucleotide drug. The findings highlighted here may shed a light on the pharmacokinetic profile and transporter-mediated drug interaction propensity of other dinucleotide drugs.


Subject(s)
Biliary Tract/metabolism , Drug Elimination Routes/physiology , Hepatobiliary Elimination/physiology , Liver/metabolism , Macrocyclic Compounds/metabolism , Phenotype , Animals , Biliary Tract/drug effects , Dogs , Dose-Response Relationship, Drug , Drug Elimination Routes/drug effects , Drug Interactions/physiology , Forecasting , HEK293 Cells , Hepatobiliary Elimination/drug effects , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , LLC-PK1 Cells , Liver/drug effects , Macrocyclic Compounds/pharmacology , Male , Mice , Mice, Transgenic , Rats , Rats, Sprague-Dawley , Rifampin/metabolism , Rifampin/pharmacology , Swine
17.
Mol Pharm ; 18(8): 2997-3009, 2021 08 02.
Article in English | MEDLINE | ID: mdl-34283621

ABSTRACT

Physiologically based pharmacokinetic (PBPK) models are increasingly used in drug development to simulate changes in both systemic and tissue exposures that arise as a result of changes in enzyme and/or transporter activity. Verification of these model-based simulations of tissue exposure is challenging in the case of transporter-mediated drug-drug interactions (tDDI), in particular as these may lead to differential effects on substrate exposure in plasma and tissues/organs of interest. Gadoxetate, a promising magnetic resonance imaging (MRI) contrast agent, is a substrate of organic-anion-transporting polypeptide 1B1 (OATP1B1) and multidrug resistance-associated protein 2 (MRP2). In this study, we developed a gadoxetate PBPK model and explored the use of liver-imaging data to achieve and refine in vitro-in vivo extrapolation (IVIVE) of gadoxetate hepatic transporter kinetic data. In addition, PBPK modeling was used to investigate gadoxetate hepatic tDDI with rifampicin i.v. 10 mg/kg. In vivo dynamic contrast-enhanced (DCE) MRI data of gadoxetate in rat blood, spleen, and liver were used in this analysis. Gadoxetate in vitro uptake kinetic data were generated in plated rat hepatocytes. Mean (%CV) in vitro hepatocyte uptake unbound Michaelis-Menten constant (Km,u) of gadoxetate was 106 µM (17%) (n = 4 rats), and active saturable uptake accounted for 94% of total uptake into hepatocytes. PBPK-IVIVE of these data (bottom-up approach) captured reasonably systemic exposure, but underestimated the in vivo gadoxetate DCE-MRI profiles and elimination from the liver. Therefore, in vivo rat DCE-MRI liver data were subsequently used to refine gadoxetate transporter kinetic parameters in the PBPK model (top-down approach). Active uptake into the hepatocytes refined by the liver-imaging data was one order of magnitude higher than the one predicted by the IVIVE approach. Finally, the PBPK model was fitted to the gadoxetate DCE-MRI data (blood, spleen, and liver) obtained with and without coadministered rifampicin. Rifampicin was estimated to inhibit active uptake transport of gadoxetate into the liver by 96%. The current analysis highlighted the importance of gadoxetate liver data for PBPK model refinement, which was not feasible when using the blood data alone, as is common in PBPK modeling applications. The results of our study demonstrate the utility of organ-imaging data in evaluating and refining PBPK transporter IVIVE to support the subsequent model use for quantitative evaluation of hepatic tDDI.


Subject(s)
Contrast Media/pharmacokinetics , Gadolinium DTPA/pharmacokinetics , Liver/diagnostic imaging , Liver/metabolism , Magnetic Resonance Imaging/methods , Rifampin/pharmacokinetics , Animals , Biological Transport, Active/drug effects , Biomarkers/metabolism , Cells, Cultured , Contrast Media/administration & dosage , Contrast Media/metabolism , Drug Interactions , Gadolinium DTPA/administration & dosage , Gadolinium DTPA/metabolism , Hepatocytes/drug effects , Hepatocytes/metabolism , Male , Models, Animal , Organic Anion Transporters/antagonists & inhibitors , Organic Anion Transporters/metabolism , Rats , Rifampin/administration & dosage , Rifampin/metabolism
18.
Mol Pharm ; 18(3): 807-821, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33356316

ABSTRACT

Nanotechnology is a very promising technological tool to combat health problems associated with the loss of effectiveness of currently used antibiotics. Previously, we developed a formulation consisting of a chitosan and tween 80-decorated alginate nanocarrier that encapsulates rifampicin and the antioxidant ascorbic acid (RIF/ASC), intended for the treatment of respiratory intracellular infections. Here, we investigated the effects of RIF/ASC-loaded NPs on the respiratory mucus and the pulmonary surfactant. In addition, we evaluated their cytotoxicity for lung cells in vitro, and their biodistribution on rat lungs in vivo after their intratracheal administration. Findings herein demonstrated that RIF/ASC-loaded NPs display a favorable lung biocompatibility profile and a uniform distribution throughout lung lobules. RIF/ASC-loaded NPs were mainly uptaken by lung macrophages, their primary target. In summary, findings show that our novel designed RIF/ASC NPs could be a suitable system for antibiotic lung administration with promising perspectives for the treatment of pulmonary intracellular infections.


