Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 254
Filter
Add more filters

Publication year range
1.
Lasers Med Sci ; 36(4): 803-810, 2021 Jun.
Article in English | MEDLINE | ID: mdl-32638241

ABSTRACT

Studying light penetration in biological tissues became a very important concern in various medical applications. It is an essential factor required to resolve the optical dose in many diagnostic and therapeutic procedures. The absorption and scattering properties of the inspected tissue control how deep the light will travel inside the tissue. However, these optical properties are highly dependent on the wavelength of the light source. In this work, the light transmission through different regions of the rat's head was investigated and the minimum laser power required to reach different parts of the head is also determined using 808-nm semiconductor laser diode. The power variation in different regions of the head is estimated using Monte Carlo simulation. Absorption and scattering coefficients of the head layers were calculated using integrating sphere measurements and Kubelka-Munk model. The absorption coefficient of the skin was 0.19 ± 0.071 mm-1, 0.024 ± 0.11 mm-1 for skull, and 0.35 ± 0.13 mm-1 for the brain, while the scattering coefficients were 7.35 ± 1.09, 2.71 ± 0.37, and 13.04 ± 0.36 mm-1 for skin, skull, and brain, respectively. The obtained results provide a relationship between laser incident power and the depth in the rat's head showing a higher optical transmission at the frontal part of the head than the middle or back regions due to the variations in the skull thickness. Therefore, the study revealed that the transmitted power of 808 nm laser at different incident locations on the head is nonlinear and variable due to different skull's thickness.


Subject(s)
Head/radiation effects , Lasers, Semiconductor , Monte Carlo Method , Optical Phenomena , Animals , Brain/radiation effects , Computer Simulation , Rats , Scattering, Radiation , Skull/radiation effects
2.
Lasers Med Sci ; 36(3): 541-553, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32514865

ABSTRACT

The purposes of this study are to evaluate the effects of photobiomodulation (PBM) with laser and LED on rat calvaria osteoblasts (rGO lineage), cultured in osteogenic (OST) or regular (REG) medium, after induction of a quiescent state and to test if PBM is capable of osteogenic induction and if there is a sum of effects when combining OST medium with PBM. Before irradiation, the cells were put in a quiescent state (1% FBS) 24 h, when red (AlGaInP-660 nm) and infrared laser (GaAlAs-808 nm) and LED (637 ± 15 nm) were applied. The groups were as follows: red laser (RL3-5 J/cm2, 3 s and RL5-8.3 J/cm2, 5 s, 1.66 W/cm2); infrared laser (IrL3-5 J/cm2, 3 s and IrL5-8.3 J/cm2, 5 s); LED (LED3-3 s and LED5-5 s, 0.02 J/cm2, 0.885 W/cm2); positive (C+, 10% FBS) and negative control (C-, 1% FBS). For alkaline phosphatase (ALP) and mineralization assays, the cells were cultured in REG (DMEM 10% FBS) and OST medium (DMEM 10% FBS, 50 µg/mL ascorbic acid, 10 mM ß-glycerophosphate). Statistical analysis was performed using ANOVA and Tukey's tests (p < 0.05). RL5 and LED5 increased proliferation, in vitro wound closure, ALP, and mineralization in rGO cells (p < 0.05). PBM with red laser and LED induced mineralization by itself, without osteogenic medium, not observed for infrared laser (p < 0.05). A sum of effects was observed in osteogenic medium and PBM by infrared, red laser, and LED (5 s). Red laser and LED increased proliferation, migration, and secretory phases in rGO cells in a dose-dependent manner. PBM with red laser and LED promotes osteogenic induction by itself. PBM with infrared laser and osteogenic medium potentializes mineralization.


Subject(s)
Lasers , Low-Level Light Therapy , Osteoblasts/radiation effects , Osteogenesis/radiation effects , Skull/radiation effects , Alkaline Phosphatase/metabolism , Animals , Calcification, Physiologic/radiation effects , Cell Differentiation/radiation effects , Cell Proliferation/radiation effects , Cell Survival/radiation effects , Cells, Cultured , Rats
3.
Int J Mol Sci ; 22(14)2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34299204

ABSTRACT

BACKGROUND: bone tissue regeneration remains a current challenge. A growing body of evidence shows that mitochondrial dysfunction impairs osteogenesis and that this organelle may be the target for new therapeutic options. Current literature illustrates that red and near-infrared light can affect the key cellular pathways of all life forms through interactions with photoacceptors within the cells' mitochondria. The current study aims to provide an understanding of the mechanisms by which photobiomodulation (PBM) by 900-nm wavelengths can induce in vitro molecular changes in pre-osteoblasts. METHODS: The PubMed, Scopus, Cochrane, and Scholar databases were used. The manuscripts included in the narrative review were selected according to inclusion and exclusion criteria. The new experimental set-up was based on irradiation with a 980-nm laser and a hand-piece with a standard Gaussian and flat-top beam profile. MC3T3-E1 pre-osteoblasts were irradiated at 0.75, 0.45, and 0.20 W in continuous-wave emission mode for 60 s (spot-size 1 cm2) and allowed to generate a power density of 0.75, 0.45, and 0.20 W/cm2 and a fluence of 45, 27, and 12 J/cm2, respectively. The frequency of irradiation was once, three times (alternate days), or five times (every day) per week for two consecutive weeks. Differentiation, proliferation, and cell viability and their markers were investigated by immunoblotting, immunolabelling, fluorescein-FragELTM-DNA, Hoechst staining, and metabolic activity assays. RESULTS AND CONCLUSIONS: The 980-nm wavelength can photobiomodulate the pre-osteoblasts, regulating their metabolic schedule. The cellular signal activated by 45 J/cm2, 0.75 W and 0.75 W/cm2 consist of the PI3K/Akt/Bcl-2 pathway; differentiation markers were not affected, nor do other parameters seem to stimulate the cells. Our previous and present data consistently support the window effect of 980 nm, which has also been described in extracted mitochondria, through activation of signalling PI3K/Akt/Bcl-2 and cyclin family, while the Wnt and Smads 2/3-ß-catenin pathway was induced by 55 J/cm2, 0.9 W and 0.9 W/cm2.


Subject(s)
Osteoblasts/cytology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Skull/cytology , Animals , Cell Differentiation/radiation effects , Cell Proliferation/radiation effects , Cell Survival/radiation effects , Lasers , Low-Level Light Therapy/methods , Mice , Osteoblasts/metabolism , Osteoblasts/radiation effects , Osteogenesis , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Signal Transduction , Skull/metabolism , Skull/radiation effects
4.
J Mater Sci Mater Med ; 30(9): 105, 2019 Sep 07.
Article in English | MEDLINE | ID: mdl-31494718

ABSTRACT

Bioactive glasses (BG) are known for their ability to bond to bone tissue. However, in critical situations, even the osteogenic properties of BG may be not enough to induce bone consolidation. Thus, the enrichment of BG with polymers such as Poly (D, L-lactic-co-glycolic) acid (PLGA) and associated to photobiomodulation (PBM) may be a promising strategy to promote bone tissue healing. The aim of the present study was to investigate the in vivo performance of PLGA supplemented BG, associated to PBM therapy, using an experimental model of cranial bone defect in rats. Rats were distributed in 4 different groups (Bioglass, Bioglass/PBM, Bioglas/PLGA and BG/PLGA/PBM). After the surgical procedure to induce cranial bone defects, the pre-set samples were implanted and PBM treatment (low-level laser therapy) started (808 nm, 100 mW, 30 J/cm2). After 2 and 6 weeks, animals were euthanized, and the samples were retrieved for the histopathological, histomorphometric, picrosirius red staining and immunohistochemistry analysis. At 2 weeks post-surgery, it was observed granulation tissue and areas of newly formed bone in all experimental groups. At 6 weeks post-surgery, BG/PLGA (with or without PBM) more mature tissue around the biomaterial particles. Furthermore, there was a higher deposition of collagen for BG/PLGA in comparison with BG/PLGA/PBM, at second time-point. Histomorphometric analysis demonstrated higher values of BM.V/TV for BG compared to BG/PLGA (2 weeks post-surgery) and N.Ob/T.Ar for BG/PLGA compared to BG and BG/PBM (6 weeks post-surgery). This current study concluded that the use of BG/PLGA composites, associated or not to PBM, is a promising strategy for bone tissue engineering.


Subject(s)
Bone Substitutes/therapeutic use , Ceramics/therapeutic use , Fractures, Bone/therapy , Light , Polyglycolic Acid/therapeutic use , Skull/injuries , Wound Healing/drug effects , Animals , Bone Substitutes/chemistry , Bone Substitutes/radiation effects , Bone Transplantation/methods , Cementation/methods , Ceramics/chemistry , Combined Modality Therapy , Male , Materials Testing , Osteogenesis/drug effects , Osteogenesis/radiation effects , Phototherapy/methods , Polyglycolic Acid/chemistry , Rats , Rats, Wistar , Skull/drug effects , Skull/radiation effects , Tissue Engineering
5.
J Acoust Soc Am ; 146(3): 1786, 2019 09.
Article in English | MEDLINE | ID: mdl-31590513

ABSTRACT

Multi-element high-intensity focused ultrasound phased arrays in the shape of hemispheres are currently used in clinics for thermal lesioning in deep brain structures. Certain side effects of overheating non-targeted tissues and skull bones have been revealed. Here, an approach is developed to mitigate these effects. A specific design of a fully populated 256-element 1-MHz array shaped as a spherical segment (F-number, F# = 1) and filled by randomly distributed equal-area polygonal elements is proposed. Capability of the array to generate high-amplitude shock fronts at the focus is tested in simulations by combining three numerical algorithms for linear and nonlinear field modeling and aberration correction. The algorithms are based on the combination of the Rayleigh integral, a linear pseudo-spectral time domain Kelvin-Voigt model, and nonlinear Westervelt model to account for the effects of inhomogeneities, aberrations, reflections, absorption, nonlinearity, and shear waves in the skull. It is shown that the proposed array can generate nonlinear waveforms with shock amplitudes >60 MPa at the focus deep inside the brain without exceeding the existing technical limitation on the intensity of 40 W/cm2 at the array elements. Such shock amplitudes are sufficient for mechanical ablation of brain tissues using the boiling histotripsy approach and implementation of other shock-based therapies.


Subject(s)
Brain/radiation effects , Computer Simulation , Extracorporeal Shockwave Therapy/adverse effects , Skull/radiation effects , Brain/diagnostic imaging , Humans , Magnetic Resonance Imaging , Skull/diagnostic imaging , Ultrasonic Waves/adverse effects
6.
Calcif Tissue Int ; 103(1): 95-106, 2018 07.
Article in English | MEDLINE | ID: mdl-29362823

ABSTRACT

We proposed a three-step strategy to obtain the optimal therapeutic parameters, which is composed of large-scale screening at cellular level, verification in animal experiments, and confirmation by a clinical trial. The objective of the current study was to test the feasibility of our strategy. Newborn rat calvarial osteoblasts were treated by 50 Hz 1.8 mT sinusoidal electromagnetic fields (SEMFs) with 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 h/days, respectively. The osteogenic differentiation and maturation of the osteoblast were assayed and compared to obtain the optimal duration. One-month-old growing rats were then treated by the same SEMFs with 0.5, 1.5, and 2.5 h/days, respectively, and the peak bone mass was analyzed after 2 months. It was found that the optimal exposure duration to promote the osteogenic differentiation and maturation of osteoblasts was 1.5 h/days, judging by the increasing degrees of ALP activity, calcified nodules formed, the gene and protein expression levels of Runx-2, BMP-2, and Col-I, as well as the expression levels of signaling proteins of the BMP-2/Smad1/5/8 pathway. The highest increase of peak bone mass after 2 months was also obtained by 1.5 h/days, judging by the results of X-ray dual-energy absorptiometry, mechanical property analysis, micro-CT scanning, and serum bone turnover marker examinations. The above results indicated that exposure duration is a determinant for the therapeutic effect of EMFs, and the optimal therapeutic effects only can be obtained by the optimal exposure duration.


Subject(s)
Cell Differentiation/radiation effects , Electromagnetic Fields , Magnetic Field Therapy/methods , Osteoblasts/radiation effects , Osteogenesis/radiation effects , Animals , Animals, Newborn , Female , Rats , Rats, Wistar , Skull/radiation effects
7.
Lasers Med Sci ; 33(7): 1493-1504, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29728942

ABSTRACT

Biocompatible membranes are widely used in medicine to stimulate bone repair. Several studies have demonstrated that laser photobiomodulation (PBM) also stimulates osteoblast proliferation and osteogenesis at the fracture site, leading to a greater deposition of bone mass and accelerating the process of bone consolidation. This work assessed the therapeutic effect of 780-nm laser PBM and a polystyrene membrane coated with norbixin and collagen (PSNC) on bone healing in rats with calvarial bone defect. Histological staining, Raman spectroscopy, and scanning electron microscopy (SEM) were used to evaluate the bone repair process. Four experimental treatment groups were compared: C, control; M, membrane only; L, laser PBM only; and ML, membrane + laser PBM. A bone defect was created in the calvaria of each animal, with each group subdivided into two subgroups that underwent euthanasia after 15 and 30 days treatment. The L and ML groups were irradiated (λ = 780 nm, ED = 6 J/cm2, P = 60 mW, t = 4 s) postoperatively on alternate days until they were euthanized. The bone concentration of hydroxyapatite (CHA) showed a clear gradation with increasing phosphate area in the order B (normal cortical bone) > L > M > ML > C for both periods. The PSNC membrane was effective in reducing the inflammatory process and served as a scaffold for bone repair. The laser PBM also showed positive effects on the bone repair process with increased deposition and organization of the newly formed bone. However, laser PBM failed to improve the bioactive properties of the membrane scaffold.


Subject(s)
Bone and Bones/pathology , Bone and Bones/radiation effects , Carotenoids/pharmacology , Low-Level Light Therapy/methods , Polystyrenes/chemistry , Wound Healing/drug effects , Wound Healing/radiation effects , Animals , Bone and Bones/drug effects , Collagen/pharmacology , Durapatite , Male , Microscopy, Electron, Scanning , Rats, Wistar , Skull/drug effects , Skull/pathology , Skull/radiation effects , Spectrum Analysis, Raman
8.
Int J Exp Pathol ; 98(2): 75-85, 2017 04.
Article in English | MEDLINE | ID: mdl-28556971

ABSTRACT

The aim of this study was to evaluate the effect of collagen sponge scaffold (CSS) implantation associated with low-level laser therapy (LLLT) on repairing bone defects. A single 5-mm cranial defect was surgically created in forty Wistar rats, which then received one of the following four interventions (n = 10 per group): no treatment (G0); bone defect implanted with collagen sponge scaffold (CSS) alone (G1); defect treated with low-level laser therapy (LLLT) (wavelength 780 nm; total energy density 120 J/cm2 ; power 50 mW) alone (G2); and CSS associated with LLLT treatment (G3). After surgery, animals in each group were euthanized at 21 days and 30 days (n = 5 per euthanasia time group). Bone formation was monitored by X-ray imaging analysis. Biopsies were collected and processed for histological analysis and immunohistochemical evaluation of transforming growth factor-beta (TGF-ß), fibroblast growth factor-2 (FGF-2), osteoprotegerin (OPG) and receptor activator of nuclear factor ƙ (RANK). Osteocalcin (OCN) was detected by immunofluorescence analysis. Compared to the G0 group, defects in the 30-day G3 group exhibited increased bone formation, both by increase in radiopaque areas (P < 0.01) and by histomorphometric analysis (P < 0.001). The histopathological analysis showed a decreased number of inflammatory cells (P < 0.001). The combined CCS + LLLT (G3) treatment also resulted in the most intense immunostaining for OPG, RANK, FGF-2 and TGF-ß, and the most intense and diffuse OCN immunofluorescent labelling at 30 days postsurgery (G3 vs. G0 group, P < 0.05). Therefore, the use of CCS associated with LLLT could offer a synergistic advantage in improving the healing of bone fractures.


Subject(s)
Bone Regeneration/physiology , Collagen/therapeutic use , Low-Level Light Therapy , Osteocalcin/metabolism , Skull/surgery , Animals , Bone Regeneration/radiation effects , Fibroblast Growth Factor 2/metabolism , Fluorescent Antibody Technique , Immunohistochemistry , Male , Microscopy, Confocal , Osteocalcin/analysis , Osteoprotegerin/metabolism , Radiography , Random Allocation , Rats , Rats, Wistar , Single-Blind Method , Skull/diagnostic imaging , Skull/pathology , Skull/radiation effects , Transforming Growth Factor beta/metabolism
9.
J Craniofac Surg ; 28(5): 1236-1241, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28665865

ABSTRACT

BACKGROUND: Craniofacial distraction osteogenesis (DO) is a common treatment modality today. Despite its numerous advantages, however, concerns have been expressed regarding the use of DO in the irradiated setting. METHODS: A systematic review was performed to identify all published reports of patients who underwent DO of the irradiated craniofacial skeleton. The following parameters were of particular interest: postoperative complications, specifically, insufficient bone formation, fracture, and hardware exposure (intraoral and cutaneous), as well as the need for additional bone grafting. RESULTS: The initial search retrieved a total of 183 articles of which 20 articles (38 patients) met predetermined inclusion criteria. The most common site of distraction was the mandible (76.3%). The median radiation dose was 50.7 Gy (range, 30-70 Gy). Bone defects ranged from 30 to 80 mm (median, 42.5 mm). Complications were encountered in 19 patients (50%), with insufficient bone formation being most common (9 patients; 23%). The overall incidence of complications was not significantly associated with radiation dosage (P = 0.79). The remaining procedural and demographic variables also failed to meet statistical significance when compared against the overall complication rate (P = 0.27-0.97). CONCLUSION: The complication rate associated with craniofacial DO of the irradiated skeleton does not appear to be substantially higher than what is reported for DO in the nonirradiated setting. As such, patients should be offered this treatment modality, particularly in light of the fact, that it offers the option to decrease patient morbidity as well as treatment complexity.


Subject(s)
Contraindications, Procedure , Facial Bones/radiation effects , Osteogenesis, Distraction/adverse effects , Osteoradionecrosis/complications , Postoperative Complications/etiology , Skull/radiation effects , Bone Transplantation , Female , Humans , Male , Mandible/radiation effects , Mandible/surgery , Osteogenesis/radiation effects , Risk Factors
10.
J Biol Chem ; 290(1): 157-67, 2015 Jan 02.
Article in English | MEDLINE | ID: mdl-25336648

ABSTRACT

Focal radiotherapy for cancer patients has detrimental effects on bones within the radiation field and the primary clinical signs of bone damage include the loss of functional osteoblasts. We reported previously that daily injection of parathyroid hormone (PTH, 1-34) alleviates radiation-induced osteopenia in a preclinical radiotherapy model by improving osteoblast survival. To elucidate the molecular mechanisms, we irradiated osteoblastic UMR 106-01 cells and calvarial organ culture and demonstrated an anti-apoptosis effect of PTH1-34 on these cultures. Inhibitor assay indicated that PTH exerts its radioprotective action mainly through protein kinase A/ß-catenin pathway. γ-H2AX foci staining and comet assay revealed that PTH efficiently promotes the repair of DNA double strand breaks (DSBs) in irradiated osteoblasts via activating the ß-catenin pathway. Interestingly, Wnt3a alone also blocked cell death and accelerated DNA repair in primary osteoprogenitors, osteoblastic and osteocytic cells after radiation through the canonical signaling. Further investigations revealed that both Wnt3a and PTH increase the amount of Ku70, a core protein for initiating the assembly of DSB repair machinery, in osteoblasts after radiation. Moreover, down-regulation of Ku70 by siRNA abrogated the prosurvival effect of PTH and Wnt3a on irradiated osteoblasts. In summary, our results identify a novel role of PTH and canonical Wnt signaling in regulating DSB repair machinery and apoptosis in osteoblasts and shed light on using PTH1-34 or Wnt agonist as possible therapy for radiation-induced osteoporosis.


Subject(s)
Apoptosis/drug effects , DNA Repair/drug effects , Osteoblasts/drug effects , Parathyroid Hormone/pharmacology , Radiation-Protective Agents/pharmacology , Animals , Animals, Newborn , Antigens, Nuclear/genetics , Antigens, Nuclear/metabolism , Apoptosis/radiation effects , Cell Differentiation , Cell Line, Tumor , Cyclic AMP-Dependent Protein Kinases/genetics , Cyclic AMP-Dependent Protein Kinases/metabolism , DNA Breaks, Double-Stranded/drug effects , DNA Breaks, Double-Stranded/radiation effects , DNA Repair/radiation effects , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation , Ku Autoantigen , Osteoblasts/cytology , Osteoblasts/radiation effects , Osteocytes/cytology , Osteocytes/drug effects , Osteocytes/radiation effects , Rats , Recombinant Proteins/pharmacology , Signal Transduction , Skull/cytology , Skull/drug effects , Skull/radiation effects , Tissue Culture Techniques , Wnt3A Protein/metabolism , Wnt3A Protein/pharmacology , X-Rays , beta Catenin/genetics , beta Catenin/metabolism
11.
J Appl Clin Med Phys ; 17(4): 190-201, 2016 07 08.
Article in English | MEDLINE | ID: mdl-27455497

ABSTRACT

Detailed Monte Carlo (MC) modeling of the Leksell Gamma Knife (GK) Perfexion (PFX) collimator system is the only accurate ab initio approach appearing in the literature. As a different approach, in this work, we present a MC model based on film measurement. By adjusting the model parameters and fine-tuning the derived fluence map for each individual source to match the manufacturer's ring output factors, we created a reasonable virtual source model for MC simulations to verify treatment planning dose for the GK PFX radiosurgery system. The MC simulation model was commissioned by simple single shots. Dose profiles and both ring and collimator output factors were compared with the treatment planning system (TPS). Good agreement was achieved for dose profiles especially for the region of plateau (< 2%), while larger difference (< 5%) came from the penumbra region. The maximum difference of the calculated output factor was within 0.7%. The model was further validated by a clinical test case. Good agreement was obtained. The DVHs for brainstem and the skull were almost identical and, for the target, the volume covered by the prescription (12.5 Gy to 50% isodose line) was 95.6% from MC calculation versus 100% from the TPS.


Subject(s)
Brain Neoplasms/surgery , Monte Carlo Method , Phantoms, Imaging , Radiosurgery/instrumentation , Radiosurgery/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Algorithms , Brain Stem/radiation effects , Humans , Models, Theoretical , Radiotherapy Dosage , Skull/radiation effects
12.
J Radiol Prot ; 36(3): 391-404, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27340035

ABSTRACT

Two people were exposed to and contaminated with 241Am. In vivo determinations of the incorporated 241Am were performed using a whole-body counter and two partial-body counters for the skull and lung, respectively. Additionally, urine samples were analysed to estimate the systemic activity removed from the body. To improve the geometry of the skull measurements, an optimised detector configuration was used, a calibration with three physical phantoms of the human head was conducted, and the morphological variability between the individuals was also considered. The results of the measurements indicate that activity is not deposited in the deep tissues, rather in the skin tissues close to the body surface. Unfortunately, the many open questions relating to the actual circumstances during and after the incident make the interpretation of this case difficult if at all possible.


Subject(s)
Americium/analysis , Lung/radiation effects , Radiation Dosage , Skull/radiation effects , Body Burden , Germany , Humans , Radioactive Hazard Release , Tissue Distribution , Whole-Body Counting
13.
J Ultrasound Med ; 34(8): 1351-61, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26206821

ABSTRACT

OBJECTIVES: High-intensity focused ultrasound (HIFU) has been used noninvasively for therapeutic applications. Before HIFU can be used therapeutically on a human fetus, the bioeffects related to HIFU must be studied, and the mechanism causing the bioeffects should be understood. Previous studies have shown that HIFU, when targeted on fetal rat and mice bones. resulted in hemorrhage. However, the mechanism responsible has not been identified. In this study, we looked at ultrasound parameters related to hemorrhage in an effort to better understand the mechanism. METHODS: Brazilian opossum pups (7-8 postnatal days) were exposed to a 1.1-MHz f/1 spherically focused transducer (6.3 cm focal length). Four treatment groups of n = 14 and a control group of n = 14 were exposed to rarefactional pressures of 3.6 to 6 MPa with spatial-peak temporal average intensity values of 5.4 to 10.8 W/cm(2). The pulse repetition frequency was varied from 500 to 1000 Hz with exposure durations of 1 to 4 minutes. RESULTS: Four groups with sample sizes of 14 had hemorrhage percentages of 43%, 36%, 29%, and 36%, respectively. Hemorrhage occurrence and size were found to correlate strongly with the nonlinear product of energy density and number of pulses, with correlation values of 0.92 and 0.97, respectively. CONCLUSIONS: The dependence of hemorrhage on energy density and the number of pulses suggests that the hemorrhage may be due to high-stress, low-cycle mechanical fatigue damage. Hence, for therapeutic applications, the product of energy density and number of pulses should not exceed a certain predetermined limit.


Subject(s)
Cerebral Hemorrhage/etiology , High-Intensity Focused Ultrasound Ablation/adverse effects , Radiation Exposure/analysis , Radiation Injuries/etiology , Skull/surgery , Ultrasonic Waves/adverse effects , Animals , Cerebral Hemorrhage/pathology , Dose-Response Relationship, Radiation , Opossums , Osteotomy/adverse effects , Radiation Dosage , Radiation Injuries/pathology , Skull/radiation effects , Statistics as Topic
14.
Lasers Med Sci ; 30(5): 1599-607, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26037661

ABSTRACT

Low-level laser therapy (LLLT) benefits bone metabolism, but its use needs to be standardized. We evaluated the effects of LLLT on bone defects in calvaria of ovariectomized rats. Stereology was used to calculate tissue repair volume (V tr ), density of trabecular bone volume (Vv t ), total volume of newly formed trabecular bone (Vtot), and the area occupied by collagen fibers (A C ). Fifty-four Wistar rats were submitted to bilateral ovariectomy, and bone defects were created in calvaria after 150 days. The animals were divided into nine groups (n = 6), and 24 h after defects, the treatment started with a 780-nm low-intensity GaAlAs laser: G1, G2, and G3 received 3 sessions of 0, 20, and 30 J/cm(2) respectively; G4, G5, and G6 received 6 sessions of 0, 20, and 30 J/cm(2), respectively; and G7, G8, and G9 received 12 sessions of 0, 20, and 30 J/cm(2), respectively. A normal distribution was found for all of the data. The test used to verify the normality was the Kolmogorov-Smirnov (KS, p > 0.05). The one-way ANOVA followed by Tukey's post hoc test was used for data processing. A difference of p < 0.05 was considered statistically significant. Groups G2 and G1 showed significance for V tr , Vv t , Vtot, and (A C ). Results were significant for (Vv t ) and (Vtot) between G3 and G1. There were no significant results between G5 and G4 as well as between G8 and G7. Groups G6 and G4 results showed statistical difference for V tr , Vv t , Vtot, and (A C ). Groups G9 and G7 showed significance for V tr , Vv t , Vtot, and (A C ). In conclusion, there was new bone formation in the groups that received 20 and 30 J/cm(2) when compared to control groups, but over time, the dose of 30 J/cm(2) showed better stereological parameters when compared to 20 J/cm(2).


Subject(s)
Low-Level Light Therapy , Osteogenesis/radiation effects , Osteoporosis/radiotherapy , Animals , Female , Humans , Rats, Wistar , Skull/pathology , Skull/physiopathology , Skull/radiation effects
15.
Lasers Med Sci ; 30(4): 1225-30, 2015 May.
Article in English | MEDLINE | ID: mdl-24756326

ABSTRACT

A new low-level laser therapy (LLLT) protocol is proposed and compared to another previously studied, in animal models, aiming to establish a more practical LLLT protocol. Protocol 1, the same used in other works and based on the clinical LLLT protocol for bone regeneration, consists of punctual transcutaneous applications in the defect region with fluence of 16 J/cm(2) every 48 h for 15 days. Protocol 2, proposed in this work, consists of three sessions: the first application directly on the defect site with fluency of 3.7 J/cm(2), during the surgical procedure, followed by two transcutaneous applications, 48 and 120 h postoperatively. The Thera Lase® (λ = 830 nm) was used, and the dosimetry of the first application of protocol 2 was calculated based on in vitro studies. Forty-five male rats were used, in which critical-size bone defects with 8 mm of diameter were surgically created in calvaria. The animals were randomly divided into three groups of 15 animals, named group 1 (protocol 1), group 2 (protocol 2), and control, which was not submitted to laser treatment. After 7, 15, and 45 days, five animals of each group were euthanized, and the pieces of calvarial bone were collected for microscopic and immunohistochemistry for vascular endothelial growth factor (VEGF), osteocalcin (OC), and osteopontin (OP) analysis. Histomorphometry showed that newly formed bone of 15-day samples from group 2 is higher than the control group (p < 0.05, ANOVA, Tukey). At 7 days, in the central part of the defect, VEGF expression was the same for all groups, OC was higher for protocol 2, and OP for protocol 1. The results suggest LLLT using the protocol 2 hastened the bone healing process in the early periods after surgery.


