Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35.308
Filter
Add more filters

Publication year range
1.
Cell ; 179(5): 1084-1097.e21, 2019 11 14.
Article in English | MEDLINE | ID: mdl-31730851

ABSTRACT

The ocean is home to myriad small planktonic organisms that underpin the functioning of marine ecosystems. However, their spatial patterns of diversity and the underlying drivers remain poorly known, precluding projections of their responses to global changes. Here we investigate the latitudinal gradients and global predictors of plankton diversity across archaea, bacteria, eukaryotes, and major virus clades using both molecular and imaging data from Tara Oceans. We show a decline of diversity for most planktonic groups toward the poles, mainly driven by decreasing ocean temperatures. Projections into the future suggest that severe warming of the surface ocean by the end of the 21st century could lead to tropicalization of the diversity of most planktonic groups in temperate and polar regions. These changes may have multiple consequences for marine ecosystem functioning and services and are expected to be particularly significant in key areas for carbon sequestration, fisheries, and marine conservation. VIDEO ABSTRACT.


Subject(s)
Biodiversity , Plankton/physiology , Seawater/microbiology , Geography , Models, Theoretical , Oceans and Seas , Phylogeny
2.
Cell ; 179(7): 1623-1635.e11, 2019 12 12.
Article in English | MEDLINE | ID: mdl-31835036

ABSTRACT

Marine bacteria and archaea play key roles in global biogeochemistry. To improve our understanding of this complex microbiome, we employed single-cell genomics and a randomized, hypothesis-agnostic cell selection strategy to recover 12,715 partial genomes from the tropical and subtropical euphotic ocean. A substantial fraction of known prokaryoplankton coding potential was recovered from a single, 0.4 mL ocean sample, which indicates that genomic information disperses effectively across the globe. Yet, we found each genome to be unique, implying limited clonality within prokaryoplankton populations. Light harvesting and secondary metabolite biosynthetic pathways were numerous across lineages, highlighting the value of single-cell genomics to advance the identification of ecological roles and biotechnology potential of uncultured microbial groups. This genome collection enabled functional annotation and genus-level taxonomic assignments for >80% of individual metagenome reads from the tropical and subtropical surface ocean, thus offering a model to improve reference genome databases for complex microbiomes.


Subject(s)
Metagenome , Microbiota , Seawater/microbiology , Archaea/classification , Archaea/genetics , Bacteria/classification , Bacteria/genetics , Energy Metabolism , Metagenomics/methods , Phylogeography , Plankton , Single-Cell Analysis/methods , Transcriptome
3.
Cell ; 179(5): 1068-1083.e21, 2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31730850

ABSTRACT

Ocean microbial communities strongly influence the biogeochemistry, food webs, and climate of our planet. Despite recent advances in understanding their taxonomic and genomic compositions, little is known about how their transcriptomes vary globally. Here, we present a dataset of 187 metatranscriptomes and 370 metagenomes from 126 globally distributed sampling stations and establish a resource of 47 million genes to study community-level transcriptomes across depth layers from pole-to-pole. We examine gene expression changes and community turnover as the underlying mechanisms shaping community transcriptomes along these axes of environmental variation and show how their individual contributions differ for multiple biogeochemically relevant processes. Furthermore, we find the relative contribution of gene expression changes to be significantly lower in polar than in non-polar waters and hypothesize that in polar regions, alterations in community activity in response to ocean warming will be driven more strongly by changes in organismal composition than by gene regulatory mechanisms. VIDEO ABSTRACT.


Subject(s)
Gene Expression Regulation , Metagenome , Oceans and Seas , Transcriptome/genetics , Geography , Microbiota/genetics , Molecular Sequence Annotation , RNA, Messenger/genetics , RNA, Messenger/metabolism , Seawater/microbiology , Temperature
4.
Cell ; 164(1-2): 45-56, 2016 Jan 14.
Article in English | MEDLINE | ID: mdl-26774823