Subject(s)
Alginates/chemistry , Ascorbic Acid/chemistry , Lung Diseases/drug therapy , Lung Diseases/metabolism , Nanoparticles/chemistry , Rifampin/metabolism , Rifampin/toxicity , A549 Cells , Alginates/metabolism , Alginates/toxicity , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Antioxidants/toxicity , Ascorbic Acid/metabolism , Ascorbic Acid/toxicity , Biological Transport/drug effects , Biological Transport/physiology , Cell Line , Cell Line, Tumor , Chitosan/metabolism , Chitosan/toxicity , Drug Carriers/chemistry , Drug Carriers/metabolism , Drug Carriers/toxicity , Drug Delivery Systems/methods , Female , Humans , Lung/drug effects , Lung/metabolism , Macrophages, Alveolar/drug effects , Macrophages, Alveolar/metabolism , Male , Nanoparticles/metabolism , Nanoparticles/toxicity , Particle Size , Polylactic Acid-Polyglycolic Acid Copolymer/metabolism , Polylactic Acid-Polyglycolic Acid Copolymer/toxicity , Polymers/metabolism , Polymers/toxicity , Rats , Rats, Wistar , Respiratory Mucosa/drug effects , Respiratory Mucosa/metabolism , Rifampin/pharmacology , Swine , Tissue Distribution
19.
Pharm Res ; 38(10): 1645-1661, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34664206

ABSTRACT

PURPOSE: To build a physiologically based pharmacokinetic (PBPK) model of the clinical OATP1B1/OATP1B3/BCRP victim drug rosuvastatin for the investigation and prediction of its transporter-mediated drug-drug interactions (DDIs). METHODS: The Rosuvastatin model was developed using the open-source PBPK software PK-Sim®, following a middle-out approach. 42 clinical studies (dosing range 0.002-80.0 mg), providing rosuvastatin plasma, urine and feces data, positron emission tomography (PET) measurements of tissue concentrations and 7 different rosuvastatin DDI studies with rifampicin, gemfibrozil and probenecid as the perpetrator drugs, were included to build and qualify the model. RESULTS: The carefully developed and thoroughly evaluated model adequately describes the analyzed clinical data, including blood, liver, feces and urine measurements. The processes implemented to describe the rosuvastatin pharmacokinetics and DDIs are active uptake by OATP2B1, OATP1B1/OATP1B3 and OAT3, active efflux by BCRP and Pgp, metabolism by CYP2C9 and passive glomerular filtration. The available clinical rifampicin, gemfibrozil and probenecid DDI studies were modeled using in vitro inhibition constants without adjustments. The good prediction of DDIs was demonstrated by simulated rosuvastatin plasma profiles, DDI AUClast ratios (AUClast during DDI/AUClast without co-administration) and DDI Cmax ratios (Cmax during DDI/Cmax without co-administration), with all simulated DDI ratios within 1.6-fold of the observed values. CONCLUSIONS: A whole-body PBPK model of rosuvastatin was built and qualified for the prediction of rosuvastatin pharmacokinetics and transporter-mediated DDIs. The model is freely available in the Open Systems Pharmacology model repository, to support future investigations of rosuvastatin pharmacokinetics, rosuvastatin therapy and DDI studies during model-informed drug discovery and development (MID3).


Subject(s)
Drug Interactions , Models, Biological , Rosuvastatin Calcium/pharmacokinetics , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Adult , Age Factors , Area Under Curve , Biological Transport , Body Height , Body Weight , Ethnicity , Feces/chemistry , Gemfibrozil/metabolism , Humans , Liver , Liver-Specific Organic Anion Transporter 1/metabolism , Male , Neoplasm Proteins/metabolism , Probenecid/metabolism , Rifampin/metabolism , Rosuvastatin Calcium/blood , Rosuvastatin Calcium/urine , Sex Factors , Software , Solute Carrier Organic Anion Transporter Family Member 1B3/metabolism
20.
Pharm Res ; 38(10): 1639-1644, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34729703

ABSTRACT

PURPOSE: Previous studies evaluating ticagrelor drug-drug interactions have not differentiated intestinal versus systemic mechanisms, which we do here. METHODS: Using recently published methodologies from our laboratory to differentiate metabolic- from transporter-mediated drug-drug interactions, a critical evaluation of five published ticagrelor drug-drug interactions was carried out to investigate the purported clinical significance of enzymes and transporters in ticagrelor disposition. RESULTS: The suggested CYP3A4 inhibitors, ketoconazole and diltiazem, displayed unchanged mean absorption time (MAT) and time of maximum concentration (Tmax) values as was expected, i.e., the interactions were mainly mediated by metabolic enzymes. The potential CYP3A4/P-gp inhibitor cyclosporine also showed an unchanged MAT value. Further analysis assuming there was no P-gp effect suggested that the increased AUC and unchanged t1/2 for ticagrelor after cyclosporine administration were attributed to the inhibition of intestinal CYP3A4 rather than P-gp. Rifampin, an inducer of CYP3As after multiple dosing, unexpectedly showed decreased MAT and Tmax values, which cannot be completely explained. In contrast, grapefruit juice, an intestinal CYP3A/P-gp/OATP inhibitor, significantly increased MAT and Tmax values for ticagrelor, which may be due to activation of P-gp or inhibition of OATPs expressed in intestine. CONCLUSIONS: This study provides new insight into the role of transporter pathways in ticagrelor intestinal absorption by examining potential MAT and Tmax changes mediated by drug-drug interactions.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Cyclosporine/metabolism , Cytochrome P-450 CYP3A Inhibitors/metabolism , Cytochrome P-450 CYP3A/metabolism , Ticagrelor/metabolism , Citrus paradisi , Cyclosporine/pharmacokinetics , Cytochrome P-450 CYP3A Inhibitors/pharmacokinetics , Diltiazem/metabolism , Drug Interactions , Fruit and Vegetable Juices , Humans , Intestinal Absorption , Intestines , Ketoconazole/metabolism , Rifampin/metabolism , Ticagrelor/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL