ABSTRACT
Elicitins are a large family of secreted proteins in Phytophthora. Clade 1 elicitins were identified decades ago as potent elicitors of immune responses in Nicotiana species, but the mechanisms underlying elicitin recognition are largely unknown. Here we identified an elicitin receptor in Nicotiana benthamiana that we named REL for Responsive to ELicitins. REL is a receptor-like protein (RLP) with an extracellular leucine-rich repeat (LRR) domain that mediates Phytophthora resistance by binding elicitins. Silencing or knocking out REL in N. benthamiana abolished elicitin-triggered cell death and immune responses. Domain deletion and site-directed mutagenesis revealed that the island domain (ID) located within the LRR domain of REL is crucial for elicitin recognition. In addition, sequence polymorphism in the ID underpins the genetic diversity of REL homologs in various Nicotiana species in elicitin recognition and binding. Remarkably, REL is phylogenetically distant from the elicitin response (ELR) protein, an LRR-RLP that was previously identified in the wild potato species Solanum microdontum and REL and ELR differ in the way they bind and recognize elicitins. Our findings provide insights into the molecular basis of plant innate immunity and highlight a convergent evolution of immune receptors towards perceiving the same elicitor.
Subject(s)
Phytophthora , Solanum , Proteins/metabolism , Plants/metabolism , Phytophthora/genetics , Phytophthora/metabolism , Nicotiana/metabolism , Solanum/metabolism , Plant DiseasesABSTRACT
Solanaceae (nightshade family) species synthesize a remarkable array of clade- and tissue-specific specialized metabolites. Protective acylsugars, one such class of structurally diverse metabolites, are produced by ACYLSUGAR ACYLTRANSFERASE (ASAT) enzymes from sugars and acyl-coenzyme A esters. Published research has revealed trichome acylsugars composed of glucose and sucrose cores in species across the family. In addition, acylsugars have been analyzed across a small fraction of the >1,200 species in the phenotypically megadiverse Solanum genus, with a handful containing inositol and glycosylated inositol cores. The current study sampled several dozen species across subclades of Solanum to get a more detailed view of acylsugar chemodiversity. In depth characterization of acylsugars from the clade II species brinjal eggplant (Solanum melongena) led to the identification of eight unusual structures with inositol or inositol glycoside cores and hydroxyacyl chains. Liquid chromatography-mass spectrometry analysis of 31 additional species in the Solanum genus revealed striking acylsugar diversity, with some traits restricted to specific clades and species. Acylinositols and inositol-based acyldisaccharides were detected throughout much of the genus. In contrast, acylglucoses and acylsucroses were more restricted in distribution. Analysis of tissue-specific transcriptomes and interspecific acylsugar acetylation differences led to the identification of the brinjal eggplant ASAT 3-LIKE 1 (SmASAT3-L1; SMEL4.1_12g015780) enzyme. This enzyme is distinct from previously characterized acylsugar acetyltransferases, which are in the ASAT4 clade, and appears to be a functionally divergent ASAT3. This study provides a foundation for investigating the evolution and function of diverse Solanum acylsugar structures and harnessing this diversity in breeding and synthetic biology.
Subject(s)
Solanum , Trichomes , Solanum/genetics , Solanum/metabolism , Trichomes/metabolism , Trichomes/genetics , Inositol/metabolism , Acyltransferases/metabolism , Acyltransferases/genetics , Phylogeny , Sugars/metabolismABSTRACT
AIMS: The study aims to explore antifungal properties of bacillibactin siderophore produced by the plant growth-promoting rhizobacterium (PGPR) Bacillus subtilis against fungal phytopathogens Alternaria porri and Fusarium equiseti isolated from Solanum lycopersicum and Solanum melongena plants. METHODS AND RESULTS: Alternaria porri and F. equiseti were isolated from infected plants of eggplant and tomato, respectively. A plate assay was employed to assess the effect of bacillibactin against the phytopathogens. The antifungal potential of the PGPR was evaluated by estimation of dry fungal biomass, visualization of cellular deformity using compound and scanning electron microscopy, antioxidative enzyme assay and analysis of membrane damage via using lipid peroxidation. Inductively coupled plasma atomic emission spectroscopy (ICP-AES) analysis was employed to investigate changes in intracellular iron content. The impact of bacillibactin on pathogenesis was evaluated by infecting detached leaves of S. lycopersicum and S. melongena plants with both the pathogens and treating the infected leaves with bacillibactin. Leaves were further investigated for ROS accumulation, extent of necrosis and cell death. Our findings revealed significant damage to the hyphal structure of A. porri and F. equiseti following treatment with bacillibactin. Biomass reduction, elevated antioxidative enzyme levels, and membrane damage further substantiated the inhibitory effects of the siderophore on fungal growth. ICP-AES analysis indicates an increase in intracellular iron content suggesting enhanced iron uptake facilitated by bacillibactin. Moreover, application of 1500 µg ml-1 bacillibactin on infected leaves demonstrated a substantial inhibition of ROS accumulation, necrosis, and cell death upon bacillibactin treatment. CONCLUSIONS: This study confirms the potent antagonistic activity of bacillibactin against both the phytopathogens A. porri and F. equiseti growth, supporting its potential as a promising biological control agent for fungal plant diseases. Bacillibactin-induced morphological, physiological, and biochemical alterations in the isolated fungi and pathogen-infected leaves highlight the prospects of bacillibactin as an effective and sustainable solution to mitigate economic losses associated with fungal infections in vegetable crops.
Subject(s)
Alternaria , Solanum lycopersicum , Solanum , Antifungal Agents/pharmacology , Reactive Oxygen Species/metabolism , Solanum/metabolism , Siderophores/pharmacology , Crops, Agricultural/metabolism , Iron , Necrosis , Plant Diseases/prevention & control , Plant Diseases/microbiologyABSTRACT
Breeding salt-tolerant crops is necessary to reduce food insecurity. Prebreeding populations are fundamental for uncovering tolerance alleles from wild germplasm. To obtain a physiological interpretation of the agronomic salt tolerance and better criteria to identify candidate genes, quantitative trait loci (QTLs) governing productivity-related traits in a population of recombinant inbred lines (RIL) derived from S. pimpinellifolium were reanalyzed using an SNP-saturated linkage map and clustered using QTL meta-analysis to synthesize QTL information. A total of 60 out of 85 QTLs were grouped into 12 productivity MQTLs. Ten of them were found to overlap with other tomato yield QTLs that were found using various mapping populations and cultivation conditions. The MQTL compositions showed that fruit yield was genetically associated with leaf water content. Additionally, leaf Cl- and K+ contents were related to tomato productivity under control and salinity conditions, respectively. More than one functional candidate was frequently found, explaining most productivity MQTLs, indicating that the co-regulation of more than one gene within those MQTLs might explain the clustering of agronomic and physiological QTLs. Moreover, MQTL1.2, MQTL3 and MQTL6 point to the root as the main organ involved in increasing productivity under salinity through the wild allele, suggesting that adequate rootstock/scion combinations could have a clear agronomic advantage under salinity.
Subject(s)
Chromosome Mapping , Quantitative Trait Loci , Salt Tolerance , Solanum , Salt Tolerance/genetics , Solanum/genetics , Solanum/metabolism , Phenotype , Polymorphism, Single Nucleotide , Plant Breeding , Genetic Linkage , Genes, PlantABSTRACT
Hypertension is a global health problem and leads to cardiovascular disease and renal injury. Solanum muricatum Aiton leaf extract, rich in flavonoids, is known for its antioxidant capacity. However, the effects of Solanum muricatum Aiton leaf extract on hypertension combined with inflammatory complications were unknown. This study aimed to investigate the impact of Solanum muricatum Aiton leaf extract on hypertension in vivo and in vitro. In vivo, Solanum muricatum Aiton leaf extract led to decrease high blood pressure, improve heart, aorta, and kidney pathology, and enhance the antioxidative activity in spontaneously hypertensive rats (SHR). Our study demonstrated Solanum muricatum Aiton leaf extract inhibited angiotensin-converting enzyme (ACE), epithelial sodium channel (ENaC), sodium glucose co-transporters-1 (SGLT-1), nuclear factor kappa B (NF-κB), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6). In vitro, Solanum muricatum Aiton leaf extract improved the angiotensin II-induced reactive oxygen species (ROS) and mitochondrial membrane depolarization in NRK-52E cells. Besides, Solanum muricatum Aiton leaf extract could also decrease the expressions of ENaC, SGLT-1, and NF-κB in angiotensin II-treated NRK-52E cells. Solanum muricatum Aiton leaf can be suggested as a novel antihypertensive agent ameliorating hypertension via ACE inhibition, inflammation reduction, and ROS. PLE is a novel anti-hypertensive agent to ameliorate hypertension and its complications, including inflammation.
Subject(s)
Hypertension , Solanum , Rats , Animals , Solanum/metabolism , Antihypertensive Agents/pharmacology , Reactive Oxygen Species , NF-kappa B/metabolism , Angiotensin II , Antioxidants/pharmacology , Inflammation , Hypertension/drug therapy , Plant Extracts/pharmacology , Rats, Inbred SHRABSTRACT
Anthocyanins are important pigments that impart color in plants. In Solanum, different species display various fruit or flower colors due to varying degrees of anthocyanin accumulation. Here we identified two anthocyanin-free mutants from an ethylmethane sulfonate-induced mutant library and naturally occurring mutants in Solanum melongena, with mutations in the 5' splicing site of the second intron of dihydroflavonol-4-reductase (DFR) - leading to altered splicing. Further study revealed that alternative splicing of the second intron was closely related to anthocyanin accumulation in 17 accessions from three cultivated species: S. melongena, Solanum macrocarpon and Solanum aethiopicum, and their wild related species. Analysis of natural variations of DFR, using an expanded population including 282 accessions belonging to the spiny Solanum group, identified a single-nucleotide polymorphism in the MYB recognition site in the promoter region, which causes differential expression of DFR and affects anthocyanin accumulation in fruits of the detected accessions. Our study suggests that, owing to years of domestication, the natural variation in the DFR promoter region and the alternative splicing of the DFR gene account for altered anthocyanin accumulation during spiny Solanum domestication.
Subject(s)
Anthocyanins , Solanum , Alcohol Oxidoreductases , Alternative Splicing/genetics , Anthocyanins/metabolism , Gene Expression Regulation, Plant/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Promoter Regions, Genetic/genetics , Solanum/genetics , Solanum/metabolismABSTRACT
The cadmium (Cd) contaminated agricultural soil has become serious in recent years, but it will take long time for Cd-hyperaccumulator to remedy. To speed up the remediation of agricultural soil and achieve the safe agricultural production as soon as possible, the potential Cd-hyperaccumulator Solanum photeinocarpum Nakamura et Odashima was intercropped with its post-grafting generations in Cd-contaminated soil. Intercropping increased the biomass, Cd contents and Cd extractions of S. photeinocarpum and its post-grafting generations in the pot and field experiments. Both the whole plant or shoot biomass and the Cd extraction by whole plant or shoot in intercroppings had a linear regression relationship with that in monocultures. In the field experiment, intercropping increased the shoot Cd extraction of S. photeinocarpum by 9.86%-40.06% compared with the monoculture. Intercropping increased the content of chlorophyll, activity of superoxide dismutase, activity of catalase, and soluble protein content of S. photeinocarpum and its post-grafting generations but reduced their peroxidase activities in the pot experiment. Therefore, intercropping S. photeinocarpum with its post-grafting generations can improve their phytoremediation ability, and the best choice is S. photeinocarpum intercropped with its post-grafting generation of wild potato rootstock. Novelty statementIntercropping Solanum photeinocarpum Nakamura et Odashima with its post-grafting generations could mutually promote the Cd accumulation in the two types of plant species, and improve their phytoremediation ability for remedying the Cd-contaminated soil.
Subject(s)
Soil Pollutants , Solanum , Cadmium/metabolism , Solanum/metabolism , Biodegradation, Environmental , Soil Pollutants/metabolism , Plant Roots/chemistry , SoilABSTRACT
Steroidal (glycol)alkaloids S(G)As are secondary metabolites made of a nitrogen-containing steroidal skeleton linked to a (poly)saccharide, naturally occurring in the members of the Solanaceae and Liliaceae plant families. The genus Solanum is familiar to all of us as a food source (tomato, potato, eggplant), but a few populations have also made it part of their ethnobotany for their medicinal properties. The recent development of the isolation, purification and analysis techniques have shed light on the structural diversity among the SGAs family, thus attracting scientists to investigate their various pharmacological properties. This review aims to overview the recent literature (2012-2022) on the pharmacological benefits displayed by the SGAs family. Over 17 different potential therapeutic applications (antibiotic, antiviral, anti-inflammatory, etc.) were reported over the past ten years, and this unique review analyzes each pharmacological effect independently without discrimination of either the SGA's chemical identity or their sources. A strong emphasis is placed on the discovery of their biological targets and the subsequent cellular mechanisms, discussing in vitro to in vivo biological data. The therapeutic value and the challenges of the solanum steroidal glycoalkaloid family is debated to provide new insights for future research towards clinical development.
Subject(s)
Alkaloids , Population Health , Solanum lycopersicum , Solanum nigrum , Solanum tuberosum , Solanum , Humans , Solanum/metabolism , Alkaloids/chemistry , Solanum tuberosum/metabolism , Solanum nigrum/metabolismABSTRACT
Solanum betaceum Cav., commonly known as tamarillo or Brazilian tomato, belongs to the Solanaceae family. Its fruit is used in traditional medicine and food crops due to its health benefits. Despite the numerous studies involving the fruit, there is no scientific knowledge about the tamarillo tree leaves. In this work, the phenolic profile of aqueous extract obtained from S. betaceum leaves was unveiled for the first time. Five hydroxycinnamic phenolic acids were identified and quantified, including 3-O-caffeoylquinic acid, 4-O-caffeoylquinic acid, chlorogenic acid, caffeic acid and rosmarinic acid. While the extract displayed no effect on α-amylase, the extract inhibited the activity of α-glucosidase (IC50 = 1617 mg/mL), and it was particularly effective for human aldose reductase (IC50 = 0.236 mg/mL): a key enzyme in glucose metabolism. Moreover, the extract exhibited interesting antioxidant properties, such as a potent capacity to intercept the in vitro-generated reactive species O2â¢- (IC50 = 0.119 mg/mL) and â¢NO (IC50 = 0.299 mg/mL), as well as to inhibit the first stages of lipid peroxidation (IC50 = 0.080 mg/mL). This study highlights the biological potential of S. betaceum leaves. The scarcity of research on this natural resource underscores the need for additional studies in order to fully explore its antidiabetic properties and to promote the value of a species currently at risk of extinction.
Subject(s)
Solanum , Humans , Solanum/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Fruit , Phenols/metabolism , Chlorogenic Acid/pharmacology , Chlorogenic Acid/metabolism , Plant Extracts/pharmacology , Plant Extracts/metabolismABSTRACT
Secretions from glandular trichomes potentially protect plants against a variety of aggressors. In the tomato clade of the Solanum genus, glandular trichomes of wild species produce a rich source of chemical diversity at the leaf surface. Previously, 7-epi-zingiberene produced in several accessions of Solanum habrochaites was found to confer resistance to whiteflies (Bemisia tabaci) and other insect pests. Here, we report the identification and characterisation of 9-hydroxy-zingiberene (9HZ) and 9-hydroxy-10,11-epoxyzingiberene (9H10epoZ), two derivatives of 7-epi-zingiberene produced in glandular trichomes of S. habrochaites LA2167. Using a combination of transcriptomics and genetics, we identified a gene coding for a cytochrome P450 oxygenase, ShCYP71D184, that is highly expressed in trichomes and co-segregates with the presence of the zingiberene derivatives. Transient expression assays in Nicotiana benthamiana showed that ShCYP71D184 carries out two successive oxidations to generate 9HZ and 9H10epoZ. Bioactivity assays showed that 9-hydroxy-10,11-epoxyzingiberene in particular exhibits substantial toxicity against B. tabaci and various microorganisms including Phytophthora infestans and Botrytis cinerea. Our work shows that trichome secretions from wild tomato species can provide protection against a wide variety of organisms. In addition, the availability of the genes encoding the enzymes for the pathway of 7-epi-zingiberene derivatives makes it possible to introduce this trait in cultivated tomato by precision breeding.
