Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 128
Filter
Add more filters

Publication year range
1.
Nature ; 592(7853): 290-295, 2021 04.
Article in English | MEDLINE | ID: mdl-33658712

ABSTRACT

The lipid chemoattractant sphingosine 1-phosphate (S1P) guides cells out of tissues, where the concentration of S1P is relatively low, into circulatory fluids, where the concentration of S1P is high1. For example, S1P directs the exit of T cells from lymph nodes, where T cells are initially activated, into lymph, from which T cells reach the blood and ultimately inflamed tissues1. T cells follow S1P gradients primarily using S1P receptor 1 (ref. 1). Recent studies have described how S1P gradients are established at steady state, but little is known about the distribution of S1P in disease or about how changing levels of S1P may affect immune responses. Here we show that the concentration of S1P increases in lymph nodes during an immune response. We found that haematopoietic cells, including inflammatory monocytes, were an important source of this S1P, which was an unexpected finding as endothelial cells provide S1P to lymph1. Inflammatory monocytes required the early activation marker CD69 to supply this S1P, in part because the expression of CD69 was associated with reduced levels of S1pr5 (which encodes S1P receptor 5). CD69 acted as a 'stand-your-ground' signal, keeping immune cells at a site of inflammation by regulating both the receptors and the gradients of S1P. Finally, increased levels of S1P prolonged the residence time of T cells in the lymph nodes and exacerbated the severity of experimental autoimmune encephalomyelitis in mice. This finding suggests that residence time in the lymph nodes might regulate the differentiation of T cells, and points to new uses of drugs that target S1P signalling.


Subject(s)
Lymph Nodes/immunology , Lymph Nodes/metabolism , Lysophospholipids/metabolism , Monocytes/metabolism , Sphingosine/analogs & derivatives , T-Lymphocytes/immunology , Animals , Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/physiopathology , Female , Inflammation/immunology , Inflammation/metabolism , Lectins, C-Type/metabolism , Lymph Nodes/cytology , Male , Mice , Mice, Inbred C57BL , Signal Transduction , Sphingosine/metabolism , Sphingosine-1-Phosphate Receptors/antagonists & inhibitors , Sphingosine-1-Phosphate Receptors/genetics , Sphingosine-1-Phosphate Receptors/metabolism , T-Lymphocytes/cytology
2.
Exp Cell Res ; 439(1): 114071, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38729336

ABSTRACT

Atherosclerosis preferentially occurs in areas with low shear stress (LSS) and oscillatory flow. LSS has been demonstrated to correlate with the development of atherosclerosis. The sphingosine 1-phosphate receptor 1 (S1PR1), involving intravascular blood flow sensing, regulates vascular development and vascular barrier function. However, whether LSS affects atherosclerosis via regulating S1PR1 remains incompletely clear. In this study, immunostaining results of F-actin, ß-catenin, and VE-cadherin indicated that LSS impaired endothelial barrier function in human umbilical vein endothelial cells (HUVECs). Western blot analysis showed that LSS resulted in blockage of autophagic flux in HUVECs. In addition, autophagy agonist Rapamycin (Rapa) antagonized LSS-induced endothelial barrier dysfunction, whereas autophagic flux inhibitor Bafilomycin A1 (BafA1) exacerbated it, indicating that LSS promoted endothelial barrier dysfunction by triggering autophagic flux blockage. Notably, gene expression analysis revealed that LSS downregulated S1PR1 expression, which was antagonized by Rapa. Selective S1PR1 antagonist W146 impaired endothelial barrier function of HUVECs under high shear stress (HSS) conditions. Moreover, our data showed that expression of GAPARAPL2, a member of autophagy-related gene 8 (Atg8) proteins, was decreased in HUVECs under LSS conditions. Autophagic flux blockage induced by GAPARAPL2 knockdown inhibited S1PR1, aggravated endothelial barrier dysfunction of HUVECs in vitro, and promoted aortic atherosclerosis in ApoE-/- mice in vivo. Our study demonstrates that autophagic flux blockage induced by LSS downregulates S1PR1 expression and impairs endothelial barrier function. GABARAPL2 inhibition is involved in LSS-induced autophagic flux blockage, which impairs endothelial barrier function via downregulation of S1PR1.


Subject(s)
Atherosclerosis , Autophagy , Human Umbilical Vein Endothelial Cells , Sphingosine-1-Phosphate Receptors , Stress, Mechanical , Animals , Autophagy/drug effects , Atherosclerosis/metabolism , Atherosclerosis/pathology , Atherosclerosis/genetics , Humans , Human Umbilical Vein Endothelial Cells/metabolism , Sphingosine-1-Phosphate Receptors/metabolism , Sphingosine-1-Phosphate Receptors/genetics , Mice , Mice, Inbred C57BL , Male , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Endothelium, Vascular/drug effects
3.
Crit Rev Eukaryot Gene Expr ; 34(7): 1-16, 2024.
Article in English | MEDLINE | ID: mdl-39072405

ABSTRACT

The aim of the present study was to explore the molecular mechanisms by which miR-193b-3p-trans-fected bone marrow mesenchymal stem cells (BMSCs) transplantation improves neurological impairment after traumatic brain injury (TBI) through sphingosine-1-phosphate receptor 3 (S1PR3)-mediated regulation of the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway at the cellular and animal levels. BMSCs were transfected with miR-193b-3p. A TBI cell model was established by oxygen-glucose deprivation (OGD)-induced HT22 cells, and a TBI animal model was established by controlled cortical impact (CCI). Cell apoptosis was detected by terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL), and cell activity was detected by a cell counting kit 8 (CCK-8) assay. Western blot analysis and quantitative real-time polymerase chain reaction (qRT-PCR) were used to detect the expression of related proteins and genes. In this study, transfection of miR-193b-3p into BMSCs significantly enhanced BMSCs proliferation and differentiation. Transfection of miR-193b-3p reduced the levels of the interleukin-6 (IL-6), IL-1ß, and tumor necrosis factor-alpha (TNF-α) inflammatory factors in cells and mouse models, and it inhibited neuronal apoptosis, which alleviated OGD-induced HT22 cell damage and neural function damage in TBI mice. Downstream experiments showed that miR-193b-3p targeting negatively regulated the expression of S1PR3, promoted the activation of the PI3K/AKT/mTOR signaling pathway, and inhibited the levels of apoptosis and inflammatory factors, which subsequently improved OGD-induced neuronal cell damage and nerve function damage in TBI mice. However, S1PR3 overexpression or inhibition of the PI3K/AKT/mTOR signaling pathway using the IN-2 inhibitor weakened the protective effect of miR-193b-3p-transfected BMSCs on HT22 cells. Transplantation of miR-193b-3p-transfected BMSCs inhibits neurological injury and improves the progression of TBI in mice through S1PR3-mediated regulation of the PI3K/AKT/mTOR pathway.


Subject(s)
Brain Injuries, Traumatic , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , MicroRNAs , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Sphingosine-1-Phosphate Receptors , TOR Serine-Threonine Kinases , Animals , Humans , Male , Mice , Apoptosis , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/genetics , Brain Injuries, Traumatic/therapy , Disease Models, Animal , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Sphingosine-1-Phosphate Receptors/metabolism , Sphingosine-1-Phosphate Receptors/genetics , TOR Serine-Threonine Kinases/metabolism
4.
Mol Biol Rep ; 51(1): 950, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39222158

ABSTRACT

BACKGROUND: Hepatic fibrosis, a prevalent chronic liver condition, involves excessive extracellular matrix production associated with aberrant wound healing. Hepatic stellate cells (HSCs) play a pivotal role in liver fibrosis, activated by inflammatory factors such as sphingosine 1-phosphate (S1P). Despite S1P's involvement in fibrosis, its specific role and downstream pathway in HSCs remain controversial. METHODS: In this study, we investigated the regulatory role of S1P/S1P receptor (S1PR) in Hippo-YAP activation in both LX-2 cell lines and primary HSCs. Real-time PCR, western blot, pharmacological inhibitors, siRNAs, and Rho activity assays were adopted to address the molecular mechanisms of S1P mediated YAP activation. RESULTS: Serum and exogenous S1P significantly increased the expression of YAP target genes in HSCs. Pharmacologic inhibitors and siRNA-mediated knockdowns of S1P receptors showed S1P receptor 2 (S1PR2) as the primary mediator for S1P-induced CTGF expression in HSCs. Results using siRNA-mediated knockdown, Verteporfin, and Phospho-Tag immunoblots showed that S1P-S1PR2 signaling effectively suppressed the Hippo kinases cascade, thereby activating YAP. Furthermore, S1P increased RhoA activities in cells and ROCK inhibitors effectively blocked CTGF induction. Cytoskeletal-perturbing reagents were shown to greatly modulate CTGF induction, suggesting the important role of actin cytoskeleton in S1P-induced YAP activation. Exogeneous S1P treatment was enough to increase the expression of COL1A1 and α-SMA, that were blocked by YAP specific inhibitor. CONCLUSIONS: Our data demonstrate that S1P/S1PR2-Src-RhoA-ROCK axis leads to Hippo-YAP activation, resulting in the up-regulation of CTGF, COL1A1 and α-SMA expression in HSCs. Therefore, S1PR2 may represent a potential therapeutic target for hepatic fibrosis.


Subject(s)
Connective Tissue Growth Factor , Hepatic Stellate Cells , Lysophospholipids , Signal Transduction , Sphingosine , Transcription Factors , YAP-Signaling Proteins , rho-Associated Kinases , rhoA GTP-Binding Protein , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/drug effects , Connective Tissue Growth Factor/metabolism , Connective Tissue Growth Factor/genetics , Lysophospholipids/metabolism , Lysophospholipids/pharmacology , Humans , rho-Associated Kinases/metabolism , rho-Associated Kinases/genetics , Sphingosine/analogs & derivatives , Sphingosine/metabolism , YAP-Signaling Proteins/metabolism , rhoA GTP-Binding Protein/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Sphingosine-1-Phosphate Receptors/metabolism , Sphingosine-1-Phosphate Receptors/genetics , Cell Line , Liver Cirrhosis/metabolism , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , src-Family Kinases/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Receptors, Lysosphingolipid/metabolism , Receptors, Lysosphingolipid/genetics , Collagen Type I/metabolism , Collagen Type I/genetics , Hippo Signaling Pathway
5.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Article in English | MEDLINE | ID: mdl-34873055

ABSTRACT

Endothelial dysfunction is associated with vascular disease and results in disruption of endothelial barrier function and increased sensitivity to apoptosis. Currently, there are limited treatments for improving endothelial dysfunction. Activated protein C (aPC), a promising therapeutic, signals via protease-activated receptor-1 (PAR1) and mediates several cytoprotective responses, including endothelial barrier stabilization and anti-apoptotic responses. We showed that aPC-activated PAR1 signals preferentially via ß-arrestin-2 (ß-arr2) and dishevelled-2 (Dvl2) scaffolds rather than G proteins to promote Rac1 activation and barrier protection. However, the signaling pathways utilized by aPC/PAR1 to mediate anti-apoptotic activities are not known. aPC/PAR1 cytoprotective responses also require coreceptors; however, it is not clear how coreceptors impact different aPC/PAR1 signaling pathways to drive distinct cytoprotective responses. Here, we define a ß-arr2-mediated sphingosine kinase-1 (SphK1)-sphingosine-1-phosphate receptor-1 (S1PR1)-Akt signaling axis that confers aPC/PAR1-mediated protection against cell death. Using human cultured endothelial cells, we found that endogenous PAR1 and S1PR1 coexist in caveolin-1 (Cav1)-rich microdomains and that S1PR1 coassociation with Cav1 is increased by aPC activation of PAR1. Our study further shows that aPC stimulates ß-arr2-dependent SphK1 activation independent of Dvl2 and is required for transactivation of S1PR1-Akt signaling and protection against cell death. While aPC/PAR1-induced, extracellular signal-regulated kinase 1/2 (ERK1/2) activation is also dependent on ß-arr2, neither SphK1 nor S1PR1 are integrated into the ERK1/2 pathway. Finally, aPC activation of PAR1-ß-arr2-mediated protection against apoptosis is dependent on Cav1, the principal structural protein of endothelial caveolae. These studies reveal that different aPC/PAR1 cytoprotective responses are mediated by discrete, ß-arr2-driven signaling pathways in caveolae.


Subject(s)
Phosphotransferases (Alcohol Group Acceptor)/metabolism , Protein C/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptor, PAR-1/metabolism , Sphingosine-1-Phosphate Receptors/metabolism , beta-Arrestin 2/metabolism , Anilides/pharmacology , Apoptosis/physiology , Endothelial Cells/physiology , Enzyme Inhibitors/pharmacology , Gene Expression Regulation/drug effects , Heterocyclic Compounds, 3-Ring/pharmacology , Humans , Lactones/pharmacology , Methanol/pharmacology , Organophosphonates/pharmacology , Phosphotransferases (Alcohol Group Acceptor)/genetics , Platelet Aggregation Inhibitors/pharmacology , Protein C/genetics , Proto-Oncogene Proteins c-akt/genetics , Pyridines/pharmacology , Pyrrolidines/pharmacology , Receptor, PAR-1/genetics , Sphingosine-1-Phosphate Receptors/genetics , Sulfones/pharmacology , beta-Arrestin 2/genetics
7.
Circ Res ; 128(3): 363-382, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33301355

ABSTRACT

RATIONALE: Cerebrovascular function is critical for brain health, and endogenous vascular protective pathways may provide therapeutic targets for neurological disorders. S1P (Sphingosine 1-phosphate) signaling coordinates vascular functions in other organs, and S1P1 (S1P receptor-1) modulators including fingolimod show promise for the treatment of ischemic and hemorrhagic stroke. However, S1P1 also coordinates lymphocyte trafficking, and lymphocytes are currently viewed as the principal therapeutic target for S1P1 modulation in stroke. OBJECTIVE: To address roles and mechanisms of engagement of endothelial cell S1P1 in the naive and ischemic brain and its potential as a target for cerebrovascular therapy. METHODS AND RESULTS: Using spatial modulation of S1P provision and signaling, we demonstrate a critical vascular protective role for endothelial S1P1 in the mouse brain. With an S1P1 signaling reporter, we reveal that abluminal polarization shields S1P1 from circulating endogenous and synthetic ligands after maturation of the blood-neural barrier, restricting homeostatic signaling to a subset of arteriolar endothelial cells. S1P1 signaling sustains hallmark endothelial functions in the naive brain and expands during ischemia by engagement of cell-autonomous S1P provision. Disrupting this pathway by endothelial cell-selective deficiency in S1P production, export, or the S1P1 receptor substantially exacerbates brain injury in permanent and transient models of ischemic stroke. By contrast, profound lymphopenia induced by loss of lymphocyte S1P1 provides modest protection only in the context of reperfusion. In the ischemic brain, endothelial cell S1P1 supports blood-brain barrier function, microvascular patency, and the rerouting of blood to hypoperfused brain tissue through collateral anastomoses. Boosting these functions by supplemental pharmacological engagement of the endothelial receptor pool with a blood-brain barrier penetrating S1P1-selective agonist can further reduce cortical infarct expansion in a therapeutically relevant time frame and independent of reperfusion. CONCLUSIONS: This study provides genetic evidence to support a pivotal role for the endothelium in maintaining perfusion and microvascular patency in the ischemic penumbra that is coordinated by S1P signaling and can be harnessed for neuroprotection with blood-brain barrier-penetrating S1P1 agonists.


Subject(s)
Blood-Brain Barrier/metabolism , Cerebral Arteries/metabolism , Endothelial Cells/metabolism , Infarction, Middle Cerebral Artery/metabolism , Ischemic Attack, Transient/metabolism , Ischemic Stroke/metabolism , Lysophospholipids/metabolism , Sphingosine-1-Phosphate Receptors/metabolism , Sphingosine/analogs & derivatives , Animals , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/pathology , Blood-Brain Barrier/physiopathology , Cerebral Arteries/drug effects , Cerebral Arteries/pathology , Cerebral Arteries/physiopathology , Cerebrovascular Circulation , Disease Models, Animal , Endothelial Cells/pathology , Female , Infarction, Middle Cerebral Artery/pathology , Infarction, Middle Cerebral Artery/physiopathology , Infarction, Middle Cerebral Artery/prevention & control , Ischemic Attack, Transient/pathology , Ischemic Attack, Transient/physiopathology , Ischemic Attack, Transient/prevention & control , Ischemic Stroke/pathology , Ischemic Stroke/physiopathology , Ischemic Stroke/prevention & control , Male , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Microcirculation , Neuroprotective Agents/pharmacology , Signal Transduction , Sphingosine/metabolism , Sphingosine-1-Phosphate Receptors/agonists , Sphingosine-1-Phosphate Receptors/genetics , Vascular Patency
8.
Proc Natl Acad Sci U S A ; 117(6): 3157-3166, 2020 02 11.
Article in English | MEDLINE | ID: mdl-31988136

ABSTRACT

Sphingosine 1-phosphate receptor-1 (S1PR1) is essential for embryonic vascular development and maturation. In the adult, it is a key regulator of vascular barrier function and inflammatory processes. Its roles in tumor angiogenesis, tumor growth, and metastasis are not well understood. In this paper, we show that S1PR1 is expressed and active in tumor vessels. Murine tumor vessels that lack S1PR1 in the vascular endothelium (S1pr1 ECKO) show excessive vascular sprouting and branching, decreased barrier function, and poor perfusion accompanied by loose attachment of pericytes. Compound knockout of S1pr1, 2, and 3 genes further exacerbated these phenotypes, suggesting compensatory function of endothelial S1PR2 and 3 in the absence of S1PR1. On the other hand, tumor vessels with high expression of S1PR1 (S1pr1 ECTG) show less branching, tortuosity, and enhanced pericyte coverage. Larger tumors and enhanced lung metastasis were seen in S1pr1 ECKO, whereas S1pr1 ECTG showed smaller tumors and reduced metastasis. Furthermore, antitumor activity of a chemotherapeutic agent (doxorubicin) and immune checkpoint inhibitor blocker (anti-PD-1 antibody) were more effective in S1pr1 ECTG than in the wild-type counterparts. These data suggest that tumor endothelial S1PR1 induces vascular normalization and influences tumor growth and metastasis, thus enhancing antitumor therapies in mouse models. Strategies to enhance S1PR1 signaling in tumor vessels may be an important adjunct to standard cancer therapy of solid tumors.


Subject(s)
Antineoplastic Agents/pharmacology , Neovascularization, Pathologic/metabolism , Sphingosine-1-Phosphate Receptors/metabolism , Animals , Capillary Permeability/physiology , Cell Line, Tumor , Cell Proliferation/drug effects , Endothelium, Vascular/cytology , Endothelium, Vascular/metabolism , Mice , Mice, Knockout , Neoplasms, Experimental/blood supply , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Sphingosine-1-Phosphate Receptors/genetics
9.
J Recept Signal Transduct Res ; 42(3): 225-229, 2022 Jun.
Article in English | MEDLINE | ID: mdl-33685344

ABSTRACT

Several intracellular pathological processes have been reported to be regulated by the FAM19A5/S1PR1 signaling pathway. However, the role of FAM19A5/S1PR1 signaling pathway in the viability and proliferation of mantle cell lymphoma is not been completely understood. The task of this study is to explore the influence of FAM19A5/S1PR1 signaling pathway in affecting the survival and growth of mantle cell lymphoma. shRNAs against FAM19A5 or S1PR1 were transfected into mantle cell lymphom. Cell viability and proliferation were measured through MTT assay and CCK8 assay, respectively. Our results demonstrated that loss of FAM19A5 significantly reduced the viability of mantle cell lymphom, an effect that was followed by a drop in cell proliferation capacity. Besides, inhibition of S1PR1 also impairs cell survival and interrupt mantle cell lymphom proliferation in vitro. Taken together, our results illustrate that FAM19A5/S1PR1 signaling pathway is associated with the regulation of mantle cell lymphom viability and proliferation. This finding will provide a potential target for the treatment of malignant lymphoma in the clinical practice.


Subject(s)
Cytokines , Lymphoma, Mantle-Cell , Sphingosine-1-Phosphate Receptors , Cell Line, Tumor , Cell Proliferation/genetics , Cell Survival/genetics , Cytokines/genetics , Humans , Lymphoma, Mantle-Cell/genetics , Signal Transduction/genetics , Sphingosine-1-Phosphate Receptors/genetics
10.
Arterioscler Thromb Vasc Biol ; 41(10): e468-e479, 2021 10.
Article in English | MEDLINE | ID: mdl-34407633

ABSTRACT

Objective: ApoM enriches S1P (sphingosine-1-phosphate) within HDL (high-density lipoproteins) and facilitates the activation of the S1P1 (S1P receptor type 1) by S1P, thereby preserving endothelial barrier function. Many protective functions exerted by HDL in extravascular tissues raise the question of how S1P regulates transendothelial HDL transport. Approach and Results: HDL were isolated from plasma of wild-type mice, Apom knockout mice, human apoM transgenic mice or humans and radioiodinated to trace its binding, association, and transport by bovine or human aortic endothelial cells. We also compared the transport of fluorescently-labeled HDL or Evans Blue, which labels albumin, from the tail vein into the peritoneal cavity of apoE-haploinsufficient mice with (apoE-haploinsufficient mice with endothelium-specific knockin of S1P1) or without (control mice, ie, apoE-haploinsufficient mice without endothelium-specific knockin of S1P1) endothelium-specific knockin of S1P1. The binding, association, and transport of HDL from Apom knockout mice and human apoM-depleted HDL by bovine aortic endothelial cells was significantly lower than that of HDL from wild-type mice and human apoM-containing HDL, respectively. The binding, uptake, and transport of 125I-HDL by human aortic endothelial cells was increased by an S1P1 agonist but decreased by an S1P1 inhibitor. Silencing of SR-BI (scavenger receptor BI) abrogated the stimulation of 125I-HDL transport by the S1P1 agonist. Compared with control mice, that is, apoE-haploinsufficient mice without endothelium-specific knockin of S1P1, apoE-haploinsufficient mice with endothelium-specific knockin of S1P1 showed decreased transport of Evans Blue but increased transport of HDL from blood into the peritoneal cavity and SR-BI expression in the aortal endothelium. Conclusions: ApoM and S1P1 promote transendothelial HDL transport. Their opposite effect on transendothelial transport of albumin and HDL indicates that HDL passes endothelial barriers by specific mechanisms rather than passive filtration.


Subject(s)
Apolipoproteins M/metabolism , Atherosclerosis/metabolism , Endothelial Cells/metabolism , Lipoproteins, HDL/metabolism , Sphingosine-1-Phosphate Receptors/metabolism , Animals , Atherosclerosis/genetics , Atherosclerosis/pathology , Biological Transport , Cattle , Cells, Cultured , Disease Models, Animal , Endothelial Cells/pathology , Female , Humans , Male , Mice, Inbred C57BL , Mice, Knockout, ApoE , Permeability , Plaque, Atherosclerotic , Scavenger Receptors, Class B/genetics , Scavenger Receptors, Class B/metabolism , Sphingosine-1-Phosphate Receptors/genetics
11.
Proc Natl Acad Sci U S A ; 116(28): 14270-14279, 2019 07 09.
Article in English | MEDLINE | ID: mdl-31235580

ABSTRACT

Stroke is a major cause of serious disability due to the brain's limited capacity to regenerate damaged tissue and neuronal circuits. After ischemic injury, a multiphasic degenerative and inflammatory response is coupled with severely restricted vascular and neuronal repair, resulting in permanent functional deficits. Although clinical evidence indicates that revascularization of the ischemic brain regions is crucial for functional recovery, no therapeutics that promote angiogenesis after cerebral stroke are currently available. Besides vascular growth factors, guidance molecules have been identified to regulate aspects of angiogenesis in the central nervous system (CNS) and may provide targets for therapeutic angiogenesis. In this study, we demonstrate that genetic deletion of the neurite outgrowth inhibitor Nogo-A or one of its corresponding receptors, S1PR2, improves vascular sprouting and repair and reduces neurological deficits after cerebral ischemia in mice. These findings were reproduced in a therapeutic approach using intrathecal anti-Nogo-A antibodies; such a therapy is currently in clinical testing for spinal cord injury. These results provide a basis for a therapeutic blockage of inhibitory guidance molecules to improve vascular and neural repair after ischemic CNS injuries.


Subject(s)
Antibodies, Anti-Idiotypic/pharmacology , Brain Ischemia/drug therapy , Nogo Proteins/genetics , Sphingosine-1-Phosphate Receptors/genetics , Stroke/drug therapy , Animals , Brain/drug effects , Brain/pathology , Brain Ischemia/genetics , Brain Ischemia/immunology , Brain Ischemia/pathology , Central Nervous System/drug effects , Central Nervous System/pathology , Disease Models, Animal , Humans , Mice , Neovascularization, Physiologic/genetics , Neovascularization, Physiologic/immunology , Neurons/drug effects , Neurons/pathology , Nogo Proteins/antagonists & inhibitors , Nogo Proteins/immunology , Pyramidal Tracts/drug effects , Pyramidal Tracts/pathology , Recovery of Function/genetics , Sphingosine-1-Phosphate Receptors/antagonists & inhibitors , Sphingosine-1-Phosphate Receptors/immunology , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/immunology , Spinal Cord Injuries/pathology , Stroke/genetics , Stroke/immunology , Stroke/pathology
12.
J Headache Pain ; 23(1): 25, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35144528

ABSTRACT

BACKGROUND: Central sensitization is an important pathophysiological mechanism of chronic migraine (CM), and microglia activation in trigeminocervical complex (TCC) contributes to the development of central sensitization. Emerging evidence implicates that blocking sphingosine-1-phosphate receptor 1 (S1PR1) can relieve the development of chronic pain and inhibit the activation of microglia. However, it is unclear whether S1PR1 is involved in the central sensitization of CM. Therefore, the purpose of this study is to explore the role of S1PR1 and its downstream signal transducers and activators of transcription 3 (STAT3) signaling pathway in the CM, mainly in inflammation. METHODS: Chronic intermittent intraperitoneal injection of nitroglycerin (NTG) established a mouse model of CM. First, we observed the changes and subcellular localization of S1PR1 in the trigeminocervical complex (TCC). Then, W146, a S1PR1 antagonist; SEW2871, a S1PR1 agonist; AG490, a STAT3 inhibitor were applied by intraperitoneal injection to investigate the related molecular mechanism. The changes in the number of microglia and the expression of calcitonin gene-related peptide (CGRP) and c-fos in the TCC site were explored by immunofluorescence. In addition, we studied the effect of S1PR1 inhibitors on STAT3 in lipopolysaccharide-treated BV-2 microglia. RESULTS: Our results showed that the expression of S1PR1 was increased after NTG injection and S1PR1 was colocalized with in neurons and glial cells in the TCC. The S1PR1 antagonist W146 alleviated NTG-induced hyperalgesia and suppressed the upregulation of CGRP, c-fos and pSTAT3 in the TCC. Importantly, blocking S1PR1 reduced activation of microglia. In addition, we found that inhibiting STAT3 signal also attenuated NTG-induced basal mechanical and thermal hyperalgesia. CONCLUSIONS: Our results indicate that inhibiting S1PR1 signal could alleviate central sensitization and inhibit microglia activity caused by chronic NTG administration via STAT3 signal pathway, which provide a new clue for the clinical treatment of CM.


Subject(s)
Migraine Disorders , Nitroglycerin , Sphingosine-1-Phosphate Receptors/genetics , Animals , Central Nervous System Sensitization , Disease Models, Animal , Hyperalgesia/chemically induced , Hyperalgesia/drug therapy , Mice , Migraine Disorders/chemically induced , Migraine Disorders/drug therapy
13.
J Cell Mol Med ; 25(6): 2740-2749, 2021 03.
Article in English | MEDLINE | ID: mdl-33595873

ABSTRACT

Sphingosine-1-phosphate receptors (S1PRs) have an impact on the intestinal inflammation of inflammatory bowel disease (IBD) by regulating lymphocyte migration and differentiation. S1PR modulators as an emerging therapeutic approach are being investigated for the treatment of IBD. However, the role of S1PRs in intestinal vessels has not drawn much attention. Intestinal vascular damage is one of the major pathophysiological features of IBD, characterized by increased vascular density and impaired barrier function. S1PRs have pleiotropic effects on vascular endothelial cells, including proliferation, migration, angiogenesis and barrier homeostasis. Mounting evidence shows that S1PRs are abnormally expressed on intestinal vascular endothelial cells in IBD. Unexpectedly, S1PR modulators may damage intestinal vasculature, for example increase intestinal bleeding; therefore, S1PRs are thought to be involved in the regulation of intestinal vascular function in IBD. However, little is understood about how S1PRs regulate intestinal vascular function and participate in the initiation and progression of IBD. In this review, we summarize the pathogenic role of S1PRs in and the underlying mechanisms behind the intestinal vascular injury in IBD in order for improving IBD practice including S1PR-targeted therapies.


Subject(s)
Blood Vessels/metabolism , Blood Vessels/pathology , Inflammatory Bowel Diseases/etiology , Inflammatory Bowel Diseases/metabolism , Sphingosine-1-Phosphate Receptors/metabolism , Animals , Endothelial Cells/metabolism , Humans , Inflammatory Bowel Diseases/pathology , Intestinal Mucosa/blood supply , Intestinal Mucosa/metabolism , Leukocytes/immunology , Leukocytes/metabolism , Lymphocytes/immunology , Lymphocytes/metabolism , Nitric Oxide Synthase Type III/metabolism , Sphingosine-1-Phosphate Receptors/genetics
14.
Lab Invest ; 101(2): 245-257, 2021 02.
Article in English | MEDLINE | ID: mdl-33199821

ABSTRACT

Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid generated through sphingosine kinase1 (SPK1)-mediated phosphorylation of sphingosine. We show here that injury-induced S1P upregulation increases corneal neovascularization through stimulating S1PR3, a cognate receptor. since this response was suppressed in S1PR3-knockout mice. Furthermore, Cayman10444, a selective S1PR3 inhibitor, reduced this response in WT mice. Such reductions in neovascularization were associated with reduced vascular endothelial growth factor A (VEGF-A) mRNA expression levels in WT TKE2 corneal epithelial cells and macrophages treated with CAY10444 as well as macrophages isolated from S1PR3 KO mice. S1P increased tube-like vessel formation in human vascular endothelial cells (HUVEC) and human retinal microvascular endothelial cells (HRMECs) cells expressing S1PR3. In S1PR3 KO mice, TGFß1-induced increases in αSMA gene expression levels were suppressed relative to those in the WT counterparts. In S1PR3 deficient macrophages, VEGF-A expression levels were lower than in WT macrophages. Transforming growth factor ß1(TGFß1) upregulated SPK1 expression levels in ocular fibroblasts and TKE2 corneal epithelial cells. CAY10444 blocked S1P-induced increases in VEGF-A mRNA expression levels in TKE2 corneal epithelial cells. Endogenous S1P signaling upregulated VEGF-A and VE-cadherin mRNA expression levels in HUVEC. Unlike in TKE2 cells, SIS3 failed to block TGFß1-induced VEGF-A upregulation in ocular fibroblasts. Taken together, these results indicate that injury-induced TGFß1 upregulation increases S1P generation through increases in SPK1 activity. The rise in S1P formation stimulates the S1PR3-linked signaling pathway, which in turn increases VEGF-A expression levels and angiogenesis in mouse corneas.


Subject(s)
Cornea , Corneal Injuries/metabolism , Neovascularization, Physiologic/genetics , Sphingosine-1-Phosphate Receptors , Animals , Cells, Cultured , Cornea/cytology , Cornea/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Mice , Mice, Knockout , Neovascularization, Physiologic/drug effects , Signal Transduction/drug effects , Signal Transduction/genetics , Sphingosine-1-Phosphate Receptors/antagonists & inhibitors , Sphingosine-1-Phosphate Receptors/genetics , Sphingosine-1-Phosphate Receptors/metabolism , Thiazolidines/pharmacology
15.
Eur J Immunol ; 50(6): 839-845, 2020 06.
Article in English | MEDLINE | ID: mdl-32017036

ABSTRACT

The sphingolipid sphingosine-1-phosphate (S1P) fulfills distinct functions in immune cell biology via binding to five G protein-coupled receptors. The immune cell-specific sphingosine-1-phosphate receptor 4 (S1pr4) was connected to the generation of IL-17-producing T cells through regulation of cytokine production in innate immune cells. Therefore, we explored whether S1pr4 affected imiquimod-induced murine psoriasis via regulation of IL-17 production. We did not observe altered IL-17 production, although psoriasis severity was reduced in S1pr4-deficient mice. Instead, ablation of S1pr4 attenuated the production of CCL2, IL-6, and CXCL1 and subsequently reduced the number of infiltrating monocytes and granulocytes. A connection between S1pr4, CCL2, and Mϕ infiltration was also observed in Zymosan-A induced peritonitis. Boyden chamber migration assays functionally linked reduced CCL2 production in murine skin and attenuated monocyte migration when S1pr4 was lacking. Mechanistically, S1pr4 signaling synergized with TLR signaling in resident Mϕs to produce CCL2, likely via the NF-κB pathway. We propose that S1pr4 activation enhances TLR response of resident Mϕs to increase CCL2 production, which attracts further Mϕs. Thus, S1pr4 may be a target to reduce perpetuating inflammatory responses.


Subject(s)
Chemokine CCL2/immunology , Macrophages/immunology , Psoriasis/immunology , Signal Transduction/immunology , Sphingosine-1-Phosphate Receptors/immunology , Animals , Chemokine CCL2/genetics , Chemokine CXCL1/genetics , Chemokine CXCL1/immunology , Disease Models, Animal , Granulocytes/immunology , Granulocytes/pathology , Interleukin-6/genetics , Interleukin-6/immunology , Macrophages/pathology , Mice , Mice, Knockout , Monocytes/immunology , Monocytes/pathology , Psoriasis/genetics , Psoriasis/pathology , Signal Transduction/genetics , Sphingosine-1-Phosphate Receptors/genetics
16.
Am J Physiol Heart Circ Physiol ; 321(3): H599-H611, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34415189

ABSTRACT

Sphingosine-1-phosphate (S1P) is a bioactive mediator in inflammation. Dysregulated S1P is demonstrated as a cause of heart failure (HF). However, the time-dependent and integrative role of S1P interaction with receptors in HF is unclear after myocardial infarction (MI). In this study, the sphingolipid mediators were quantified in ischemic human hearts. We also measured the time kinetics of these mediators post-MI in murine spleen and heart as an integrative approach to understand the interaction of S1P and respective S1P receptors in the transition of acute (AHF) to chronic HF (CHF). Risk-free 8-12 wk male C57BL/6 mice were subjected to MI surgery, and MI was confirmed by echocardiography and histology. Mass spectrometry was used to quantify sphingolipids in plasma, infarcted heart, spleen of mice, and ischemic and healthy human heart. The physiological cardiac repair was observed in mice with a notable increase of S1P quantity (pmol/g) in the heart and spleen significantly reduced in patients with ischemic HF. The circulating murine S1P levels were increased during AHF and CHF despite lowered substrate in CHF. The S1PR1 receptor expression was observed to coincide with the respective S1P quantity in mice and human hearts. Furthermore, selective S1P1 agonist limited inflammatory markers CCL2 and TNF-α and accelerated reparative markers ARG-1 and YM-1 in macrophages in the presence of Kdo2-Lipid A (KLA; potent inflammatory stimulant). This report demonstrated the importance of S1P/S1PR1 signaling in physiological inflammation during cardiac repair in mice. Alteration in these axes may serve as the signs of pathological remodeling in patients with ischemia.NEW & NOTEWORTHY Previous studies indicate that sphingosine-1-phosphate (S1P) has some role in cardiovascular disease. This study adds quantitative and integrative systems-based approaches that are necessary for discovery and bedside translation. Here, we quantitated sphinganine, sphingosine, sphingosine-1-phosphate (S1P) in mice and human cardiac pathobiology. Interorgan S1P quantity and respective systems-based receptor activation suggest cardiac repair after myocardial infarction. Thus, S1P serves as a therapeutic target for cardiac protection in clinical translation.


Subject(s)
Heart Failure/metabolism , Lysophospholipids/metabolism , Myocardial Infarction/metabolism , Myocytes, Cardiac/metabolism , Sphingosine/analogs & derivatives , Spleen/metabolism , Animals , Arginase/metabolism , Cells, Cultured , Chemokine CCL2/metabolism , Humans , Lectins/metabolism , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/physiology , Regeneration , Sphingosine/metabolism , Sphingosine-1-Phosphate Receptors/genetics , Sphingosine-1-Phosphate Receptors/metabolism , Tumor Necrosis Factor-alpha/metabolism , beta-N-Acetylhexosaminidases/metabolism
17.
Cell Physiol Biochem ; 55(5): 539-552, 2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34473432

ABSTRACT

BACKGROUND/AIMS: The pleiotropic lipid mediator sphingosine-1-phosphate (S1P) exerts a multitude of effects on respiratory cell physiology and pathology through five S1P receptors (S1PR1-5). Epidemiological studies proved high levels of circulating S1P in non-small cell lung cancer (NSCLC) patients. Studies in literature suggest that high levels of S1P support carcinogenesis but the exact mechanism is still elusive. The aim of this study was to understand the mechanism/s underlying S1P-mediated lung tumor cell proliferation. METHODS: We used human samples of NSCLC, a mouse model of first-hand smoking and of Benzo(a)pyrene (BaP)-induced tumor-bearing mice and A549 lung adenocarcinoma cells. RESULTS: We found that the expression of S1PR3 was also into the nucleus of lung cells in vitro, data that were confirmed in lung tissues of NSCLC patients, smoking and tumor bearing BaP-exposed mice. The intranuclear, but not the membrane, localization of S1PR3 was associated to S1P-mediated proliferation of lung adenocarcinoma cells. Indeed, the inhibition of the membrane S1PR3 did not alter tumor cell proliferation after Toll Like Receptor (TLR) 9 activation. Instead, according to the nuclear localization of sphingosine kinase (SPHK) II, the inhibition of the kinase completely blocked the endogenous S1P-induced tumor cell proliferation. CONCLUSION: These results prove that the nuclear S1PR3/SPHK II axis is involved in lung tumor cell proliferation, highlighting a novel molecular mechanism which could provide differential therapeutic approaches especially in non-responsive lung cancer patients.


Subject(s)
Adenocarcinoma of Lung/metabolism , Lung Neoplasms/metabolism , Neoplasm Proteins/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Signal Transduction , Sphingosine-1-Phosphate Receptors/metabolism , A549 Cells , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Animals , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Neoplasm Proteins/genetics , Sphingosine-1-Phosphate Receptors/genetics
18.
J Pharmacol Exp Ther ; 379(3): 386-399, 2021 12.
Article in English | MEDLINE | ID: mdl-34535564

ABSTRACT

Ozanimod, a sphingosine 1-phosphate (S1P) receptor modulator that binds with high affinity selectively to S1P receptor subtypes 1 (S1P1) and 5 (S1P5), is approved for the treatment of relapsing multiple sclerosis (MS) in multiple countries. Ozanimod profiling revealed a species difference in its potency for S1P5 in mouse, rat, and canine compared with that for human and monkey. Site-directed mutagenesis identified amino acid alanine at position 120 to be responsible for loss of activity for mouse, rat, and canine S1P5, and mutation back to threonine as in human/monkey S1P5 restored activity. Radioligand binding analysis performed with mouse S1P5 confirmed the potency loss is a consequence of a loss of affinity of ozanimod for mouse S1P5 and was restored with mutation of alanine 120 to threonine. Study of ozanimod in preclinical mouse models of MS can now determine the S1P receptor(s) responsible for observed efficacies with receptor engagement as measured using pharmacokinetic exposures of free drug. Hence, in the experimental autoimmune encephalomyelitis model, ozanimod exposures sufficient to engage S1P1, but not S1P5, resulted in reduced circulating lymphocytes, disease scores, and body weight loss; reduced inflammation, demyelination, and apoptotic cell counts in the spinal cord; and reduced circulating levels of the neuronal degeneration marker, neurofilament light. In the demyelinating cuprizone model, ozanimod prevented axonal degradation and myelin loss during toxin challenge but did not facilitate enhanced remyelination after intoxication. Since free drug levels in this model only engaged S1P1, we concluded that S1P1 activation is neuroprotective but does not appear to affect remyelination. SIGNIFICANCE STATEMENT: Ozanimod, a selective modulator of human sphingisone 1-phosphate receptor subtypes 1 and 5 (S1P1/5), displays reduced potency for rodent and dog S1P5 compared with human, which results from mutation of threonine to alanine at position 120. Ozanimod can thus be used as a selective S1P1 agonist in mouse models of multiple sclerosis to define efficacies driven by S1P1 but not S1P5. Based on readouts for experimental autoimmune encephalomyelitis and cuprizone intoxication, S1P1 modulation is neuroprotective, but S1P5 activity may be required for remyelination.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/metabolism , Indans/metabolism , Multiple Sclerosis/metabolism , Oxadiazoles/metabolism , Sphingosine 1 Phosphate Receptor Modulators/metabolism , Sphingosine-1-Phosphate Receptors/metabolism , Amino Acid Sequence , Animals , CHO Cells , Cricetinae , Cricetulus , Disease Models, Animal , Dogs , Dose-Response Relationship, Drug , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/genetics , Female , Humans , Indans/pharmacology , Indans/therapeutic use , Male , Mice , Mice, Inbred C57BL , Multiple Sclerosis/drug therapy , Multiple Sclerosis/genetics , Oxadiazoles/pharmacology , Oxadiazoles/therapeutic use , Rats , Species Specificity , Sphingosine 1 Phosphate Receptor Modulators/pharmacology , Sphingosine 1 Phosphate Receptor Modulators/therapeutic use , Sphingosine-1-Phosphate Receptors/chemistry , Sphingosine-1-Phosphate Receptors/genetics
19.
Pharmacol Res ; 174: 105965, 2021 12.
Article in English | MEDLINE | ID: mdl-34732370

ABSTRACT

Survival and expansion of malignant B cells in chronic lymphocytic leukemia (CLL) are highly dependent both on intrinsic defects in the apoptotic machinery and on the interactions with cells and soluble factors in the lymphoid microenvironment. The adaptor protein p66Shc is a negative regulator of antigen receptor signaling, chemotaxis and apoptosis whose loss in CLL B cells contributes to their extended survival and poor prognosis. Hence, the identification of compounds that restore p66Shc expression and function in malignant B cells may pave the way to a new therapeutic approach for CLL. Here we show that a novel oxazepine-based compound (OBC-1) restores p66Shc expression in primary human CLL cells by promoting JNK-dependent STAT4 activation without affecting normal B cells. Moreover, we demonstrate that the potent pro-apoptotic activity of OBC-1 in human leukemic cells directly correlates with p66Shc expression levels and is abrogated when p66Shc is genetically deleted. Preclinical testing of OBC-1 and the novel analogue OBC-2 in Eµ-TCL1 tumor-bearing mice resulted in a significantly longer overall survival and a reduction of the tumor burden in the spleen and peritoneum. Interestingly, OBCs promote leukemic cell mobilization from the spleen to the blood, which correlates with upregulation of sphingosine-1-phosphate receptor expression. In summary, our work identifies OBCs as a promising class of compounds that, by boosting p66Shc expression through the activation of the JNK/STAT4 pathway, display dual therapeutic effects for CLL intervention, namely the ability to mobilize cells from secondary lymphoid organs and a potent pro-apoptotic activity against circulating leukemic cells.


Subject(s)
Antineoplastic Agents/therapeutic use , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Oxazepines/therapeutic use , Animals , Antineoplastic Agents/pharmacology , Cell Death/drug effects , Cell Line, Tumor , Female , Humans , JNK Mitogen-Activated Protein Kinases/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Male , Mice, Transgenic , Oxazepines/pharmacology , Proto-Oncogene Proteins c-bcl-2/genetics , STAT4 Transcription Factor/genetics , STAT4 Transcription Factor/metabolism , Sphingosine-1-Phosphate Receptors/genetics , Src Homology 2 Domain-Containing, Transforming Protein 1/genetics , Src Homology 2 Domain-Containing, Transforming Protein 1/metabolism
20.
J Immunol ; 203(7): 1808-1819, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31462506

ABSTRACT

Invariant NKT (iNKT) cells are innate-like T lymphocytes that recognize and respond to glycolipid Ags such as α-galactosylceramide (α-GalCer). This unique property has been exploited in clinical trials for multiple malignancies. While investigating mouse iNKT cell responses to α-GalCer in vivo, we found a dramatically enlarged tissue-resident population surprisingly coexpressing select dendritic cell, NK cell, and B cell markers. Further phenotypic and functional analyses revealed the identity of this B220+CD11c+MHC class II+NK1.1+ population as precursors to mature NK (pre-mNK) cells, which also expressed high levels of proliferation and tissue retention markers but diminished sphingosine-1-phosphate receptor 1, a receptor that facilitates tissue trafficking. Accordingly, FTY720, a sphingosine-1-phosphate receptor 1 antagonist, failed to prevent pre-mNK cells' intrahepatic accumulation. We found iNKT cell-driven expansion of pre-mNK cells to be dependent on IL-12 and IL-18. Although α-GalCer-transactivated pre-mNK cells lost their capacity to process a model tumor Ag, they selectively expressed granzyme A and directly lysed YAC-1 thymoma cells through granule exocytosis. They also contributed to ß2 microglobulin-deficient target cell destruction in vivo. Therefore, α-GalCer treatment skewed pre-mNK cell responses away from an APC-like phenotype and toward killer cell-like functions. Finally, the ability of α-GalCer to reduce the pulmonary metastatic burden of B16-F10 mouse melanoma was partially reversed by in vivo depletion of pre-mNK cells. To our knowledge, our findings shed new light on iNKT cells' mechanism of action and glycolipid-based immunotherapies. Therefore, we introduce pre-mNK cells as a novel downstream effector cell type whose anticancer properties may have been overlooked in previous investigations.


Subject(s)
Antigens, Neoplasm/immunology , Galactosylceramides/immunology , Killer Cells, Natural/immunology , Melanoma, Experimental/immunology , Natural Killer T-Cells/immunology , Thymoma/immunology , Animals , Antigens, Neoplasm/genetics , Cell Line, Tumor , Fingolimod Hydrochloride/pharmacology , Galactosylceramides/genetics , Immunotherapy , Interleukin-12/genetics , Interleukin-12/immunology , Interleukin-18/genetics , Interleukin-18/immunology , Killer Cells, Natural/pathology , Melanoma, Experimental/genetics , Melanoma, Experimental/pathology , Melanoma, Experimental/therapy , Mice , Mice, Knockout , Natural Killer T-Cells/pathology , Neoplasm Metastasis , Sphingosine-1-Phosphate Receptors/antagonists & inhibitors , Sphingosine-1-Phosphate Receptors/genetics , Sphingosine-1-Phosphate Receptors/immunology , Thymoma/genetics , Thymoma/pathology , Thymoma/therapy
SELECTION OF CITATIONS
SEARCH DETAIL