ABSTRACT

Changes in bone size and shape are defining features of many vertebrates. Here we use genetic crosses and comparative genomics to identify specific regulatory DNA alterations controlling skeletal evolution. Armor bone-size differences in sticklebacks map to a major effect locus overlapping BMP family member GDF6. Freshwater fish express more GDF6 due in part to a transposon insertion, and transgenic overexpression of GDF6 phenocopies evolutionary changes in armor-plate size. The human GDF6 locus also has undergone distinctive regulatory evolution, including complete loss of an enhancer that is otherwise highly conserved between chimps and other mammals. Functional tests show that the ancestral enhancer drives expression in hindlimbs but not forelimbs, in locations that have been specifically modified during the human transition to bipedalism. Both gain and loss of regulatory elements can localize BMP changes to specific anatomical locations, providing a flexible regulatory basis for evolving species-specific changes in skeletal form.


Subject(s)
Biological Evolution , Evolution, Molecular , Growth Differentiation Factor 6/genetics , Skeleton/physiology , Vertebrates/genetics , Adaptation, Physiological , Animals , Enhancer Elements, Genetic , Fish Proteins/genetics , Fish Proteins/metabolism , Fresh Water , Growth Differentiation Factor 6/metabolism , Humans , Quantitative Trait Loci , Seawater , Skeleton/anatomy & histology , Smegmamorpha/genetics , Smegmamorpha/physiology , Species Specificity , Vertebrates/classification , Vertebrates/growth & development , Vertebrates/metabolism
5.
Nature ; 632(8023): 95-100, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38987602

ABSTRACT

Subtropical gyre (STG) depth and strength are controlled by wind stress curl and surface buoyancy forcing1,2. Modern hydrographic data reveal that the STG extends to a depth of about 1 km in the Northwest Atlantic, with its maximum depth defined by the base of the subtropical thermocline. Despite the likelihood of greater wind stress curl and surface buoyancy loss during the Last Glacial Maximum (LGM)3, previous work suggests minimal change in the depth of the glacial STG4. Here we show a sharp glacial water mass boundary between 33° N and 36° N extending down to between 2.0 and 2.5 km-approximately 1 km deeper than today. Our findings arise from benthic foraminiferal δ18O profiles from sediment cores in two depth transects at Cape Hatteras (36-39° N) and Blake Outer Ridge (29-34° N) in the Northwest Atlantic. This result suggests that the STG, including the Gulf Stream, was deeper and stronger during the LGM than at present, which we attribute to increased glacial wind stress curl, as supported by climate model simulations, as well as greater glacial production of denser subtropical mode waters (STMWs). Our data suggest (1) that subtropical waters probably contributed to the geochemical signature of what is conventionally identified as Glacial North Atlantic Intermediate Water (GNAIW)5-7 and (2) the STG helped sustain continued buoyancy loss, water mass conversion and northwards meridional heat transport (MHT) in the glacial North Atlantic.


Subject(s)
Ice Cover , Seawater , Water Movements , Atlantic Ocean , Climate Models , Foraminifera/isolation & purification , Geologic Sediments/parasitology , Gulf of Mexico , History, Ancient , Hot Temperature , Seawater/analysis , Seawater/chemistry , Wind
6.
Nature ; 629(8012): 603-608, 2024 May.
Article in English | MEDLINE | ID: mdl-38750234

ABSTRACT

Natural iron fertilization of the Southern Ocean by windblown dust has been suggested to enhance biological productivity and modulate the climate1-3. Yet, this process has never been quantified across the Southern Ocean and at annual timescales4,5. Here we combined 11 years of nitrate observations from autonomous biogeochemical ocean profiling floats with a Southern Hemisphere dust simulation to empirically derive the relationship between dust-iron deposition and annual net community production (ANCP) in the iron-limited Southern Ocean. Using this relationship, we determined the biological response to dust-iron in the pelagic perennially ice-free Southern Ocean at present and during the last glacial maximum (LGM). We estimate that dust-iron now supports 33% ± 15% of Southern Ocean ANCP. During the LGM, when dust deposition was 5-40-fold higher than today, the contribution of dust to Southern Ocean ANCP was much greater, estimated at 64% ± 13%. We provide quantitative evidence of basin-wide dust-iron fertilization of the Southern Ocean and the potential magnitude of its impact on glacial-interglacial timescales, supporting the idea of the important role of dust in the global carbon cycle and climate6-8.