Subject(s)
Hemiptera/metabolism , Monocyclic Sesquiterpenes/metabolism , NADPH-Ferrihemoprotein Reductase/metabolism , Solanum/metabolism , Animals , Botrytis/drug effects , Botrytis/pathogenicity , Hemiptera/genetics , Hemiptera/microbiology , Monocyclic Sesquiterpenes/toxicity , NADPH-Ferrihemoprotein Reductase/genetics , Phytophthora infestans/drug effects , Phytophthora infestans/pathogenicity , Solanum/geneticsABSTRACT
BACKGROUND: OSCA (hyperosmolality-gated calcium-permeable channel) is a calcium permeable cation channel protein that plays an important role in regulating plant signal transduction. It is involved in sensing changes in extracellular osmotic potential and an increase in Ca2+ concentration. S. habrochaites is a good genetic material for crop improvement against cold, late blight, planthopper and other diseases. Till date, there is no report on OSCA in S. habrochaites. Thus, in this study, we performed a genome-wide screen to identify OSCA genes in S. habrochaites and characterized their responses to biotic and abiotic stresses. RESULTS: A total of 11 ShOSCA genes distributed on 8 chromosomes were identified. Subcellular localization analysis showed that all members of ShOSCA localized on the plasma membrane and contained multiple stress-related cis acting elements. We observed that genome-wide duplication (WGD) occurred in the genetic evolution of ShOSCA5 (Solhab04g250600) and ShOSCA11 (Solhab12g051500). In addition, repeat events play an important role in the expansion of OSCA gene family. OSCA gene family of S. habrochaites used the time lines of expression studies by qRT-PCR, do indicate OSCAs responded to biotic stress (Botrytis cinerea) and abiotic stress (drought, low temperature and abscisic acid (ABA)). Among them, the expression of ShOSCAs changed significantly under four stresses. The resistance of silencing ShOSCA3 plants to the four stresses was reduced. CONCLUSION: This study identified the OSCA gene family of S. habrochaites for the first time and analyzed ShOSCA3 has stronger resistance to low temperature, ABA and Botrytis cinerea stress. This study provides a theoretical basis for clarifying the biological function of OSCA, and lays a foundation for tomato crop improvement.
Subject(s)
Solanum , Botrytis , Calcium/metabolism , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Solanum/genetics , Solanum/metabolism , Stress, Physiological/geneticsABSTRACT
Evolutionary dynamics at the population level play a central role in creating the diversity of life on our planet. In this study, we sought to understand the origins of such population-level variation in mating systems and defensive acylsugar chemistry in Solanum habrochaites-a wild tomato species found in diverse Andean habitats in Ecuador and Peru. Using Restriction-site-Associated-DNA-Sequencing (RAD-seq) of 50 S. habrochaites accessions, we identified eight population clusters generated via isolation and hybridization dynamics of 4-6 ancestral populations. Detailed characterization of mating systems of these clusters revealed emergence of multiple self-compatible (SC) groups from progenitor self-incompatible populations in the northern part of the species range. Emergence of these SC groups was also associated with fixation of deleterious alleles inactivating acylsugar acetylation. The Amotape-Huancabamba Zone-a geographical landmark in the Andes with high endemism and isolated microhabitats-was identified as a major driver of differentiation in the northern species range, whereas large geographical distances contributed to population structure and evolution of a novel SC group in the central and southern parts of the range, where the species was also inferred to have originated. Findings presented here highlight the role of the diverse ecogeography of Peru and Ecuador in generating population differentiation, and enhance our understanding of the microevolutionary processes that create biological diversity.
Subject(s)
Gene Flow , Self-Incompatibility in Flowering Plants/genetics , Solanum lycopersicum/genetics , Solanum/genetics , Acetylation , Ecuador , Solanum lycopersicum/metabolism , Peru , Phylogeography , Self-Fertilization , Solanum/metabolismABSTRACT
Natural variations in cis-regulatory regions often affect crop phenotypes by altering gene expression. However, the mechanism of how promoter mutations affect gene expression and crop stress tolerance is still poorly understood. In this study, by analyzing RNA-sequencing (RNA-Seq) data and reverse transcription quantitative real-time PCR validation in the cultivated tomato and its wild relatives, we reveal that the transcripts of WRKY33 are almost unchanged in cold-sensitive cultivated tomato Solanum lycopersicum L. 'Ailsa Craig' but are significantly induced in cold-tolerant wild tomato relatives Solanum habrochaites LA1777 and Solanum pennellii LA0716 under cold stress. Overexpression of SlWRKY33 or ShWRKY33 positively regulates cold tolerance in tomato. Variant of the critical W-box in SlWRKY33 promoter results in the loss of self-transcription function of SlWRKY33 under cold stress. Analysis integrating RNA-Seq and chromatin immunoprecipitation sequencing data reveals that SlWRKY33 directly targets and induces multiple kinases, transcription factors, and molecular chaperone genes, such as CDPK11, MYBS3, and BAG6, thus enhancing cold tolerance. In addition, heat- and Botrytis-induced WRKY33s expression in both wild and cultivated tomatoes are independent of the critical W-box variation. Our findings suggest nucleotide polymorphism in cis-regulatory regions is crucial for different cold sensitivity between cultivated and wild tomato plants.