Subject(s)
Bone Regeneration/radiation effects , Low-Level Light Therapy , Skull/physiopathology , Animals , Male , Osteocalcin/metabolism , Osteopontin/metabolism , Rats , Rats, Wistar , Skull/metabolism , Skull/radiation effects , Vascular Endothelial Growth Factor A/metabolism
16.
Clin Oral Implants Res ; 25(10): 1131-6, 2014 Oct.
Article in English | MEDLINE | ID: mdl-23919887

ABSTRACT

OBJECTIVE: The objective of this study was to evaluate the effect of low-level laser (LLL) on bone healing process in surgically created critical size defects in rat calvaria treated with or without autogenous bone graft (AB). MATERIAL AND METHODS: The study was conducted on 40 male rats (Rattusnorvegicus, albinus, Wistar), weighing 250-300 g. For accomplishment of the experimental procedures, the rats were anesthetized with an intramuscular injection of xylazine (0.02 ml/kg) and ketamine hydrochloride (0.4 ml/kg). Acritical size defect with 5-mm diameter was created. The animals were divided into four groups: Group C (Control- filled with blood clot), Group LLL, Group AB (autogenous bone graft), Group AB + LLL (autogenous bone graft and LLL). The animals treated with LLL received applications of LLL at the infrared spectrum wavelength (λ = 810 nm) and energy density of 6 J/cm(2) per point, 60 s per point, adding up to five points on the entire created defect. The animals were euthanized at 30 days postoperatively. After decalcification, each specimen was longitudinally divided into two blocks, exactly along the center of the original surgical defect, processed and embedded in paraffin. Longitudinal serial sections with 6-µm thickness were made, initiating from the center of the original surgical defect. The sections were stained with hematoxylin and eosin (HE) for light microscopy analysis for histomorphometric analysis. RESULTS: Group C presented smaller quantity of new bone formation than Groups LLL (P < 0.01), AB (P < 0.01), and AB + LLL (P < 0.01). CONCLUSIONS: Utilization of LLL favored the healing process in rat calvaria. The quantity of new bone formation with use of the LLL was similar to the autogenous bone graft.


Subject(s)
Bone Transplantation , Low-Level Light Therapy , Osteogenesis/radiation effects , Skull/radiation effects , Wound Healing/radiation effects , Animals , Male , Rats , Rats, Wistar , Skull/surgery , Transplantation, Autologous
17.
Lasers Med Sci ; 29(3): 925-32, 2014 May.
Article in English | MEDLINE | ID: mdl-23996072

ABSTRACT

This study aims to assess the effect of low-level laser therapy (LLLT) irradiation and Bio-Oss graft material on the osteogenesis process in the rabbit calvarium defects. Twelve white male New Zealand rabbits were included in this study. Four 8-mm diameter identical defects were prepared on each rabbit's calvarium. One site was left as an untreated control (C), the second site was filled with Bio-Oss (B), the third site was treated with laser irradiation (L), and the fourth site treated with Bio-Oss and laser irradiation (B + L). In the laser group, a diode laser (wavelength 810 nm, output power 300 mW, irradiation mode CW, energy density 4 J/cm2) was applied immediately after surgery and then one other day for the next 20 days. After 4 and 8 weeks, the animals were sacrificed and histological and histomorphometric examinations were performed and the data were subjected to Friedman and repeated measurements ANOVA tests. Significant differences were not found regarding inflammation severity, foreign body reactions, and vitality of newly formed bone on 4th and 8th week after operation. The mean amount of new bone was 15.83 and 18.5% in the controls on the 4th and 8th week; 27.66 and 25.16% in the laser-irradiated group; 35.0 and 41.83% in Bio-Oss and 41.83 and 47.0% in the laser + Bio-Oss treated specimens with significant statistical differences (p <0.05). Application of LLLT in combination with Bio-Oss® can promote bone healing. Therefore, LLLT may be clinically beneficial in promoting bone formation in skeletal defects.


Subject(s)
Bone Regeneration/radiation effects , Bone Substitutes/therapeutic use , Lasers, Semiconductor/therapeutic use , Low-Level Light Therapy , Minerals/therapeutic use , Animals , Double-Blind Method , Male , Rabbits , Skull/pathology , Skull/physiopathology , Skull/radiation effects , Treatment Outcome
18.
Lasers Med Sci ; 29(3): 1165-71, 2014 May.
Article in English | MEDLINE | ID: mdl-24297087

ABSTRACT

This study aims to explore the probable mechanism of better result of dural reconstruction by CO2 laser soldering and the effect of exogenous basic fibroblast growth factor (bFGF) or transforming growth factor-beta1(TGFß1) on wound healing. In part I of the study, ten minipigs were randomized into two equal groups, and the dural defects were reconstructed by conventional fibrin glue (FG) bonding (group I a) or by CO2 laser soldering (group Ib). In part II, 36 minipigs were randomized into three equal groups, and the dural defect was reconstructed by CO2 laser soldering; then exogenous bFGF or TGFß1 was administered in group IIb and group IIc, respectively, while group IIa served as control group. The dural specimens were harvested at 1st week postoperatively in part I; and at 1st, 2nd, 3rd, and 4th week postoperatively in part II, they were examined for healing condition and subjected to hematoxylin-eosin (HE) staining and immunohistochemical (IHC) staining with antibodies against bFGF and TGFß1. In part I, group Ib showed higher fibroblast cell density than group Ia (P < 0.05). The optical density (OD) for IHC staining with antibodies against bFGF of group Ib was significantly higher than that of group Ia (P < 0.05), and for IHC staining with antibodies against TGFß1, group Ib showed positive staining while group Ia was negative. In part II, administering exogenous bFGF or TGFß1 made a left shift of fibroblast cell number-time curve compared with control group. For specimens' IHC staining with antibodies against bFGF, the OD of group IIb was higher than that of group IIa in the corresponding time. For specimens' IHC staining with antibodies against TGFß1, the OD of groups IIb and IIc was both higher than that of group IIa (P < 0.05 and P < 0.01, respectively). In conclusion, CO2 laser may trigger fibroblast proliferation through stimulating the secretion of bFGF and TGFß1. Topically administering exogenous bFGF or TGFß1 could accelerate the healing of the reconstructed dura by enhancing secretion of bFGF and/or TGFß1 and promoting the process of fibroblast gathering-degrading.


