Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
BMC Plant Biol ; 24(1): 512, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849727

ABSTRACT

BACKGROUND: This study investigates a novel idea about the foliar application of nanoparticles as nanofertilizer combined with a natural stimulant, blue-green algae Spirulina platensis L. extract, as a bio-fertilizer to achieve safety from using nanoparticles for enhancement of the growth and production of the plant. Thus, this experiment aimed to chemically synthesize copper nanoparticles via copper sulfate in addition to evaluate the impact of CuNPs at 500, 1000, and 1500 mg/L and the combination of CuNPs with or without microalgae extract at 0.5, 1, and 1.5 g/L on the morphological parameters, photosynthetic pigments accumulation, essential oil production, and antioxidant activity of French basil. RESULTS: The results revealed that foliar application of CuNPs and its interaction with spirulina extract significantly increased growth and yield compared with control, the treatments of 1000 and 1500 mg/L had less impact than 500 mg/L CuNPs. Plants treated with 500 mg/L CuNPs and 1.5 g/L spirulina extract showed the best growth and oil production, as well as the highest accumulation of chlorophylls and carotenoids. The application of CuNPs nanofertilizer caused a significant increase in the antioxidant activity of the French basil plant, but the combination of CuNPs with spirulina extract caused a decrease in antioxidant activity. CONCULOSION: Therefore, foliar application of natural bio-fertilizer with CuNPsis necessary for obtaining the best growth and highest oil production from the French basil plant with the least damage to the plant and the environment.


Subject(s)
Copper , Metal Nanoparticles , Ocimum basilicum , Spirulina , Spirulina/metabolism , Spirulina/drug effects , Spirulina/growth & development , Ocimum basilicum/drug effects , Ocimum basilicum/growth & development , Ocimum basilicum/metabolism , Antioxidants/metabolism , Plant Leaves/drug effects , Plant Leaves/growth & development , Fertilizers , Chlorophyll/metabolism , Photosynthesis/drug effects , Oils, Volatile/pharmacology
2.
Curr Microbiol ; 81(8): 231, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896297

ABSTRACT

Spirulina platensis, a photosynthetic cyanobacterium, has garnered attention for its potential role in environmental remediation due to its ability to absorb and metabolize toxic heavy metals. Understanding its response toward toxicity of one of the most common contaminants, Cr(VI) is crucial for assessing its efficacy in bioremediation efforts. This study aims to investigate the physiological and biochemical responses of Spirulina platensis to varying concentrations of Cr(VI) from 0.5 to 5 ppm, shedding light on its potential as a bioindicator for environmental contamination and its suitability for bioremediation purposes. The impact of Cr(VI) on cell density, biosorption, pigment levels, nutrient content, fluorescence response, and photosynthetic efficiency was examined. The study revealed a gradual reduction in cell density, biomass production, and biosorption efficiency with increasing Cr(VI) concentrations. Pigment levels, carbohydrate, protein, and lipid content showed significant decreases, indicating physiological stress. Fluorescence response and photosynthetic efficiency were also adversely affected, suggesting alterations in electron transfer dynamics. A threshold for chromium toxicity was observed at 0.5 ppm, beyond which significant physiological disturbances occurred. This investigation highlights the sensitivity of Spirulina platensis to Cr(VI) toxicity and its potential as a bioindicator for heavy metal contamination. Metal sorption was highest in 0.5 ppm Cr(VI) with 56.56% removal. Notably, at lower concentrations, Cr(VI) acted as an intermediate electron acceptor, enhancing the electron transport chain and potentially increasing biomass under controlled conditions. The findings underscore the importance of understanding the mechanisms underlying heavy metal stress in microalgae for effective environmental remediation strategies. The research highlights the dual role of chromium(VI) in influencing S. platensis, depending on the concentration, and underscores the importance of understanding metal ion interactions with photosynthetic organisms for potential applications in bioremediation.