Subject(s)
Solanum lycopersicum , Solanum , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Molecular Chaperones/metabolism , RNA/metabolism , Solanum/genetics , Solanum/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Polymorphism, Single Nucleotide , Promoter Regions, GeneticABSTRACT
Solanum steroidal glycoalkaloids (SGAs) are renowned defence metabolites exhibiting spectacular structural diversity. Genes and enzymes generating the SGA precursor pathway, SGA scaffold and glycosylated forms have been largely identified. Yet, the majority of downstream metabolic steps creating the vast repertoire of SGAs remain untapped. Here, we discovered that members of the 2-OXOGLUTARATE-DEPENDENT DIOXYGENASE (2-ODD) family play a prominent role in SGA metabolism, carrying out three distinct backbone-modifying oxidative steps in addition to the three formerly reported pathway reactions. The GLYCOALKALOID METABOLISM34 (GAME34) enzyme catalyses the conversion of core SGAs to habrochaitosides in wild tomato S. habrochaites. Cultivated tomato plants overexpressing GAME34 ectopically accumulate habrochaitosides. These habrochaitoside enriched plants extracts potently inhibit Puccinia spp. spore germination, a significant Solanaceae crops fungal pathogen. Another 2-ODD enzyme, GAME33, acts as a desaturase (via hydroxylation and E/F ring rearrangement) forming unique, yet unreported SGAs. Conversion of bitter α-tomatine to ripe fruit, nonbitter SGAs (e.g. esculeoside A) requires two hydroxylations; while the known GAME31 2-ODD enzyme catalyses hydroxytomatine formation, we find that GAME40 catalyses the penultimate step in the pathway and generates acetoxy-hydroxytomatine towards esculeosides accumulation. Our results highlight the significant contribution of 2-ODD enzymes to the remarkable structural diversity found in plant steroidal specialized metabolism.
Subject(s)
Alkaloids , Dioxygenases , Solanum lycopersicum , Solanum tuberosum , Solanum , Alkaloids/metabolism , Dioxygenases/genetics , Dioxygenases/metabolism , Ketoglutaric Acids/metabolism , Solanum lycopersicum/genetics , Solanum/genetics , Solanum/metabolism , Solanum tuberosum/geneticsABSTRACT
Freezing stress is a major limiting factor in crop production. To increase frost-hardiness of crops via breeding, deciphering the genes conferring freezing-tolerance is vital. Potato cultivars (Solanum tuberosum) are generally freezing-sensitive, but some potato wild species are freezing-tolerant, including Solanum commersonii, Solanum malmeanum and Solanum acaule. However, the underlying molecular mechanisms conferring the freezing-tolerance to the wild species remain to be deciphered. In this study, five representative genotypes of the above-mentioned species with distinct freezing-tolerance were investigated. Comparative transcriptomics analysis showed that SaCBL1-like (calcineurin B-like protein) was upregulated substantially in all of the freezing-tolerant genotypes. Transgenic overexpression and known-down lines of SaCBL1-like were examined. SaCBL1-like was shown to confer freezing-tolerance without significantly impacting main agricultural traits. A functional mechanism analysis showed that SaCBL1-like increases the expression of the C-repeat binding factor-regulon as well as causes a prolonged higher expression of CBF1 after exposure to cold conditions. Furthermore, SaCBL1-like was found to only interact with SaCIPK3-1 (CBL-interacting protein kinase) among all apparent cold-responsive SaCIPKs. Our study identifies SaCBL1-like to play a vital role in conferring freezing tolerance in potato, which may provide a basis for a targeted potato breeding for frost-hardiness.
Subject(s)
Solanum tuberosum , Solanum , Calcineurin/genetics , Calcineurin/metabolism , Freezing , Protein Kinases/metabolism , Solanum/metabolism , Solanum tuberosum/metabolism , Transcriptome/geneticsABSTRACT
INTRODUCTION: We investigated the effect of African eggplant (AE) (Solanum macrocarpon L) and Black nightshade (BN) (Solanum nigrum L) leaves; two tropical vegetables consumed by humans on behavioural, biochemical and histological indices in Drosophila melanogaster model of Alzheimer's disease (AD). MATERIALS AND METHOD: Transgenic flies expressing human Amyloid Precursor Protein (hAPP) and ß-secretase (hBACE 1) were exposed to the pulverised leaf samples (0.1 and 1.0%) in their diets for fourteen days. Thereafter, the flies were assessed for their behavioural indices and routine histology of brain cells. Furthermore, fly head homogenates were assayed for ß-amyloid level, activities of acetylcholinesterase (AChE) and ß-secretase (BACE-1), as well as oxidative stress markers. RESULTS: Result showed that the significantly lower (p < 0.05) behavioural parameters (survival, locomotor performance and memory index), higher AChE and BACE-1 activities, ß-amyloid, ROS and lipid peroxidation levels, as well as reduced antioxidant indices observed in the AD flies, were significantly ameliorated (p < 0.05) in AD flies treated with the leaf samples. DISCUSSION: This study has showed that leaves of AE and BN ameliorated behavioural and biochemical indices in AD flies via neural enzyme modulatory, and antioxidant mechanisms. CONCLUSION: Hence, this study further justifies the neuroprotective properties of both AE and BN.
Subject(s)
Alzheimer Disease , Plant Preparations , Solanum nigrum , Solanum , Acetylcholinesterase/genetics , Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Amyloid Precursor Protein Secretases/drug effects , Amyloid Precursor Protein Secretases/metabolism , Animals , Antioxidants/metabolism , Disease Models, Animal , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Plant Preparations/pharmacology , Plant Preparations/therapeutic use , Solanum/metabolism , Solanum nigrum/metabolismABSTRACT
BACKGROUND: This study investigated the modulatory capacity of two Solanum green leafy vegetables; S. macrocarpon L. (African eggplant AE) and S. nigrum L. (Black nightshade BN) on dysregulation of some antioxidant, pro-apoptotic, pro-inflammatory-like, acetylcholinesterase gene expression and redox status in the Drosophila melanogaster model of aluminum-induced neurotoxicity. METHODS: Flies were exposed to AlCl3 (6.7â mM) alone or in combination with the leaves (0.1 and 1.0%) from both samples in their diet for seven days. Thereafter, the fly heads were rapidly separated, homogenized, and used to assay for reactive oxygen species (ROS), total thiol content, catalase, glutathione-S-transferase (GST), acetylcholinesterase (AChE) activities, and the expression of antioxidant-mediators (Hsp70, catalase, cnc/Nrf2, Jafrac1 and FOXO), acetylcholinesterase (Ace1), pro-apoptotic caspase-like (Dronc) and its regulator (reaper), as well as inflammation-related (NF-kB/Relish) genes. RESULTS: Results showed that AlCl3-exposed flies had significantly reduced survival rate which were ameliorated by AlCl3 also elevated ROS, GST and reduced AChE activities in fly heads while dietary inclusions of AE and BN ameliorated survial rate and oxidative stress in AlCl3-exposed flies. In addition, Hsp70, Jafrac1, reaper and NF-kÒB/Relish were significantly upregulated in AlCl3-exposed fly heads, while cnc/Nrf2 and FOXO were significantly downregulated, but catalase, Dronc and Ace were, not significantly modulated. Nevertheless, these impairments in gene expression levels were ameliorated by dietary inclusions of AE and BN during AlCl3 exposure. CONCLUSION: These findings showed that dietary inclusions of AE and BN leaves offer protection against Al-induced neurotoxicity in D. melanogaster and thus, could serve as functional foods with neuroprotective properties.
Subject(s)
Neurotoxicity Syndromes , Solanum nigrum , Solanum , Acetylcholinesterase/metabolism , Aluminum/metabolism , Animals , Antioxidants/metabolism , Caspases/genetics , Caspases/metabolism , Catalase/genetics , Catalase/metabolism , Diet , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Glutathione/metabolism , Glutathione Transferase/metabolism , Inflammation/chemically induced , Inflammation/prevention & control , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Neurotoxicity Syndromes/etiology , Neurotoxicity Syndromes/metabolism , Neurotoxicity Syndromes/prevention & control , Oxidation-Reduction , Oxidative Stress , Reactive Oxygen Species/metabolism , Solanum/metabolism , Solanum nigrum/metabolism , Sulfhydryl Compounds/metabolism , VegetablesABSTRACT
Cadmium (Cd) contamination of orchard soils is a global problem that has been increasing. To decrease the Cd accumulation in fruits, intercropping the orchard crops with hyperaccumulator plants has been used for soil remediation. A pot and a field experiment were conducted to study the effects of intercropping the potential Cd-hyperaccumulator Solanum photeinocarpum and its post-grafting generations with loquat (Eriobotrya japonica) on the growth and Cd uptake of these two plant species. In the pot experiment, intercropping improved the biomass, Cd content, Cd extraction, and root-to-shoot Cd translocation in both species. Intercropping increased the DNA methylation levels, antioxidant enzyme activity, and soluble protein content of loquat seedlings. These results indicate that intercropping could improve the phytoremediation of S. photeinocarpum and its post-grafting generations and increase the Cd uptake in loquat seedlings. In the field experiment, intercropping increased the Cd contents in the old branches, while it decreased that in the young branches and fruits of loquat. These findings indicate that intercropping could increase the Cd uptake in old tissues but reduce the Cd uptake in young tissues and fruits of loquat. So, intercropping loquat with S. photeinocarpum and its post-grafting generations could be used in Cd-contaminated orchards.
Intercropping the potential Cd-hyperaccumulator Solanum photeinocarpum and its post-grafting generations with loquat mutually promoted the growth of two plant species, and also promoted the cadmium uptakes in S. photeinocarpum and old branches of loquat, while inhibited the Cd uptake in the loquat young tissues (young branches and fruits). These results are the new findings of the intercropping.
Subject(s)
Eriobotrya , Soil Pollutants , Solanum , Biodegradation, Environmental , Cadmium/metabolism , Eriobotrya/metabolism , Plant Roots/metabolism , Seedlings , Soil , Soil Pollutants/metabolism , Solanum/metabolismABSTRACT
Acyl glucoses are a group of specialized metabolites produced by Solanaceae. Solanum pennellii, a wild-type tomato plant, produces acyl glucoses in its hair-like epidermal structures known as trichomes. These compounds have been found to be herbicides, microbial growth inhibitors, or allelopathic compounds. However, there are a few reports regarding isolation and investigation of biological activities of acyl glucoses in its pure form due to the difficulty of isolation. Here, we report a new acyl glucose, pennelliiside D, isolated and identified from S. pennellii. Its structure was determined by 1D NMR and 2D NMR, together with FD-MS analysis. To clarify the absolute configuration of the acyl moiety of 2-methylbutyryl in the natural compound, two possible isomers were synthesized starting from ß-D-glucose pentaacetate. By comparing the spectroscopic data of natural and synthesized compounds of isomers, the structure of pennelliiside D was confirmed to be 3,4-O-diisobutyryl-2-O-((S)-2-methylbutyryl)-D-glucose. Pennelliiside D and its constituent fatty acid moiety, (S)-2-methylbutanoic acid, did not show root growth-inhibitory activity. Additionally, in this study, chemical synthesis pathways toward pennelliisides A and B were adapted to give 1,6-O-dibenzylpennelliisides A and B.
Subject(s)
Solanum lycopersicum , Solanum , Fatty Acids/chemistry , Glucose/metabolism , Solanum lycopersicum/chemistry , Solanum/metabolism , Trichomes/metabolismABSTRACT
Sixteen organic acids were quantified in peel and pulp of Amber, Laird's Large and Mulligan cultivars of tamarillo using GC-MS. Fourteen of these compounds had not previously been quantified in tamarillo. An untargeted metabolomics approach was used in parallel to identify and quantify 64 more metabolites relative to the internal standard, indicating abundances of glutamic acid, pro-line, aspartic acid and γ-aminobutyric acid as well as lower concentrations of several other essential fatty acids and amino acids. The main findings were that total organic acid concentration was significantly higher (p < 0.05) in pulp than in peel, with the highest concentration seen in Mulligan pulp (219.7 mg/g DW). Remarkably, after citric acid, the potent bactericide itaconic acid was the second most abundant organic acid. At least 95% of organic acids in tamarillo were one of these two acids, as well as cis-aconitic, malic and 4-toluic acids. Differences between cultivar chemotypes were as substantial as differences between tissues. These results suggest that the bitter flavour of the peel does not result from organic acids. The combination of targeted and untargeted metabolomics techniques for simultaneous qualitative and quantitative investigation of nutrients and flavours is efficient and informative.