Subject(s)
Carbon Cycle , Climate , Dust , Iron , Oceans and Seas , Seawater , Dust/analysis , Ice Cover , Iron/analysis , Nitrates/analysis , Seawater/chemistry
7.
Nature ; 631(8020): 335-339, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38867053

ABSTRACT

The initial rise of molecular oxygen (O2) shortly after the Archaean-Proterozoic transition 2.5 billion years ago was more complex than the single step-change once envisioned. Sulfur mass-independent fractionation records suggest that the rise of atmospheric O2 was oscillatory, with multiple returns to an anoxic state until perhaps 2.2 billion years ago1-3. Yet few constraints exist for contemporaneous marine oxygenation dynamics, precluding a holistic understanding of planetary oxygenation. Here we report thallium (Tl) isotope ratio and redox-sensitive element data for marine shales from the Transvaal Supergroup, South Africa. Synchronous with sulfur isotope evidence of atmospheric oxygenation in the same shales3, we found lower authigenic 205Tl/203Tl ratios indicative of widespread manganese oxide burial on an oxygenated seafloor and higher redox-sensitive element abundances consistent with expanded oxygenated waters. Both signatures disappear when the sulfur isotope data indicate a brief return to an anoxic atmospheric state. Our data connect recently identified atmospheric O2 dynamics on early Earth with the marine realm, marking an important turning point in Earth's redox history away from heterogeneous and highly localized 'oasis'-style oxygenation.


Subject(s)
Atmosphere , Earth, Planet , Oxygen , Seawater , Atmosphere/chemistry , Geologic Sediments/chemistry , History, Ancient , Oceans and Seas , Oxidation-Reduction , Oxygen/analysis , Oxygen/history , Oxygen/metabolism , Seawater/chemistry , South Africa , Sulfur Isotopes/analysis , Thallium/analysis , Thallium/chemistry
8.
Nature ; 630(8018): 899-904, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38723661

ABSTRACT

Nitrogen (N2) fixation in oligotrophic surface waters is the main source of new nitrogen to the ocean1 and has a key role in fuelling the biological carbon pump2. Oceanic N2 fixation has been attributed almost exclusively to cyanobacteria, even though genes encoding nitrogenase, the enzyme that fixes N2 into ammonia, are widespread among marine bacteria and archaea3-5. Little is known about these non-cyanobacterial N2 fixers, and direct proof that they can fix nitrogen in the ocean has so far been lacking. Here we report the discovery of a non-cyanobacterial N2-fixing symbiont, 'Candidatus Tectiglobus diatomicola', which provides its diatom host with fixed nitrogen in return for photosynthetic carbon. The N2-fixing symbiont belongs to the order Rhizobiales and its association with a unicellular diatom expands the known hosts for this order beyond the well-known N2-fixing rhizobia-legume symbioses on land6. Our results show that the rhizobia-diatom symbioses can contribute as much fixed nitrogen as can cyanobacterial N2 fixers in the tropical North Atlantic, and that they might be responsible for N2 fixation in the vast regions of the ocean in which cyanobacteria are too rare to account for the measured rates.


Subject(s)
Diatoms , Nitrogen Fixation , Nitrogen , Oceans and Seas , Rhizobium , Seawater , Symbiosis , Carbon/metabolism , Diatoms/metabolism , Diatoms/physiology , Nitrogen/metabolism , Photosynthesis , Phylogeny , Rhizobium/classification , Rhizobium/metabolism , Rhizobium/physiology , Seawater/microbiology , Seawater/chemistry , Cyanobacteria/isolation & purification , Cyanobacteria/metabolism , Atlantic Ocean
9.
Nature ; 632(8024): 320-326, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39112620