Subject(s)
Fibroblast Growth Factor 2/pharmacology , Lasers, Gas , Skull/drug effects , Skull/radiation effects , Transforming Growth Factor beta/pharmacology , Wound Healing/drug effects , Wound Healing/radiation effects , Animals , Antibodies/metabolism , Cell Count , Cell Proliferation/drug effects , Female , Fibroblasts/drug effects , Immunohistochemistry , Male , Plastic Surgery Procedures , Skull/pathology , Swine , Swine, Miniature
19.
Lasers Med Sci ; 28(2): 407-14, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22370617

ABSTRACT

The purpose of this study was to analyze histologically the effect of low-level laser therapy (LLLT) in combination with bisphosphonate on bone healing in surgically created critical size defects (CSD) in rat calvaria. One hundred Wistar female rats sham operated (sham) and ovariectomized (Ovx) were maintained untreated for 1 month to allow for the development of osteopenia in the Ovx animals. A CSD was made in the calvarium of each rat, and the animals were divided into five groups according to following treatments: (1) sham rats (control), (2) Ovx rats, (3) Ovx rats treated with LLLT, (4) Ovx rats treated with bisphosphonate, and (5) Ovx rats treated with bisphosphonate and LLLT. Groups 4 and 5 were irrigated with 1 ml of bisphosphonate, and groups 3 and 5 were submitted to LLLT (GaAlAs), 660 nm, 24 J, and 0.4285 W/cm(2) on the CSD. Ten animals of each treatment were killed at 30 and 60 days. Histomorphometric assessments, using image analysis software, and histological analyses were performed. No defect was completely regenerated with the bone. Histometrically, it can be observed that groups 3 (37.49 ± 1.94%, 43.11 ± 2.39%) and 5 (35.05 ± 1.57%, 41.07 ± 1.89%) showed a significant bone neoformation when compared to groups 1 (16.81 ± 1.57%, 27.54 ± 1.49%), 2 (11.68 ± 0.98%, 22.51 ± 1.05%), and 4 (14.62 ± 1.70%, 25.67 ± 1.41%) in all experimental periods (P < 0.05). It was possible to conclude that the LLLT associated or not with bisphosphonate treatment was effective for stimulating bone formation in CSD in the calvaria of rats submitted to ovariectomy.


Subject(s)
Bone Regeneration/drug effects , Bone Regeneration/radiation effects , Diphosphonates/pharmacology , Low-Level Light Therapy/methods , Skull/radiation effects , Animals , Bone Density Conservation Agents/pharmacology , Bone Diseases, Metabolic/surgery , Data Interpretation, Statistical , Female , Image Processing, Computer-Assisted , Ovariectomy , Rats , Rats, Wistar , Skull/drug effects , Skull/pathology , Skull/surgery
20.
J Acoust Soc Am ; 133(5): 3159-75, 2013 May.
Article in English | MEDLINE | ID: mdl-23654418

ABSTRACT

Recent studies have shown that high intensity focused ultrasound (HIFU) accelerates thrombolysis for ischemic stroke. Although the mechanisms are not fully understood, cavitation is thought to play an important role. The goal of this paper is to investigate the potential for cavitation to cause mechanical damage to a blood clot. The amount of damage to the fiber network caused by a single bubble expansion and collapse is estimated by two independent approaches: One based on the stretch of individual fibers and the other based on the energy available to break individual fibers. The two methods yield consistent results. The energy method is extended to the more important scenario of a bubble outside a blood clot that collapses asymmetrically creating an impinging jet. This leads to significantly more damage compared to a bubble embedded within the clot structure. Finally, as an example of how one can apply the theory, a simulation of the propagation of HIFU waves through model calvaria of varying density is explored. The maximum amount of energy available to cause damage to a blood clot increases as the density of the calvaria decreases.


Subject(s)
High-Energy Shock Waves/therapeutic use , High-Intensity Focused Ultrasound Ablation , Mechanical Thrombolysis/methods , Thrombosis/therapy , Acoustics , Computer Simulation , Humans , Models, Biological , Numerical Analysis, Computer-Assisted , Pressure , Skull/radiation effects , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL