Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 601
Filter
Add more filters

Publication year range
1.
PLoS Pathog ; 17(8): e1009719, 2021 08.
Article in English | MEDLINE | ID: mdl-34352037

ABSTRACT

Reducing food intake is a common host response to infection, yet it remains unclear whether fasting is detrimental or beneficial to an infected host. Despite the gastrointestinal tract being the primary site of nutrient uptake and a common route for infection, studies have yet to examine how fasting alters the host's response to an enteric infection. To test this, mice were fasted before and during oral infection with the invasive bacterium Salmonella enterica serovar Typhimurium. Fasting dramatically interrupted infection and subsequent gastroenteritis by suppressing Salmonella's SPI-1 virulence program, preventing invasion of the gut epithelium. Virulence suppression depended on the gut microbiota, as Salmonella's invasion of the epithelium proceeded in fasting gnotobiotic mice. Despite Salmonella's restored virulence within the intestines of gnotobiotic mice, fasting downregulated pro-inflammatory signaling, greatly reducing intestinal pathology. Our study highlights how food intake controls the complex relationship between host, pathogen and gut microbiota during an enteric infection.


Subject(s)
Bacteria/growth & development , Fasting , Gastroenteritis/prevention & control , Inflammation/prevention & control , Intestines/immunology , NF-kappa B/antagonists & inhibitors , Salmonella Infections, Animal/immunology , Salmonella typhimurium/physiology , Animals , Bacteria/immunology , Bacteria/metabolism , Female , Gastroenteritis/immunology , Gastroenteritis/microbiology , Gastrointestinal Microbiome , Inflammation/immunology , Inflammation/microbiology , Intestines/microbiology , Mice , Mice, Inbred C57BL , Salmonella Infections, Animal/complications , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/pathology
2.
PLoS Pathog ; 16(8): e1008766, 2020 08.
Article in English | MEDLINE | ID: mdl-32857822

ABSTRACT

Pathogens commonly disrupt the intestinal epithelial barrier; however, how the epithelial immune system senses the loss of intestinal barrier as a danger signal to activate self-defense is unclear. Through an unbiased approach in the model nematode Caenorhabditis elegans, we found that the EGL-44/TEAD transcription factor and its transcriptional activator YAP-1/YAP (Yes-associated protein) were activated when the intestinal barrier was disrupted by infections with the pathogenic bacterium Pseudomonas aeruginosa PA14. Gene Ontology enrichment analysis of the genes containing the TEAD-binding sites revealed that "innate immune response" and "defense response to Gram-negative bacterium" were two top significantly overrepresented terms. Genetic inactivation of yap-1 and egl-44 significantly reduced the survival rate and promoted bacterial accumulation in worms after bacterial infections. Furthermore, we found that disturbance of the E-cadherin-based adherens junction triggered the nuclear translocation and activation of YAP-1/YAP in the gut of worms. Although YAP is a major downstream effector of the Hippo signaling, our study revealed that the activation of YAP-1/YAP was independent of the Hippo pathway during disruption of intestinal barrier. After screening 10 serine/threonine phosphatases, we identified that PP2A phosphatase was involved in the activation of YAP-1/YAP after intestinal barrier loss induced by bacterial infections. Additionally, our study demonstrated that the function of YAP was evolutionarily conserved in mice. Our study highlights how the intestinal epithelium recognizes the loss of the epithelial barrier as a danger signal to deploy defenses against pathogens, uncovering an immune surveillance program in the intestinal epithelium.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Caenorhabditis elegans Proteins/metabolism , Cell Membrane Permeability , Epithelial Cells/immunology , Gastrointestinal Microbiome/immunology , Salmonella Infections, Animal/immunology , Salmonella typhimurium/immunology , Adaptor Proteins, Signal Transducing/genetics , Animals , Caenorhabditis elegans , Caenorhabditis elegans Proteins/genetics , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Epithelial Cells/pathology , Mice , Salmonella Infections, Animal/metabolism , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/pathology , Signal Transduction , YAP-Signaling Proteins
3.
PLoS Pathog ; 16(8): e1008763, 2020 08.
Article in English | MEDLINE | ID: mdl-32834002

ABSTRACT

The various sub-species of Salmonella enterica cause a range of disease in human hosts. The human-adapted Salmonella enterica serovar Typhi enters the gastrointestinal tract and invades systemic sites to cause enteric (typhoid) fever. In contrast, most non-typhoidal serovars of Salmonella are primarily restricted to gut tissues. Across Africa, invasive non-typhoidal Salmonella (iNTS) have emerged with an ability to spread beyond the gastrointestinal tract and cause systemic bloodstream infections with increased morbidity and mortality. To investigate this evolution in pathogenesis, we compared the genomes of African iNTS isolates with other Salmonella enterica serovar Typhimurium and identified several macA and macB gene variants unique to African iNTS. MacAB forms a tripartite efflux pump with TolC and is implicated in Salmonella pathogenesis. We show that macAB transcription is upregulated during macrophage infection and after antimicrobial peptide exposure, with macAB transcription being supported by the PhoP/Q two-component system. Constitutive expression of macAB improves survival of Salmonella in the presence of the antimicrobial peptide C18G. Furthermore, these macAB variants affect replication in macrophages and influence fitness during colonization of the murine gastrointestinal tract. Importantly, the infection outcome resulting from these macAB variants depends upon both the Salmonella Typhimurium genetic background and the host gene Nramp1, an important determinant of innate resistance to intracellular bacterial infection. The variations we have identified in the MacAB-TolC efflux pump in African iNTS may reflect evolution within human host populations that are compromised in their ability to clear intracellular Salmonella infections.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Bacterial Proteins/genetics , Colitis/pathology , Genetic Variation , Macrophages/immunology , Salmonella Infections, Animal/pathology , Salmonella typhimurium/immunology , ATP-Binding Cassette Transporters/metabolism , Animals , Bacterial Proteins/metabolism , Cell Lineage , Colitis/chemically induced , Colitis/immunology , Colitis/microbiology , DNA Mutational Analysis , Disease Models, Animal , Macrophages/metabolism , Macrophages/microbiology , Mice , Mice, Inbred C57BL , Salmonella Infections, Animal/immunology , Salmonella Infections, Animal/microbiology , Virus Replication
4.
PLoS Pathog ; 15(7): e1007847, 2019 07.
Article in English | MEDLINE | ID: mdl-31306468

ABSTRACT

Salmonella exploit host-derived nitrate for growth in the lumen of the inflamed intestine. The generation of host-derived nitrate is dependent on Nos2, which encodes inducible nitric oxide synthase (iNOS), an enzyme that catalyzes nitric oxide (NO) production. However, the cellular sources of iNOS and, therefore, NO-derived nitrate used by Salmonella for growth in the lumen of the inflamed intestine remain unidentified. Here, we show that iNOS-producing inflammatory monocytes infiltrate ceca of mice infected with Salmonella. In addition, we show that inactivation of type-three secretion system (T3SS)-1 and T3SS-2 renders Salmonella unable to induce CC- chemokine receptor-2- and CC-chemokine ligand-2-dependent inflammatory monocyte recruitment. Furthermore, we show that the severity of the pathology of Salmonella- induced colitis as well as the nitrate-dependent growth of Salmonella in the lumen of the inflamed intestine are reduced in mice that lack Ccr2 and, therefore, inflammatory monocytes in the tissues. Thus, inflammatory monocytes provide a niche for Salmonella expansion in the lumen of the inflamed intestine.


Subject(s)
Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Monocytes/metabolism , Salmonella typhimurium/metabolism , Salmonella typhimurium/pathogenicity , Animals , Chemokine CCL2/deficiency , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Female , Host Microbial Interactions/genetics , Host Microbial Interactions/physiology , Humans , Inflammation/metabolism , Inflammation/microbiology , Inflammation/pathology , Intestinal Mucosa/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Biological , Monocytes/pathology , Nitric Oxide Synthase Type II/metabolism , Receptors, CCR2/deficiency , Receptors, CCR2/genetics , Receptors, CCR2/metabolism , Salmonella Infections, Animal/metabolism , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/pathology , Salmonella typhimurium/genetics , Type III Secretion Systems/metabolism
5.
Immunity ; 37(3): 511-23, 2012 Sep 21.
Article in English | MEDLINE | ID: mdl-22981537

ABSTRACT

Interferon-γ (IFN-γ) promotes a population of T-bet(+) CXCR3(+) regulatory T (Treg) cells that limit T helper 1 (Th1) cell-mediated pathology. Our studies demonstrate that interleukin-27 (IL-27) also promoted expression of T-bet and CXCR3 in Treg cells. During infection with Toxoplasma gondii, a similar population emerged that limited T cell responses and was dependent on IFN-γ in the periphery but on IL-27 at mucosal sites. Transfer of Treg cells ameliorated the infection-induced pathology observed in Il27(-/-) mice, and this was dependent on their ability to produce IL-10. Microarray analysis revealed that Treg cells exposed to either IFN-γ or IL-27 have distinct transcriptional profiles. Thus, IFN-γ and IL-27 have different roles in Treg cell biology and IL-27 is a key cytokine that promotes the development of Treg cells specialized to control Th1 cell-mediated immunity at local sites of inflammation.


Subject(s)
Interferon-gamma/pharmacology , Interleukin-17/pharmacology , Salmonella Infections, Animal/immunology , T-Lymphocytes, Regulatory/drug effects , Toxoplasmosis, Animal/immunology , Animals , Cell Differentiation/drug effects , Cell Differentiation/immunology , Cells, Cultured , Female , Flow Cytometry , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/immunology , Forkhead Transcription Factors/metabolism , Gene Expression Profiling , Interferon-gamma/genetics , Interferon-gamma/immunology , Interleukin-17/genetics , Interleukin-17/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Knockout , Mice, Transgenic , Oligonucleotide Array Sequence Analysis , Receptors, CXCR3/genetics , Receptors, CXCR3/immunology , Receptors, CXCR3/metabolism , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/immunology , STAT1 Transcription Factor/metabolism , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/pathology , Salmonella typhimurium/immunology , T-Box Domain Proteins/genetics , T-Box Domain Proteins/immunology , T-Box Domain Proteins/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Toxoplasma/immunology , Toxoplasmosis, Animal/parasitology , Toxoplasmosis, Animal/pathology
6.
J Therm Biol ; 98: 102945, 2021 May.
Article in English | MEDLINE | ID: mdl-34016362

ABSTRACT

High ambient temperature has potential influence on oxidative stress, or systemic inflammation affecting poultry production and immune status of chickens. Heat stress (HS) induces intestinal inflammation and increases susceptibility of harmful pathogens, such as Salmonella and Escherichia coli. Intestinal inflammation is a common result of body immune dysfunction. Therefore, we designed an experiment to analyze the effects of 35 ± 2 °C HS on salmonella infection in chickens through regulation of the immune responses. 40 broiler chickens were randomly divided into 4 groups: control group, heat stress (HS) group, salmonella typhimurium (ST) group and model group (heat stress + salmonella typhimurium, HS + ST). Birds in HS and model group were treated with 35 ± 2 °C heat stress 6 h a day and for 14 continuous days. Then, ST and model group birds were orally administrated with 1 mL ST inoculum (109 cfu/mL). Chickens were sacrificed at the 4th day after ST administration and ileum tissues were measured. We observed that heat stress decreased ileum TNF-α and IL-1ß protein expressions. Concomitantly heat stress decreased NLRP3 and Caspase-1 protein levels. The protein expressions of p-NF-κB-p65 and p-IκB-α in ileum. Heat stress also inhibited IFN-α, p-IRF3 and p-TBK1, showing a deficiency in the HS + ST group birds. Together, the present data suggested that heat stress suppressed intestinal immune activity in chickens infected by salmonella typhimurium, as observed by the decrease of immune cytokines levels, which regulated by NF-κB-NLRP3 signaling pathway.


Subject(s)
Chickens/immunology , Heat Stress Disorders/immunology , Poultry Diseases/immunology , Salmonella Infections, Animal/immunology , Salmonella typhimurium , Animals , Avian Proteins/immunology , Chickens/microbiology , Cytokines/immunology , Heat Stress Disorders/pathology , Heat Stress Disorders/veterinary , Heat-Shock Response , Ileum/immunology , Ileum/pathology , NF-kappa B/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Poultry Diseases/pathology , Protein Serine-Threonine Kinases/immunology , Salmonella Infections, Animal/pathology , Signal Transduction
7.
Am J Physiol Cell Physiol ; 318(6): C1136-C1143, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32293934

ABSTRACT

The transport of electrolytes and fluid by the intestinal epithelium is critical in health to maintain appropriate levels of fluidity of the intestinal contents. The transport mechanisms that underlie this physiological process are also subject to derangement in various digestive disease states, such as diarrheal illnesses. This article summarizes the 2019 Hans Ussing Lecture of the Epithelial Transport Group of the American Physiological Society and discusses some pathways by which intestinal transport is dysregulated, particularly in the setting of infection with the diarrheal pathogen, Salmonella, and in patients treated with small-molecule inhibitors of the tyrosine kinase activity of the epidermal growth factor receptor (EGFr-TKI). The burdensome diarrhea in patients infected with Salmonella may be attributable to decreased expression of the chloride-bicarbonate exchanger downregulated in adenoma (DRA) that participates in electroneutral NaCl absorption. This outcome is possibly secondary to increased epithelial proliferation and/or decreased epithelial differentiation that occurs following infection. Conversely, the diarrheal side effects of cancer treatment with EGFr-TKI may be related to the known ability of EGFr-associated signaling to reduce calcium-dependent chloride secretion. Overall, the findings described may suggest targets for therapeutic intervention in a variety of diarrheal disease states.


Subject(s)
Antiporters/metabolism , Diarrhea/metabolism , Epithelial Cells/metabolism , Intestinal Absorption , Intestinal Mucosa/metabolism , Sulfate Transporters/metabolism , Animals , Antineoplastic Agents/toxicity , Cell Differentiation , Cell Proliferation , Diarrhea/chemically induced , Diarrhea/microbiology , Diarrhea/pathology , Epithelial Cells/drug effects , Epithelial Cells/microbiology , Epithelial Cells/pathology , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Mice , Permeability , Protein Kinase Inhibitors/toxicity , Salmonella Infections, Animal/metabolism , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/pathology
8.
Infect Immun ; 88(8)2020 07 21.
Article in English | MEDLINE | ID: mdl-32393507

ABSTRACT

The intracellular bacterial pathogen Salmonella is able to evade the immune system and persist within the host. In some cases, these persistent infections are asymptomatic for long periods and represent a significant public health hazard because the hosts are potential chronic carriers, yet the mechanisms that control persistence are incompletely understood. Using a mouse model of chronic typhoid fever combined with major histocompatibility complex (MHC) class II tetramers to interrogate endogenous, Salmonella-specific CD4+ helper T cells, we show that certain host microenvironments may favorably contribute to a pathogen's ability to persist in vivo We demonstrate that the environment in the hepatobiliary system may contribute to the persistence of Salmonella enterica subsp. enterica serovar Typhimurium through liver-resident immunoregulatory CD4+ helper T cells, alternatively activated macrophages, and impaired bactericidal activity. This contrasts with lymphoid organs, such as the spleen and mesenteric lymph nodes, where these same cells appear to have a greater capacity for bacterial killing, which may contribute to control of bacteria in these organs. We also found that, following an extended period of infection of more than 2 years, the liver appeared to be the only site that harbored Salmonella bacteria. This work establishes a potential role for nonlymphoid organ immunity in regulating chronic bacterial infections and provides further evidence for the hepatobiliary system as the site of chronic Salmonella infection.


Subject(s)
Host-Pathogen Interactions/immunology , Liver/immunology , Salmonella Infections, Animal/immunology , Salmonella typhimurium/immunology , T-Lymphocytes, Helper-Inducer/immunology , Animals , Chronic Disease , Coculture Techniques , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/immunology , Gallbladder/immunology , Gallbladder/microbiology , Gene Expression Regulation/immunology , Host-Pathogen Interactions/genetics , Immunity, Innate , Interferon-gamma/genetics , Interferon-gamma/immunology , Interleukin-10/genetics , Interleukin-10/immunology , Liver/microbiology , Lymph Nodes/immunology , Lymph Nodes/microbiology , Macrophage Activation , Mice , Mice, Inbred C57BL , Organ Specificity , RAW 264.7 Cells , Salmonella Infections, Animal/genetics , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/pathology , Salmonella typhimurium/growth & development , Salmonella typhimurium/pathogenicity , Single-Cell Analysis , Spleen/immunology , Spleen/microbiology , T-Lymphocytes, Helper-Inducer/microbiology
9.
PLoS Pathog ; 14(10): e1007391, 2018 10.
Article in English | MEDLINE | ID: mdl-30379938

ABSTRACT

Salmonella enterica serovar Typhimurium (S. Tm) is a cause of food poisoning accompanied with gut inflammation. Although mucosal inflammation is generally thought to be protective against bacterial infection, S. Tm exploits the inflammation to compete with commensal microbiota, thereby growing up to high densities in the gut lumen and colonizing the gut continuously at high levels. However, the molecular mechanisms underlying the beneficial effect of gut inflammation on S. Tm competitive growth are poorly understood. Notably, the twin-arginine translocation (Tat) system, which enables the transport of folded proteins outside bacterial cytoplasm, is well conserved among many bacterial pathogens, with Tat substrates including virulence factors and virulence-associated proteins. Here, we show that Tat and Tat-exported peptidoglycan amidase, AmiA- and AmiC-dependent cell division contributes to S. Tm competitive fitness advantage in the inflamed gut. S. Tm tatC or amiA amiC mutants feature a gut colonization defect, wherein they display a chain form of cells. The chains are attributable to a cell division defect of these mutants and occur in inflamed but not in normal gut. We demonstrate that attenuated resistance to bile acids confers the colonization defect on the S. Tm amiA amiC mutant. In particular, S. Tm cell chains are highly sensitive to bile acids as compared to single or paired cells. Furthermore, we show that growth media containing high concentrations of NaCl and sublethal concentrations of antimicrobial peptides induce the S. Tm amiA amiC mutant chain form, suggesting that gut luminal conditions such as high osmolarity and the presence of antimicrobial peptides impose AmiA- and AmiC-dependent cell division on S. Tm. Together, our data indicate that Tat and the Tat-exported amidases, AmiA and AmiC, are required for S. Tm luminal fitness in the inflamed gut, suggesting that these proteins might comprise effective targets for novel antibacterial agents against infectious diarrhea.


Subject(s)
Amidohydrolases/metabolism , Gastrointestinal Tract/microbiology , Inflammation/microbiology , Peptidoglycan/metabolism , Salmonella Infections, Animal/microbiology , Salmonella typhimurium/physiology , Twin-Arginine-Translocation System/metabolism , Animals , Cell Division , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/pathology , Inflammation/metabolism , Inflammation/pathology , Mice , Mice, Inbred C57BL , Salmonella Infections, Animal/metabolism , Salmonella Infections, Animal/pathology
10.
Microbiol Immunol ; 64(10): 679-693, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32803887

ABSTRACT

Salmonella enterica serovar Typhimurium (S. Typhimurium [STM]) is a leading cause of nontyphoidal salmonellosis (NTS) worldwide. The pathogenesis of NTS has been studied extensively using a streptomycin-pretreated mouse colitis model with the limited numbers of laboratory STM strains. However, the pathogenicity of the clinically isolated STM (STMC) strains endemic in Thailand in mice has not been explored. The aim of this study was to compare the pathogenicity of STMC strains collected from Northern Thailand with the laboratory STM (IR715) in mice. Five STMC isolates were obtained from the stool cultures of patients with acute NTS admitted to Maharaj Nakorn Chiang Mai Hospital in 2016 and 2017. Detection of virulence genes and sequence type (ST) of the strains was performed. Female C57BL/6 mice were pretreated with streptomycin sulfate 1 day prior to oral infection with STM. On Day 4 postinfection, mice were euthanized, and tissues were collected to analyze the bacterial numbers, tissue inflammation, and cecal histopathological score. We found that all five STMC strains are ST34 and conferred the same or reduced pathogenicity compared with that of IR715 in mice. A strain-specific effect of ST34 on mouse gut colonization was also observed. Thailand STM ST34 exhibited a significant attenuated systemic infection in mice possibly due to the lack of spvABC-containing virulence plasmid.


Subject(s)
Colitis/pathology , Gastroenteritis/pathology , Salmonella Infections, Animal/pathology , Salmonella typhimurium/pathogenicity , Adolescent , Adult , Aged , Animals , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Caco-2 Cells , Cell Line , Child , Child, Preschool , Disease Models, Animal , Disk Diffusion Antimicrobial Tests , Drug Resistance, Multiple, Bacterial/genetics , Female , Gastroenteritis/microbiology , Humans , Infant , Male , Mice , Mice, Inbred C57BL , Middle Aged , Multilocus Sequence Typing , Plasmids/genetics , RAW 264.7 Cells , Salmonella typhimurium/classification , Salmonella typhimurium/drug effects , Salmonella typhimurium/isolation & purification , Thailand , Virulence/genetics , Young Adult
11.
Infect Immun ; 88(1)2019 12 17.
Article in English | MEDLINE | ID: mdl-31611277

ABSTRACT

To survive and replicate during infection, pathogens utilize different carbon and energy sources depending on the nutritional landscape of their host microenvironment. Salmonella enterica serovar Typhimurium is an intracellular bacterial pathogen that occupies diverse cellular niches. While it is clear that Salmonella Typhimurium requires access to glucose during systemic infection, data on the need for lipid metabolism are mixed. We report that Salmonella Typhimurium strains lacking lipid metabolism genes were defective for systemic infection of mice. Bacterial lipid import, ß-oxidation, and glyoxylate shunt genes were required for tissue colonization upon oral or intraperitoneal inoculation. In cultured macrophages, lipid import and ß-oxidation genes were required for bacterial replication and/or survival only when the cell culture medium was supplemented with nonessential amino acids. Removal of glucose from tissue culture medium further enhanced these phenotypes and, in addition, conferred a requirement for glyoxylate shunt genes. We also observed that Salmonella Typhimurium needs lipid metabolism genes in proinflammatory but not anti-inflammatory macrophages. These results suggest that during systemic infection, the Salmonella Typhimurium that relies upon host lipids to replicate is within proinflammatory macrophages that have access to amino acids but not glucose. An improved understanding of the host microenvironments in which pathogens have specific metabolic requirements may facilitate the development of targeted approaches to treatment.


Subject(s)
Lipid Metabolism , Macrophages/microbiology , Metabolic Networks and Pathways/genetics , Salmonella typhimurium/growth & development , Salmonella typhimurium/metabolism , Amino Acids/metabolism , Animals , Glucose/metabolism , Mice , Microbial Viability , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/pathology , Salmonella typhimurium/genetics
12.
J Cell Physiol ; 234(7): 11330-11347, 2019 07.
Article in English | MEDLINE | ID: mdl-30478915

ABSTRACT

Salmonella Enteritidis (SE) can be transmitted to eggs through cecum or the ovary from infected layers and causes food poisoning in humans. The mechanism of cecal transmission has been extensively studied. However, the mechanism and route of transovarian transmission of SE remain unclear. In this study, the ducks were orally inoculated with SE, and the ovarian follicles and stroma were collected to detect SE infection. The immune responses were triggered and the innate and adaptive immune genes (TLR4, NOD1, AvßD7, and IL-1ß) were upregulated significantly during the SE challenge. Moreover, the ovary tissues (small follicle and stroma) of susceptible and resistant-laying ducks were performed by RNA sequencing. We obtained and identified 23 differentially expressed genes (DEGs) between susceptible and resistant-laying ducks in both small follicle and stroma tissues ( p < 0.05). The DEGs were predominately identified in the p53 signaling pathway. The expression of key genes (p53, MDM2, PERP, caspase-3, and Bcl-2) involved in the signaling pathway was significantly higher in granulosa cells (dGCs) from SE-infected ducks than those from uninfected ducks. Moreover, the overexpression of PERP resulted in further induction of p53, MDM2, caspase-3, and Bcl-2 during SE infection in dGCs. Whereas, an opposite trend was observed with the knockdown of PERP. Besides, it is further revealed that the PERP could enhance cell apoptosis, SE adhesion, and SE invasion in SE-infected dGCs overexpression. Altogether, our results demonstrate the duck PERP involved in the ovarian local immune niche through p53 signaling pathway in dGCs challenged with SE.


Subject(s)
Ducks/immunology , Ducks/microbiology , Gene Expression Profiling/veterinary , Granulosa Cells/metabolism , Membrane Proteins/metabolism , Salmonella Infections, Animal/immunology , Animals , Apoptosis/physiology , Cell Proliferation/physiology , Female , Gene Expression Regulation/genetics , Membrane Proteins/genetics , Membrane Proteins/immunology , Ovarian Follicle/immunology , Ovarian Follicle/microbiology , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/pathology , Salmonella enteritidis/immunology , Tumor Suppressor Protein p53/metabolism
13.
PLoS Pathog ; 13(12): e1006785, 2017 12.
Article in English | MEDLINE | ID: mdl-29253868

ABSTRACT

Bacterial pathogens that compromise phagosomal membranes stimulate inflammasome assembly in the cytosol, but the molecular mechanisms by which membrane dynamics regulate inflammasome activity are poorly characterized. We show that in murine dendritic cells (DCs), the endosomal adaptor protein AP-3 -which optimizes toll-like receptor signaling from phagosomes-sustains inflammasome activation by particulate stimuli. AP-3 independently regulates inflammasome positioning and autophagy induction, together resulting in delayed inflammasome inactivation by autophagy in response to Salmonella Typhimurium (STm) and other particulate stimuli specifically in DCs. AP-3-deficient DCs, but not macrophages, hyposecrete IL-1ß and IL-18 in response to particulate stimuli in vitro, but caspase-1 and IL-1ß levels are restored by silencing autophagy. Concomitantly, AP-3-deficient mice exhibit higher mortality and produce less IL-1ß, IL-18, and IL-17 than controls upon oral STm infection. Our data identify a novel link between phagocytosis, inflammasome activity and autophagy in DCs, potentially explaining impaired antibacterial immunity in AP-3-deficient patients.


Subject(s)
Adaptor Protein Complex 3/deficiency , Dendritic Cells/immunology , Dendritic Cells/microbiology , Inflammasomes/immunology , Adaptive Immunity , Adaptor Protein Complex 3/genetics , Adaptor Protein Complex 3/immunology , Animals , Autophagy/immunology , Dendritic Cells/pathology , Female , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Interleukin-17/biosynthesis , Interleukin-18/biosynthesis , Interleukin-1beta/biosynthesis , Interleukin-1beta/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , NLR Proteins/genetics , NLR Proteins/immunology , Phagocytosis , Salmonella Infections, Animal/immunology , Salmonella Infections, Animal/pathology , Salmonella typhimurium/immunology , Salmonella typhimurium/pathogenicity , Transcriptional Activation
14.
Microb Pathog ; 129: 1-6, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30703474

ABSTRACT

To persist in the host, Salmonella is known to facultatively parasitize cells to escape the immune response. Intracellular Salmonella enterica can replicate using effector proteins translocated across the Salmonella-containing vacuolar membrane via a type III secretion system (T3SS) encoded by Salmonella pathogenicity island-2 (SPI-2). One of these factors, Salmonella secreted factor L (SseL), is a deubiquitinase that contributes to the virulence of Salmonella Typhimurium in mice by inhibiting the cellular NF-κB inflammatory pathway. However, the nature of its effect on the NF-κB pathway is controversial, and little research has been performed in other animal models. In this study, the SseL of Salmonella Pullorum was studied, and chickens were used as an infection model. An sseL gene deletion strain, a complementation strain and a eukaryotic expression plasmid were used to clarify the means by which SseL regulates Salmonella virulence and the cellular inflammatory response. SseL significantly enhanced the virulence of Salmonella Pullorum in chickens and suppressed activation of the cellular NF-κB pathway, thus inhibiting cellular inflammatory cytokine expression.


Subject(s)
Bacterial Proteins/metabolism , Host-Pathogen Interactions , Immune Evasion , NF-kappa B/antagonists & inhibitors , Salmonella Infections, Animal/pathology , Salmonella enterica/pathogenicity , Virulence Factors/metabolism , Animals , Bacterial Proteins/genetics , Chickens , Gene Deletion , Genetic Complementation Test , Poultry Diseases/microbiology , Poultry Diseases/pathology , Salmonella Infections, Animal/microbiology , Virulence , Virulence Factors/genetics
15.
Microb Pathog ; 136: 103712, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31491551

ABSTRACT

The growing problem of antibiotic resistance has attracted people's attention; thus, the search for new antibacterial agents is imminent. In this study, a series of antimicrobial peptides (AMPs) based on the porcine antibacterial peptide PMAP-36 were designed by amino acid substitution to develop peptide analogues as new classes of antimicrobial agents. By extending the α-helix and increasing the positive charge, two peptide analogues, PMAP-36PW and PMAP-36PK, were synthesized. The antibacterial activities of PMAP-36 and its peptide analogues were detected in vitro and in vivo. The results showed that PMAP-36PW and PMAP-36PK had a broadened antibacterial spectrum compared to that of PMAP-36. After the modification, PMAP-36PW and PMAP-36PK exhibited antibacterial activities on swine Escherichia coli K88, while PMAP-36 did not. PMAP-36, PMAP-36PW and PMAP-36PK did not have antibacterial activities against Enterococcus faecium B21. PMAP-36 PW had significant antibacterial activity against seven bacterial strains compared to PMAP-36, and PMAP-36PK had significant antibacterial activity against five bacterial strains compared to PMAP-36. Furthermore, PMAP-36PW exhibited enhanced pH stability. Moreover, in the in vivo efficacy assessment of mice infected with Salmonella choleraesuis C78-1 and Listeria monocytogenes CICC 21533, the peptide analogues exhibited an impressive therapeutic effect by reducing bacterial gene copies and decreasing inflammatory damage in mouse livers and lungs, resulting in a reduction in mouse mortality. This study provides reference data for the design of clinically effective antibacterial peptides.


Subject(s)
Anti-Infective Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Bacteria/drug effects , Recombinant Proteins/pharmacology , Animal Structures/pathology , Animals , Anti-Infective Agents/administration & dosage , Antimicrobial Cationic Peptides/genetics , Disease Models, Animal , Listeriosis/drug therapy , Listeriosis/pathology , Mice , Recombinant Proteins/administration & dosage , Recombinant Proteins/genetics , Salmonella Infections, Animal/drug therapy , Salmonella Infections, Animal/pathology , Treatment Outcome
16.
Curr Microbiol ; 76(6): 762-773, 2019 Jun.
Article in English | MEDLINE | ID: mdl-29785632

ABSTRACT

Currently, Salmonella enterica Typhimurium (ST) is responsible for most cases of food poisoning in several countries. It is characterized as a non-specific zoonotic bacterium that can infect both humans and animals and although most of the infections caused by this microorganism cause only a self-limiting gastroenteritis, some ST strains have been shown to be invasive, crossing the intestinal wall and reaching the systemic circulation. This unusual pathogenicity ability is closely related to ST virulence factors. This review aims to portray the main virulence factors in Salmonella Typhimurium, in order to better understand the strategies that this pathogen uses to reach the systemic circulation and increase its infectivity in humans and animals. Thus, the most studied Salmonella pathogenicity islands in Salmonella Typhimurium were detailed as to the functions of their encoded virulence factors. In addition, available knowledge on virulence plasmid was also compiled, as well as the chromosome regions involved in the virulence of this bacterium.


Subject(s)
Bacteremia/microbiology , Bacteremia/veterinary , Salmonella Infections, Animal/pathology , Salmonella Infections/pathology , Salmonella typhimurium/pathogenicity , Virulence Factors/metabolism , Animals , Genes, Bacterial , Genomic Islands , Humans , Salmonella Infections/microbiology , Salmonella Infections, Animal/microbiology , Salmonella typhimurium/genetics , Virulence , Virulence Factors/genetics
17.
Proc Natl Acad Sci U S A ; 113(34): E5044-51, 2016 08 23.
Article in English | MEDLINE | ID: mdl-27503894

ABSTRACT

The mammalian gastrointestinal tract is colonized by a high-density polymicrobial community where bacteria compete for niches and resources. One key competition strategy includes cell contact-dependent mechanisms of interbacterial antagonism, such as the type VI secretion system (T6SS), a multiprotein needle-like apparatus that injects effector proteins into prokaryotic and/or eukaryotic target cells. However, the contribution of T6SS antibacterial activity during pathogen invasion of the gut has not been demonstrated. We report that successful establishment in the gut by the enteropathogenic bacterium Salmonella enterica serovar Typhimurium requires a T6SS encoded within Salmonella pathogenicity island-6 (SPI-6). In an in vitro setting, we demonstrate that bile salts increase SPI-6 antibacterial activity and that S Typhimurium kills commensal bacteria in a T6SS-dependent manner. Furthermore, we provide evidence that one of the two T6SS nanotube subunits, Hcp1, is required for killing Klebsiella oxytoca in vitro and that this activity is mediated by the specific interaction of Hcp1 with the antibacterial amidase Tae4. Finally, we show that K. oxytoca is killed in the host gut in an Hcp1-dependent manner and that the T6SS antibacterial activity is essential for Salmonella to establish infection within the host gut. Our findings provide an example of pathogen T6SS-dependent killing of commensal bacteria as a mechanism to successfully colonize the host gut.


Subject(s)
Antibiosis , Bacterial Proteins/toxicity , Salmonella Infections, Animal/microbiology , Salmonella typhimurium/pathogenicity , Type VI Secretion Systems/genetics , Virulence Factors/toxicity , Animals , Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , Bile Acids and Salts/pharmacology , Culture Media/chemistry , Female , Gastrointestinal Microbiome/drug effects , Gastrointestinal Tract/microbiology , Gastrointestinal Tract/pathology , Genomic Islands , Klebsiella oxytoca/drug effects , Klebsiella oxytoca/growth & development , Male , Mice , Mice, Inbred C57BL , Salmonella Infections, Animal/pathology , Salmonella typhimurium/genetics , Salmonella typhimurium/growth & development , Type VI Secretion Systems/metabolism , Virulence Factors/biosynthesis , Virulence Factors/genetics
18.
J Dairy Sci ; 102(8): 6756-6765, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31178187

ABSTRACT

Fermented whey dairy beverages are dairy products obtained by fermentation from a mixture of milk and whey. These beverages have important health benefits, which could be improved with the addition of probiotic cultures. This study assessed the protective effect of the cosupplementation of a probiotic culture (Lactobacillus casei 01) with a fermented whey dairy beverage against infection by Salmonella enterica ssp. enterica serovar Typhimurium in a murine model. Two fermented whey dairy beverages were prepared: conventional (FWB; starter culture) and probiotic (PFWB; starter and probiotic cultures). In the first set of experiments, Balb/C female mice were treated with FWB or PFWB, challenged with Salmonella Typhimurium, and analyzed for clinical signs, weight loss, and mortality for 20 d postinfection. In the second set of experiments, mice were treated with FWB or PFWB, challenged with Salmonella Typhimurium, and killed on d 10 postinfection. The liver, colon, and ileum were used for myeloperoxidase, eosinophil peroxidase, and histological analysis and translocation to the liver. The contents from the small intestine were used for secretory IgA determination. The FWB treatment showed a better effect on animal survival (70%), translocation of the pathogen to the liver (2 out of 10), histopathology (fewer lesions), and inflammation than PFWB, which presented 50% animal survival, translocation in 5 out of 10 animals, and higher lesions. The control group presented 40% animal survival, translocation in 6 out of 10 animals, and severe lesions. Therefore, FWB was deemed to have a greater protective effect against Salmonella Typhimurium infection in the murine model compared with PFWB.


Subject(s)
Cultured Milk Products , Salmonella Infections, Animal/prevention & control , Salmonella typhimurium , Whey , Animals , Beverages , Female , Health Promotion , Immunoglobulin A, Secretory/analysis , Inflammation/prevention & control , Intestine, Small/immunology , Intestine, Small/pathology , Lacticaseibacillus casei/physiology , Liver/microbiology , Liver/pathology , Mice , Mice, Inbred BALB C , Probiotics , Salmonella Infections, Animal/immunology , Salmonella Infections, Animal/pathology , Whey Proteins
19.
Infect Immun ; 86(5)2018 05.
Article in English | MEDLINE | ID: mdl-29483291

ABSTRACT

Salmonella enterica elicits intestinal inflammation to gain access to nutrients. One of these nutrients is fructose-asparagine (F-Asn). The availability of F-Asn to Salmonella during infection is dependent upon Salmonella pathogenicity islands 1 and 2, which in turn are required to provoke inflammation. Here, we determined that F-Asn is present in mouse chow at approximately 400 pmol/mg (dry weight). F-Asn is also present in the intestinal tract of germfree mice at 2,700 pmol/mg (dry weight) and in the intestinal tract of conventional mice at 9 to 28 pmol/mg. These findings suggest that the mouse intestinal microbiota consumes F-Asn. We utilized heavy-labeled precursors of F-Asn to monitor its formation in the intestine, in the presence or absence of inflammation, and none was observed. Finally, we determined that some members of the class Clostridia encode F-Asn utilization pathways and that they are eliminated from highly inflamed Salmonella-infected mice. Collectively, our studies identify the source of F-Asn as the diet and that Salmonella-mediated inflammation is required to eliminate competitors and allow the pathogen nearly exclusive access to this nutrient.


Subject(s)
Asparagine/metabolism , Fructose/metabolism , Gastrointestinal Microbiome/immunology , Inflammation/metabolism , Salmonella Infections, Animal/immunology , Salmonella Infections, Animal/metabolism , Salmonella enterica/immunology , Salmonella enterica/metabolism , Animals , Inflammation/immunology , Inflammation/pathology , Salmonella Infections, Animal/pathology , Salmonella enterica/pathogenicity
20.
Am J Pathol ; 187(1): 187-199, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27955815

ABSTRACT

In the current study, we examined the ability of Salmonella enterica serovar Typhimurium to infect the central nervous system and cause meningitis following the natural route of infection in mice. C57BL/6J mice are extremely susceptible to systemic infection by Salmonella Typhimurium because of loss-of-function mutations in Nramp1 (SLC11A1), a phagosomal membrane protein that controls iron export from vacuoles and inhibits Salmonella growth in macrophages. Therefore, we assessed the ability of Salmonella to disseminate to the central nervous system (CNS) after oral infection in C57BL/6J mice expressing either wild-type (resistant) or mutant (susceptible) alleles of Nramp1. In both strains, oral infection resulted in focal meningitis and ventriculitis with recruitment of inflammatory monocytes to the CNS. In susceptible Nramp1-/- mice, there was a direct correlation between bacteremia and the number of bacteria in the brain, which was not observed in resistant Nramp1+/+ mice. A small percentage of Nramp1+/+ mice developed severe ataxia, which was associated with high bacterial loads in the CNS as well as clear histopathology of necrotizing vasculitis and hemorrhage in the brain. Thus, Nramp1 is not essential for Salmonella entry into the CNS or neuroinflammation, but may influence the mechanisms of CNS entry as well as the severity of meningitis.


Subject(s)
Cell Movement , Meningitis/microbiology , Meningitis/pathology , Monocytes/pathology , Salmonella typhimurium/physiology , Administration, Oral , Animals , Ataxia/metabolism , Ataxia/pathology , Bacteremia/complications , Bacteremia/microbiology , Bacteremia/pathology , Brain/microbiology , Brain/pathology , Cation Transport Proteins/deficiency , Cation Transport Proteins/metabolism , Cerebral Ventricles/pathology , Colony Count, Microbial , Encephalitis/complications , Encephalitis/metabolism , Encephalitis/pathology , Immunohistochemistry , Macrophages/pathology , Meningitis/complications , Mice, Inbred C57BL , Neutrophil Infiltration , Salmonella Infections, Animal/complications , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/pathology
SELECTION OF CITATIONS
SEARCH DETAIL