ABSTRACT

Mass coral bleaching on the Great Barrier Reef (GBR) in Australia between 2016 and 2024 was driven by high sea surface temperatures (SST)1. The likelihood of temperature-induced bleaching is a key determinant for the future threat status of the GBR2, but the long-term context of recent temperatures in the region is unclear. Here we show that the January-March Coral Sea heat extremes in 2024, 2017 and 2020 (in order of descending mean SST anomalies) were the warmest in 400 years, exceeding the 95th-percentile uncertainty limit of our reconstructed pre-1900 maximum. The 2016, 2004 and 2022 events were the next warmest, exceeding the 90th-percentile limit. Climate model analysis confirms that human influence on the climate system is responsible for the rapid warming in recent decades. This attribution, together with the recent ocean temperature extremes, post-1900 warming trend and observed mass coral bleaching, shows that the existential threat to the GBR ecosystem from anthropogenic climate change is now realized. Without urgent intervention, the iconic GBR is at risk of experiencing temperatures conducive to near-annual coral bleaching3, with negative consequences for biodiversity and ecosystems services. A continuation on the current trajectory would further threaten the ecological function4 and outstanding universal value5 of one of Earth's greatest natural wonders.


Subject(s)
Anthozoa , Anthropogenic Effects , Coral Reefs , Global Warming , Hot Temperature , Oceans and Seas , Animals , Anthozoa/physiology , Australia , Climate Models , Extinction, Biological , Global Warming/history , Global Warming/prevention & control , Global Warming/statistics & numerical data , History, 17th Century , History, 18th Century , History, 19th Century , History, 20th Century , History, 21st Century , Human Activities/history , Pacific Ocean , Seawater/analysis
10.
Nature ; 631(8019): 199-206, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38898276

ABSTRACT

The vast majority of glycosidases characterized to date follow one of the variations of the 'Koshland' mechanisms1 to hydrolyse glycosidic bonds through substitution reactions. Here we describe a large-scale screen of a human gut microbiome metagenomic library using an assay that selectively identifies non-Koshland glycosidase activities2. Using this, we identify a cluster of enzymes with extremely broad substrate specificities and thoroughly characterize these, mechanistically and structurally. These enzymes not only break glycosidic linkages of both α and ß stereochemistry and multiple connectivities, but also cleave substrates that are not hydrolysed by standard glycosidases. These include thioglycosides, such as the glucosinolates from plants, and pseudoglycosidic bonds of pharmaceuticals such as acarbose. This is achieved through a distinct mechanism of hydrolysis that involves oxidation/reduction and elimination/hydration steps, each catalysed by enzyme modules that are in many cases interchangeable between organisms and substrate classes. Homologues of these enzymes occur in both Gram-positive and Gram-negative bacteria associated with the gut microbiome and other body parts, as well as other environments, such as soil and sea. Such alternative step-wise mechanisms appear to constitute largely unrecognized but abundant pathways for glycan degradation as part of the metabolism of carbohydrates in bacteria.


Subject(s)
Bacteria , Gastrointestinal Microbiome , Glycoside Hydrolases , Polysaccharides , Humans , Acarbose/chemistry , Acarbose/metabolism , Bacteria/enzymology , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Biocatalysis , Glucosinolates/metabolism , Glucosinolates/chemistry , Glycoside Hydrolases/metabolism , Glycoside Hydrolases/chemistry , Hydrolysis , Metagenome , Oxidation-Reduction , Plants/chemistry , Polysaccharides/metabolism , Polysaccharides/chemistry , Seawater/microbiology , Soil Microbiology , Substrate Specificity , Male
11.
Nature ; 615(7954): 841-847, 2023 03.
Article in English | MEDLINE | ID: mdl-36991191

ABSTRACT

The abyssal ocean circulation is a key component of the global meridional overturning circulation, cycling heat, carbon, oxygen and nutrients throughout the world ocean1,2. The strongest historical trend observed in the abyssal ocean is warming at high southern latitudes2-4, yet it is unclear what processes have driven this warming, and whether this warming is linked to a slowdown in the ocean's overturning circulation. Furthermore, attributing change to specific drivers is difficult owing to limited measurements, and because coupled climate models exhibit biases in the region5-7. In addition, future change remains uncertain, with the latest coordinated climate model projections not accounting for dynamic ice-sheet melt. Here we use a transient forced high-resolution coupled ocean-sea-ice model to show that under a high-emissions scenario, abyssal warming is set to accelerate over the next 30 years. We find that meltwater input around Antarctica drives a contraction of Antarctic Bottom Water (AABW), opening a pathway that allows warm Circumpolar Deep Water greater access to the continental shelf. The reduction in AABW formation results in warming and ageing of the abyssal ocean, consistent with recent measurements. In contrast, projected wind and thermal forcing has little impact on the properties, age and volume of AABW. These results highlight the critical importance of Antarctic meltwater in setting the abyssal ocean overturning, with implications for global ocean biogeochemistry and climate that could last for centuries.


Subject(s)
Freezing , Hot Temperature , Oceans and Seas , Seawater , Water Movements , Antarctic Regions , Seawater/analysis , Seawater/chemistry , Acceleration , Uncertainty , Climate Change
12.
Nature ; 621(7979): 536-542, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37558870

ABSTRACT

Coral reef ecosystems are being fundamentally restructured by local human impacts and climate-driven marine heatwaves that trigger mass coral bleaching and mortality1. Reducing local impacts can increase reef resistance to and recovery from bleaching2. However, resource managers lack clear advice on targeted actions that best support coral reefs under climate change3 and sector-based governance means most land- and sea-based management efforts remain siloed4. Here we combine surveys of reef change with a unique 20-year time series of land-sea human impacts that encompassed an unprecedented marine heatwave in Hawai'i. Reefs with increased herbivorous fish populations and reduced land-based impacts, such as wastewater pollution and urban runoff, had positive coral cover trajectories predisturbance. These reefs also experienced a modest reduction in coral mortality following severe heat stress compared to reefs with reduced fish populations and enhanced land-based impacts. Scenario modelling indicated that simultaneously reducing land-sea human impacts results in a three- to sixfold greater probability of a reef having high reef-builder cover four years postdisturbance than if either occurred in isolation. International efforts to protect 30% of Earth's land and ocean ecosystems by 2030 are underway5. Our results reveal that integrated land-sea management could help achieve coastal ocean conservation goals and provide coral reefs with the best opportunity to persist in our changing climate.


Subject(s)
Anthozoa , Conservation of Natural Resources , Coral Reefs , Extreme Heat , Global Warming , Oceans and Seas , Seawater , Animals , Conservation of Natural Resources/methods , Extreme Heat/adverse effects , Fishes , Global Warming/statistics & numerical data , Goals , Hawaii , Human Activities , International Cooperation , Seawater/analysis , Seawater/chemistry , Wastewater/analysis , Time Factors
13.
Nature ; 620(7972): 104-109, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37532817

ABSTRACT

Iron is important in regulating the ocean carbon cycle1. Although several dissolved and particulate species participate in oceanic iron cycling, current understanding emphasizes the importance of complexation by organic ligands in stabilizing oceanic dissolved iron concentrations2-6. However, it is difficult to reconcile this view of ligands as a primary control on dissolved iron cycling with the observed size partitioning of dissolved iron species, inefficient dissolved iron regeneration at depth or the potential importance of authigenic iron phases in particulate iron observational datasets7-12. Here we present a new dissolved iron, ligand and particulate iron seasonal dataset from the Bermuda Atlantic Time-series Study (BATS) region. We find that upper-ocean dissolved iron dynamics were decoupled from those of ligands, which necessitates a process by which dissolved iron escapes ligand stabilization to generate a reservoir of authigenic iron particles that settle to depth. When this 'colloidal shunt' mechanism was implemented in a global-scale biogeochemical model, it reproduced both seasonal iron-cycle dynamics observations and independent global datasets when previous models failed13-15. Overall, we argue that the turnover of authigenic particulate iron phases must be considered alongside biological activity and ligands in controlling ocean-dissolved iron distributions and the coupling between dissolved and particulate iron pools.


Subject(s)
Iron , Minerals , Seawater , Iron/analysis , Iron/chemistry , Iron/metabolism , Ligands , Minerals/analysis , Minerals/chemistry , Minerals/metabolism , Carbon Cycle , Datasets as Topic , Atlantic Ocean , Seawater/analysis , Seawater/chemistry , Bermuda , Time Factors , Seasons , Solutions/chemistry , Internationality
14.
Nature ; 618(7967): 967-973, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37380694

ABSTRACT

Observational evidence shows the ubiquitous presence of ocean-emitted short-lived halogens in the global atmosphere1-3. Natural emissions of these chemical compounds have been anthropogenically amplified since pre-industrial times4-6, while, in addition, anthropogenic short-lived halocarbons are currently being emitted to the atmosphere7,8. Despite their widespread distribution in the atmosphere, the combined impact of these species on Earth's radiative balance remains unknown. Here we show that short-lived halogens exert a substantial indirect cooling effect at present (-0.13 ± 0.03 watts per square metre) that arises from halogen-mediated radiative perturbations of ozone (-0.24 ± 0.02 watts per square metre), compensated by those from methane (+0.09 ± 0.01 watts per square metre), aerosols (+0.03 ± 0.01 watts per square metre) and stratospheric water vapour (+0.011 ± 0.001 watts per square metre). Importantly, this substantial cooling effect has increased since 1750 by -0.05 ± 0.03 watts per square metre (61 per cent), driven by the anthropogenic amplification of natural halogen emissions, and is projected to change further (18-31 per cent by 2100) depending on climate warming projections and socioeconomic development. We conclude that the indirect radiative effect due to short-lived halogens should now be incorporated into climate models to provide a more realistic natural baseline of Earth's climate system.


Subject(s)
Atmosphere , Climate Change , Climate Models , Climate , Cold Temperature , Halogens , Atmosphere/analysis , Atmosphere/chemistry , Halogens/analysis , Hydrocarbons, Halogenated , Oceans and Seas , Seawater/analysis , Seawater/chemistry , Climate Change/statistics & numerical data , Human Activities
15.
Nature ; 619(7970): 521-525, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37380780

ABSTRACT

The oxygen content of the oceans is susceptible to climate change and has declined in recent decades1, with the largest effect in oxygen-deficient zones (ODZs)2, that is, mid-depth ocean regions with oxygen concentrations <5 µmol kg-1 (ref. 3). Earth-system-model simulations of climate warming predict that ODZs will expand until at least 2100. The response on timescales of hundreds to thousands of years, however, remains uncertain3-5. Here we investigate changes in the response of ocean oxygenation during the warmer-than-present Miocene Climatic Optimum (MCO; 17.0-14.8 million years ago (Ma)). Our planktic foraminifera I/Ca and δ15N data, palaeoceanographic proxies sensitive to ODZ extent and intensity, indicate that dissolved-oxygen concentrations in the eastern tropical Pacific (ETP) exceeded 100 µmol kg-1 during the MCO. Paired Mg/Ca-derived temperature data suggest that an ODZ developed in response to an increased west-to-east temperature gradient and shoaling of the ETP thermocline. Our records align with model simulations of data from recent decades to centuries6,7, suggesting that weaker equatorial Pacific trade winds during warm periods may lead to decreased upwelling in the ETP, causing equatorial productivity and subsurface oxygen demand to be less concentrated in the east. These findings shed light on how warm-climate states such as during the MCO may affect ocean oxygenation. If the MCO is considered as a possible analogue for future warming, our findings seem to support models suggesting that the recent deoxygenation trend and expansion of the ETP ODZ may eventually reverse3,4.


Subject(s)
Oxygen , Seawater , Tropical Climate , Climate Change/history , Climate Change/statistics & numerical data , Oxygen/analysis , Oxygen/history , Pacific Ocean , Seawater/chemistry , History, Ancient , History, 21st Century , Climate Models , Foraminifera/isolation & purification , Geographic Mapping , Uncertainty
16.
Nature ; 624(7992): 579-585, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38057667

ABSTRACT

The transfer of photosynthetically produced organic carbon from surface to mesopelagic waters draws carbon dioxide from the atmosphere1. However, current observation-based estimates disagree on the strength of this biological carbon pump (BCP)2. Earth system models (ESMs) also exhibit a large spread of BCP estimates, indicating limited representations of the known carbon export pathways3. Here we use several decades of hydrographic observations to produce a top-down estimate of the strength of the BCP with an inverse biogeochemical model that implicitly accounts for all known export pathways. Our estimate of total organic carbon (TOC) export at 73.4 m (model euphotic zone depth) is 15.00 ± 1.12 Pg C year-1, with only two-thirds reaching 100 m depth owing to rapid remineralization of organic matter in the upper water column. Partitioned by sequestration time below the euphotic zone, τ, the globally integrated organic carbon production rate with τ > 3 months is 11.09 ± 1.02 Pg C year-1, dropping to 8.25 ± 0.30 Pg C year-1 for τ > 1 year, with 81% contributed by the non-advective-diffusive vertical flux owing to sinking particles and vertically migrating zooplankton. Nevertheless, export of organic carbon by mixing and other fluid transport of dissolved matter and suspended particles remains regionally important for meeting the respiratory carbon demand. Furthermore, the temperature dependence of the sequestration efficiency inferred from our inversion suggests that future global warming may intensify the recycling of organic matter in the upper ocean, potentially weakening the BCP.


Subject(s)
Carbon Dioxide , Seawater , Water , Animals , Carbon Dioxide/metabolism , Photosynthesis , Seawater/chemistry , Water/chemistry , Water/metabolism , Zooplankton/metabolism , Global Warming , Oceans and Seas
17.
Nature ; 615(7951): 265-269, 2023 03.
Article in English | MEDLINE | ID: mdl-36813968

ABSTRACT

Calcium carbonate formation is the primary pathway by which carbon is returned from the ocean-atmosphere system to the solid Earth1,2. The removal of dissolved inorganic carbon from seawater by precipitation of carbonate minerals-the marine carbonate factory-plays a critical role in shaping marine biogeochemical cycling1,2. A paucity of empirical constraints has led to widely divergent views on how the marine carbonate factory has changed over time3-5. Here we use geochemical insights from stable strontium isotopes to provide a new perspective on the evolution of the marine carbonate factory and carbonate mineral saturation states. Although the production of carbonates in the surface ocean and in shallow seafloor settings have been widely considered the predominant carbonate sinks for most of the history of the Earth6, we propose that alternative processes-such as porewater production of authigenic carbonates-may have represented a major carbonate sink throughout the Precambrian. Our results also suggest that the rise of the skeletal carbonate factory decreased seawater carbonate saturation states.


Subject(s)
Carbonates , Geologic Sediments , Seawater , Animals , Aquatic Organisms/chemistry , Aquatic Organisms/metabolism , Calcium Carbonate/analysis , Calcium Carbonate/chemistry , Calcium Carbonate/metabolism , Carbon/analysis , Carbon/chemistry , Carbon/metabolism , Carbon Sequestration , Carbonates/analysis , Carbonates/chemistry , Carbonates/metabolism , Geologic Sediments/analysis , Geologic Sediments/chemistry , Seawater/analysis , Seawater/chemistry , Strontium Isotopes , History, Ancient
18.
Nature ; 615(7954): 858-865, 2023 03.
Article in English | MEDLINE | ID: mdl-36949201

ABSTRACT

Human society is dependent on nature1,2, but whether our ecological foundations are at risk remains unknown in the absence of systematic monitoring of species' populations3. Knowledge of species fluctuations is particularly inadequate in the marine realm4. Here we assess the population trends of 1,057 common shallow reef species from multiple phyla at 1,636 sites around Australia over the past decade. Most populations decreased over this period, including many tropical fishes, temperate invertebrates (particularly echinoderms) and southwestern Australian macroalgae, whereas coral populations remained relatively stable. Population declines typically followed heatwave years, when local water temperatures were more than 0.5 °C above temperatures in 2008. Following heatwaves5,6, species abundances generally tended to decline near warm range edges, and increase near cool range edges. More than 30% of shallow invertebrate species in cool latitudes exhibited high extinction risk, with rapidly declining populations trapped by deep ocean barriers, preventing poleward retreat as temperatures rise. Greater conservation effort is needed to safeguard temperate marine ecosystems, which are disproportionately threatened and include species with deep evolutionary roots. Fundamental among such efforts, and broader societal needs to efficiently adapt to interacting anthropogenic and natural pressures, is greatly expanded monitoring of species' population trends7,8.


Subject(s)
Anthozoa , Coral Reefs , Extreme Heat , Fishes , Global Warming , Invertebrates , Oceans and Seas , Seawater , Seaweed , Animals , Australia , Fishes/classification , Invertebrates/classification , Global Warming/statistics & numerical data , Seaweed/classification , Population Dynamics , Population Density , Seawater/analysis , Extinction, Biological , Conservation of Natural Resources/trends , Echinodermata/classification
19.
Nature ; 618(7967): 974-980, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37258677

ABSTRACT

Phosphorus is a limiting nutrient that is thought to control oceanic oxygen levels to a large extent1-3. A possible increase in marine phosphorus concentrations during the Ediacaran Period (about 635-539 million years ago) has been proposed as a driver for increasing oxygen levels4-6. However, little is known about the nature and evolution of phosphorus cycling during this time4. Here we use carbonate-associated phosphate (CAP) from six globally distributed sections to reconstruct oceanic phosphorus concentrations during a large negative carbon-isotope excursion-the Shuram excursion (SE)-which co-occurred with global oceanic oxygenation7-9. Our data suggest pulsed increases in oceanic phosphorus concentrations during the falling and rising limbs of the SE. Using a quantitative biogeochemical model, we propose that this observation could be explained by carbon dioxide and phosphorus release from marine organic-matter oxidation primarily by sulfate, with further phosphorus release from carbon-dioxide-driven weathering on land. Collectively, this may have resulted in elevated organic-pyrite burial and ocean oxygenation. Our CAP data also seem to suggest equivalent oceanic phosphorus concentrations under maximum and minimum extents of ocean anoxia across the SE. This observation may reflect decoupled phosphorus and ocean anoxia cycles, as opposed to their coupled nature in the modern ocean. Our findings point to external stimuli such as sulfate weathering rather than internal oceanic phosphorus-oxygen cycling alone as a possible control on oceanic oxygenation in the Ediacaran. In turn, this may help explain the prolonged rise of atmospheric oxygen levels.


Subject(s)
Oceans and Seas , Phosphorus , Seawater , Atmosphere/chemistry , Carbon Dioxide/metabolism , Carbon Isotopes , Geologic Sediments/chemistry , History, Ancient , Hypoxia/metabolism , Oxygen/analysis , Oxygen/history , Oxygen/metabolism , Phosphorus/analysis , Phosphorus/history , Phosphorus/metabolism , Seawater/chemistry , Sulfates/metabolism , Carbonates/analysis , Carbonates/metabolism , Oxidation-Reduction
20.
Nature ; 618(7965): 526-530, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37316721

ABSTRACT

The export of carbon from the ocean surface and storage in the ocean interior is important in the modulation of global climate1-4. The West Antarctic Peninsula experiences some of the largest summer particulate organic carbon (POC) export rates, and one of the fastest warming rates, in the world5,6. To understand how warming may alter carbon storage, it is necessary to first determine the patterns and ecological drivers of POC export7,8. Here we show that Antarctic krill (Euphausia superba) body size and life-history cycle, as opposed to their overall biomass or regional environmental factors, exert the dominant control on the POC flux. We measured POC fluxes over 21 years, the longest record in the Southern Ocean, and found a significant 5-year periodicity in the annual POC flux, which oscillated in synchrony with krill body size, peaking when the krill population was composed predominately of large individuals. Krill body size alters the POC flux through the production and export of size-varying faecal pellets9, which dominate the total flux. Decreases in winter sea ice10, an essential habitat for krill, are causing shifts in the krill population11, which may alter these export patterns of faecal pellets, leading to changes in ocean carbon storage.


Subject(s)
Body Size , Carbon , Euphausiacea , Particulate Matter , Animals , Antarctic Regions , Biomass , Carbon/metabolism , Euphausiacea/anatomy & histology , Euphausiacea/growth & development , Euphausiacea/physiology , Particulate Matter/metabolism , Oceans and Seas , Population Dynamics , Seawater , Ice Cover , Ecosystem , Carbon Sequestration
SELECTION OF CITATIONS
SEARCH DETAIL