Subject(s)
Biodegradation, Environmental , Chromium , Photosynthesis , Spirulina , Chromium/metabolism , Chromium/toxicity , Spirulina/metabolism , Spirulina/growth & development , Spirulina/drug effects , Spirulina/chemistry , Photosynthesis/drug effects , Biomass , Adsorption
3.
Mar Drugs ; 22(9)2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39330262

ABSTRACT

Arthrospira platensis holds promise for biotechnological applications due to its rapid growth and ability to produce valuable bioactive compounds like phycocyanin (PC). This study explores the impact of salinity and brewery wastewater (BWW) on the mixotrophic cultivation of A. platensis. Utilizing BWW as an organic carbon source and seawater (SW) for salt stress, we aim to optimize PC production and biomass composition. Under mixotrophic conditions with 2% BWW and SW, A. platensis showed enhanced biomass productivity, reaching a maximum of 3.70 g L-1 and significant increases in PC concentration. This study also observed changes in biochemical composition, with elevated protein and carbohydrate levels under salt stress that mimics the use of seawater. Mixotrophic cultivation with BWW and SW also influenced the FAME profile, enhancing the content of C16:0 and C18:1 FAMES. The purity (EP of 1.15) and yield (100 mg g-1) of PC were notably higher in mixotrophic cultures, indicating the potential for commercial applications in food, cosmetics, and pharmaceuticals. This research underscores the benefits of integrating the use of saline water with waste valorization in microalgae cultivation, promoting sustainability and economic efficiency in biotechnological processes.


Subject(s)
Biomass , Phycocyanin , Salt Stress , Spirulina , Spirulina/metabolism , Spirulina/growth & development , Spirulina/drug effects , Microalgae/growth & development , Microalgae/metabolism , Microalgae/drug effects , Salinity , Seawater/microbiology , Seawater/chemistry , Wastewater/chemistry
4.
J Biol Inorg Chem ; 26(2-3): 355-365, 2021 05.
Article in English | MEDLINE | ID: mdl-33721096

ABSTRACT

In this study, the chemical and algicidal properties of the newly synthesized compound (2) were evaluated and its algal oxidative effects were determined in Arthrospira platensis and Chlorella vulgaris. First, we have reported on the synthesis and characterization of highly water-soluble copper (II) phthalocyanine (2), containing sodium 2-mercaptoethanesulfonate (2) substituents at the peripheral positions. Some spectroscopic techniques were used to characterize the new synthesized compound (2). In terms of biological properties, C. vulgaris were more tolerance to compound (2) than A. platensis depending to growth parameters. When SOD (Superoxide dismutase) activity significantly increased at 0.25 ppb and 1.5 ppb concentrations in A. platensis cultures, it increased at 6 ppb concentration in C. vulgaris cultures. GR (Glutathione reductase) activity decreased at 1 ppb and 1.5 ppb concentrations while APX (Ascorbate peroxidase) activity did not show a significant change at any concentrations in A. platensis cultures. GR activity showed a significant increase at 6 ppb concentration, while APX activity increased at all concentrations compared to control in C. vulgaris cultures. MDA (malondialdehyde) and H2O2 content decreased at 1 and 1.5 ppb concentrations but there were significant increases in the proline content at all concentrations compared to the control in A. platensis. MDA, H2O2 and free proline contents showed a significant increase at 0.5 ppb concentration in C. vulgaris. In conclusion, compound (2) have algicidal effects, and also it causes to oxidative stress in these organisms.


Subject(s)
Chlorella vulgaris/drug effects , Indoles/chemical synthesis , Indoles/pharmacology , Organometallic Compounds/chemical synthesis , Organometallic Compounds/pharmacology , Spirulina/drug effects , Sulfonic Acids/chemistry , Water/chemistry , Chemistry Techniques, Synthetic , Chlorella vulgaris/metabolism , Indoles/chemistry , Organometallic Compounds/chemistry , Oxidation-Reduction/drug effects , Solubility , Spirulina/metabolism
5.
Int Microbiol ; 24(2): 219-231, 2021 May.
Article in English | MEDLINE | ID: mdl-33438119

ABSTRACT

Alkaline stress is one of the severe abiotic stresses, which is not well studied so far, especially among cyanobacteria. To affirm the characteristics of alkaline stress and the subsequent adaptive responses in Arthrospira platensis NIES-39 and Arthrospira platensis PCC 7345, photosynthetic pigments, spectral properties of thylakoids, PSII and PSI activities, and pigment-protein profiles of thylakoids under different pH regimes were examined. The accessory pigments showed a pH-mediated sensitivity. The pigment-protein complexes of thylakoids are also affected, resulting in the altered fluorescence emission profile. At pH 11, a possible shift of the PBsome antenna complex from PSII to PSI is observed. PSII reaction center is found to be more susceptible to alkaline stress in comparison to the PSI. In Arthrospira platensis NIES-39 at pH 11, a drop of 68% in the oxygen evolution with a significant increase of PSI activity by 114% is recorded within 24 h of pH treatment. Alterations in the cellular ultrastructure of Arthrospira platensis NIES-39 at pH 11 were observed, along with the increased number of plastoglobules attached with the thylakoid membranes. Arthrospira platensis NIES-39 is more adaptable to pH variation than Arthrospira platensis PCC 7345.


Subject(s)
Alkalies/pharmacology , Photosynthesis/drug effects , Spirulina/metabolism , Hydrogen-Ion Concentration , Spirulina/drug effects , Thylakoids/metabolism
6.
Photosynth Res ; 141(2): 229-243, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30725234

ABSTRACT

Photosystem I (PSI) generates the most negative redox potential found in nature, and the performance of solar energy conversion into alternative energy sources in artificial systems highly depends on the thermal stability of PSI. Thus, understanding thermal denaturation is an important prerequisite for the use of PSI at elevated temperatures. To assess the thermal stability of surfactant-solubilized PSI from cyanobacteria Arthrospira Platensis, the synergistic denaturation effect of heat and surfactant was studied. At room temperature, surfactant n-dodecyl-ß-D-maltoside solubilized PSI trimer gradually disassembles into PSI monomers and free pigments over long time. In the solubilizing process of PSI particles, surfactant can uncouple pigments of PSI, and the high concentration of surfactant causes the pigment to uncouple more; after the surfactant-solubilizing process, the uncoupling is relatively slow. During the heating process, changes were monitored by transmittance T800nm, ellipticity θ686nm and θ222nm, upon slow heating (1.5 °C per minute) of samples in Tris buffer (20 mM, pH 7.8) from 20 to 95 °C. The thermal denaturation of surfactant-solubilized PSI is a much more complicated process, which includes the uncoupling of pigments by surfactants, the disappearance of surrounding surfactants, and the unfolding of PSI α-helices. During the heating process, the uncoupling chlorophyll a (Chla) and converted pheophytin (Pheo) can form excitons of Chla-Pheo. The secondary structure α-helix of PSI proteins is stable up to 87-92 °C in the low-concentration surfactant solubilized PSI, and high-concentration surfactant and pigments uncoupling can accelerate the α-helical unfolding.


Subject(s)
Photosystem I Protein Complex/drug effects , Spirulina/metabolism , Surface-Active Agents/pharmacology , Hot Temperature , Pheophytins/metabolism , Photosystem I Protein Complex/metabolism , Protein Stability , Spirulina/drug effects
7.
Plant Cell Physiol ; 58(4): 822-830, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28158667

ABSTRACT

The development of a reliable genetic transformation system for Arthrospira platensis has been a long-term goal, mainly for those trying either to improve its performance in large-scale cultivation systems or to enhance its value as food and feed additives. However, so far, most of the attempts to develop such a transformation system have had limited success. In this study, an efficient and stable transformation system for A. platensis C1 was successfully developed. Based on electroporation and transposon techniques, exogenous DNA could be transferred to and stably maintained in the A. platensis C1 genome. Most strains of Arthrospira possess strong restriction barriers, hampering the development of a gene transfer system for this group of cyanobacteria. By using a type I restriction inhibitor and liposomes to protect the DNA from nuclease digestion, the transformation efficiency was significantly improved. The transformants were able to grow on a selective medium for more than eight passages, and the transformed DNA could be detected from the stable transformants. We propose that the intrinsic endonuclease enzymes, particularly the type I restriction enzyme, in A. platensis C1 play an important role in the transformation efficiency of this industrial important cyanobacterium.


Subject(s)
Enzymes/metabolism , Spirulina/enzymology , Spirulina/genetics , Transformation, Genetic , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Culture Media/chemistry , Culture Media/pharmacology , DNA Transposable Elements , Drug Resistance, Bacterial/genetics , Enzymes/genetics , Genome, Bacterial , Plasmids , Polymerase Chain Reaction , Promoter Regions, Genetic , Reproducibility of Results , Spectinomycin/pharmacology , Spirulina/drug effects , Transposases/genetics
8.
Neurochem Res ; 42(12): 3390-3400, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28861668

ABSTRACT

Spirulina platensis (SPI) is a cyanobacterium, presenting anti-inflammatory and antioxidant actions. Considering the importance of inflammation and oxidative stress in Parkinson's disease (PD), SPI neuroprotective effects were evaluated in a model of PD. Male Wistar rats were divided into: sham-operated (SO), untreated 6-OHDA and 6-OHDA treated with SPI (25 and 50 mg/kg, p.o.). The 6-OHDA was injected into the right striata and SPI treatments started 24 h later for 2 weeks. The SO and untreated 6-OHDA-lesioned groups were administered with distilled water, for the same period. Afterwards, the animals were subjected to the apomorphine-induced rotational test and euthanized for striatal measurements of DA and DOPAC, nitrite and TBARS and immunohistochemistry assays for TH, DAT, iNOS and COX-2. SPI reduced the apomorphine-induced rotational behavior, DA and DOPAC depletions and nitrite and TBARS increases, at its high dose. Furthermore, TH and DAT immunoreactivities in the lesioned striatum of the untreated 6-OHDA-lesioned group were attenuated by SPI. Similarly, immunoreactivities for iNOS and COX-2 were also decreased after SPI treatments. In conclusion, we showed that behavioral and neurochemical alterations in hemiparkinsonian rats were partly reversed by SPI, characterizing the neuroprotective potential of Spirulina and stimulating translational studies focusing on its use as an alternative treatment for PD.


Subject(s)
Inflammation/drug therapy , Neuroprotective Agents/pharmacology , Oxidopamine/pharmacology , Parkinson Disease/drug therapy , Animals , Corpus Striatum/drug effects , Disease Models, Animal , Male , Neuroprotection/drug effects , Rats, Wistar , Spirulina/drug effects
9.
Biotechnol Lett ; 38(7): 1089-96, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27025930

ABSTRACT

OBJECTIVE: To evaluate the quantity of Spirulina cultured in seawater, salt-tolerant strains were screened out and their growth and antioxidant accumulation were studied in different salt concentrations RESULTS: Salt tolerance of five Spirulina strains were investigated with modified Zarrouk medium (with 200-800 mM NaCl). All strains grew well with 400 mM NaCl; their growth rates were almost same as in the control medium. Spirulina strains FACHB-843 (SP843) and FACHB-972 (SP972) had the highest salt tolerance their growth rates in 600 mM NaCl were nearly same as the control. Both strains produced more carotene, phycocyanin, polysaccharides, proline and betaine in 400-600 mM NaCl than the control. Salt stress also induced them to produce higher activities of superoxide dismutase and peroxidase. Total antioxidant capacities of SP843 and SP972 peaked at 600 and 400 mM NaCl, respectively. CONCLUSION: Spirulina strains cultured with seawater accumulate more bioactive substances and will have a higher nutritive value.


Subject(s)
Antioxidants/metabolism , Spirulina/metabolism , Betaine/metabolism , Peroxidase/metabolism , Phycocyanin/metabolism , Proline/metabolism , Sodium Chloride/pharmacology , Spirulina/drug effects , Superoxide Dismutase/metabolism
10.
Biotechnol Lett ; 38(9): 1493-502, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27271522

ABSTRACT

OBJECTIVE: To test the toxicity of ketoprofen (a commonly-used NSAIDs) using two microalgal strains and Artemia sp. following the isolation of bacterial and microalgal strains and testing their ability to biodegrade and tolerate ketoprofen. RESULTS: Chlorella sp. was the most resistant to ketoprofen. A defined bacterial consortium (K2) degraded 5 mM ketoprofen as a sole carbon source both in the dark or continuous illumination. Ketoprofen did not undergo photodegradation. In the dark, biodegradation was faster with a lag phase of 10 h, 41% COD removal and 82 % reduction in toxicity. The consortium degraded up to 16 mM ketoprofen. The consortium was composed of four bacterial isolates that were identified. MS/MS analysis suggested a ketoprofen biodegradation pathway that has not been previously reported. Combining Chlorella sp. and the K2 consortium, ketoprofen was degraded within 7 days under a diurnal cycle of 12 h light/12 h dark. CONCLUSION: The feasibility of using a microalgal-bacterial system to treat pharmaceutical wastewater is promising for the reduction of the process cost and providing a safer technology for pharmaceutical wastewater treatment.


Subject(s)
Bacteria/metabolism , Ketoprofen/pharmacology , Microalgae/metabolism , Bacteria/drug effects , Microalgae/drug effects , Photochemistry , Spirulina/drug effects , Spirulina/metabolism , Waste Disposal, Fluid
11.
Water Sci Technol ; 74(4): 914-26, 2016.
Article in English | MEDLINE | ID: mdl-27533866

ABSTRACT

Chemical modification of Spirulina platensis biomass was realized by sequential treatment of algal surface with epichlorohydrin and aminopyridine. Adsorptive properties of Cr(VI) ions on native and aminopyridine modified algal biomass were investigated by varying pH, contact time, ionic strength, initial Cr(VI) concentration, and temperature. FTIR and analytical analysis indicated that carboxyl and amino groups were the major functional groups for Cr(VI) ions adsorption. The optimum adsorption was observed at pH 3.0 for native and modified algal biomasses. The adsorption capacity was found to be 79.6 and 158.7 mg g(-1), for native and modified algal biomasses, respectively. For continuous system studies, the experiments were conducted to study the effect of important design parameters such as flow rate and initial concentration of metal ions, and the maximum sorption capacity was observed at a flow rate of 50 mL h(-1), and Cr(VI) ions concentration 200 mg L(-1) with modified biomass. Experimental data fitted a pseudo-second-order equation. The regeneration performance was observed to be 89.6% and 94.3% for native and modified algal biomass, respectively.


Subject(s)
Aminopyridines/pharmacology , Biomass , Chromium/metabolism , Spirulina/drug effects , Water/chemistry , Adsorption , Chromium/chemistry , Hydrogen-Ion Concentration , Ions , Osmolar Concentration , Spirulina/chemistry , Temperature , Water Purification
12.
New Phytol ; 205(1): 160-71, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25229999

ABSTRACT

As it represents the target of the successful herbicide glyphosate, great attention has been paid to the shikimate pathway enzyme 5-enol-pyruvyl-shikimate-3-phosphate (EPSP) synthase. However, inconsistent results have been reported concerning the sensitivity of the enzyme from cyanobacteria, and consequent inhibitory effects on cyanobacterial growth. The properties of EPSP synthase were investigated in a set of 42 strains representative of the large morphological diversity of these prokaryotes. Publicly available protein sequences were analyzed, and related to enzymatic features. In most cases, the native protein showed an unusual homodimeric composition and a general sensitivity to micromolar doses of glyphosate. By contrast, eight out of 15 Nostocales strains were found to possess a monomeric EPSP synthase, whose activity was inhibited only at concentrations exceeding 1 mM. Sequence analysis showed that these two forms are only distantly related, the latter clustering separately in a clade composed of diverse bacterial phyla. The results are consistent with the occurrence of a horizontal gene transfer event involving an evolutionarily distant organism. Moreover, data suggest that the existence of class I (glyphosate-sensitive) and class II (glyphosate-tolerant) EPSP synthases representing two distinct phylogenetic clades is an oversimplification because of the limited number of analyzed samples.


Subject(s)
3-Phosphoshikimate 1-Carboxyvinyltransferase/genetics , Cyanobacteria/enzymology , Cyanobacteria/genetics , Gene Transfer, Horizontal , Genetic Variation , Phylogeny , 3-Phosphoshikimate 1-Carboxyvinyltransferase/chemistry , Cyanobacteria/drug effects , Evolution, Molecular , Gene Transfer, Horizontal/drug effects , Glycine/analogs & derivatives , Glycine/toxicity , Likelihood Functions , Molecular Weight , Protein Multimerization/drug effects , Protein Structure, Quaternary , Spirulina/drug effects , Spirulina/enzymology , Glyphosate
13.
Biotechnol Appl Biochem ; 62(2): 275-86, 2015.
Article in English | MEDLINE | ID: mdl-25425155

ABSTRACT

The effect of various concentrations of ammonium nitrate (5-60 mM), an economical nitrogen source, on the growth, nitrate-ammonium uptake rates, production of some pigments and metabolites, and some nitrogen assimilation enzymes such as nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), and glutamate synthase (GOGAT) in Spirulina platensis (Gamont) Geitler was investigated. Ten millimolars of ammonium nitrate stimulated the growth, production of pigments and the other metabolites, and enzyme activities, whereas 30 and 60 mM ammonium nitrate caused inhibition. In the presence of 10 mM ammonium nitrate, different concentrations of iron were tried in the growth media of S. platensis. After achieving the best growth, levels of metabolite and pigment production, and enzyme activities in the presence of 10 mM ammonium nitrate as a nitrogen source, different iron concentrations (10-100 µM) were tried in the growth medium of S. platensis. The highest growth, pigment and metabolite levels, and enzyme activities were determined in the medium containing 50 µM iron and 10 mM ammonium nitrate. In this optimum condition, the highest dry biomass level, chlorophyll a, and pyruvate contents were obtained as 55.42 ± 3.8 mg mL(-1) , 93.114 ± 7.9 µg g(-1) , and 212.5 ± 18.7 µg g(-1) , respectively. The highest NR, NiR, GS, and GOGAT activities were 67.16 ± 5.1, 777.92 ± 52, 0.141 ± 0.01, and 44.45 ± 3.6, respectively. Additionally, 10 mM ammonium nitrate is an economical and efficient nitrogen source for nitrogen assimilation of S. platensis, and 50 µM iron is optimum for the growth of S. platensis.


Subject(s)
Glutamate Synthase/metabolism , Glutamate-Ammonia Ligase/metabolism , Iron/administration & dosage , Nitrates/administration & dosage , Nitroreductases/metabolism , Spirulina/enzymology , Dose-Response Relationship, Drug , Nitrogen , Spirulina/drug effects
14.
Int J Mol Sci ; 16(2): 4250-64, 2015 Feb 16.
Article in English | MEDLINE | ID: mdl-25690037

ABSTRACT

In this study, zeolite was employed for the separation and recovery of P from synthetic wastewater and its use as phosphorus (P) source for the cultivation of the green microalga Chlorella vulgaris and the cyanobacterium Arthrospira (Spirulina) platensis. At P-loaded zeolite concentration of 0.15-1 g/L, in which P was limited, the two species displayed quite different behavior regarding their growth and biomass composition. C. vulgaris preferred to increase the intracellular P and did not synthesize biomass, while A. platensis synthesized biomass keeping the intracellular P as low as possible. In addition under P limitation, C. vulgaris did display some little alteration of the biomass composition, while A. platensis did it significantly, accumulating carbohydrates around 70% from about 15%-20% (control). Both species could desorb P from zeolite biologically. A. platensis could recover over 65% and C. vulgaris 25% of the P bounded onto zeolite. When P-loaded zeolite concentration increased to 5 g/L, P was adequate to support growth for both species. Especially in the case of C. vulgaris, growth was stimulated from the presence of P-loaded zeolite and produced more biomass compared to the control.


Subject(s)
Chlorella vulgaris/growth & development , Phosphorus/isolation & purification , Spirulina/growth & development , Wastewater/chemistry , Zeolites/chemistry , Adsorption , Biomass , Chlorella vulgaris/drug effects , Kinetics , Phosphorus/pharmacology , Spirulina/drug effects
15.
ScientificWorldJournal ; 2014: 961437, 2014.
Article in English | MEDLINE | ID: mdl-25610914

ABSTRACT

The influence of titanium dioxide nanoparticles (pure anatase and 15% N doped anatase) on the growth of Chlorella vulgaris, Haematococcus pluvialis, and Arthrospira platensis was investigated. Results showed that pure anatase can lead to a significant growth inhibition of C. vulgaris and A. platensis (17.0 and 74.1%, resp.), while for H. pluvialis the nanoparticles do not cause a significant inhibition. Since in these stress conditions photosynthetic microorganisms can produce antioxidant compounds in order to prevent cell damages, we evaluated the polyphenols content either inside the cells or released in the medium. Although results did not show a significant difference in C. vulgaris, the phenolic concentrations of two other microorganisms were statistically affected by the presence of titanium dioxide. In particular, 15% N doped anatase resulted in a higher production of extracellular antioxidant compounds, reaching the concentration of 65.2 and 68.0 mg gDB (-1) for H. pluvialis and A. platensis, respectively.


Subject(s)
Cell Proliferation , Chlorophyta/drug effects , Nanoparticles/chemistry , Polyphenols/metabolism , Titanium/pharmacology , Chlorophyta/metabolism , Chlorophyta/physiology , Photosynthesis , Spirulina/drug effects , Spirulina/metabolism , Spirulina/physiology
16.
J Hazard Mater ; 470: 134244, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38598879

ABSTRACT

Spirulina platensis can secrete extracellular polymeric substances (EPS) helping to protect damage from stress environment, such as cadmium (Cd2+) exposure. However, the responding mechanism of S. platensis and the secreted EPS to exposure of Cd2+ is still unclear. This research focuses on the effects of Cd2+ on the composition and structure of the EPS and the response mechanism of EPS secretion from S. platensis for Cd2+ exposure. S. platensis can produce 261.37 mg·g-1 EPS when exposing to 20 mg·L-1 CdCl2, which was 2.5 times higher than the control group. The S. platensis EPS with and without Cd2+ treatment presented similar and stable irregularly fibrous structure. The monosaccharides composition of EPS in Cd2+ treated group are similar with control group but with different monosaccharides molar ratios, especially for Rha, Gal, Glc and Glc-UA. And the Cd2+ treatment resulted in a remarkable decline of humic acid and fulvic acid content. The antioxidant ability of S. platensis EPS increased significantly when exposed to 20 mg·L-1 CdCl2, which could be helpful for S. platensis protecting damage from high concentration of Cd2+. The transcriptome analysis showed that sulfur related metabolic pathways were up-regulated significantly, which promoted the synthesis of sulfur-containing amino acids and the secretion of large amounts of EPS.


Subject(s)
Cadmium , Spirulina , Spirulina/drug effects , Spirulina/metabolism , Cadmium/toxicity , Humic Substances , Extracellular Polymeric Substance Matrix/metabolism , Extracellular Polymeric Substance Matrix/drug effects , Benzopyrans/pharmacology , Antioxidants/metabolism , Monosaccharides
17.
J Hazard Mater ; 474: 134644, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38838520

ABSTRACT

Nanoplastics, as emerging pollutants, have harmful effects on living organisms and the environment, the mechanisms and extent of which remain unclear. Microalgae, as one of the most important biological groups in the food chain and sensitive environmental indicators to various pollutants, are considered a suitable option for investigating the effects of nanoplastics. In this study, the effects of polystyrene nanoplastics on the growth rate, dry weight, chlorophyll a and carotenoid levels, proline, and lipid peroxidation in the Spirulina platensis were examined. Three concentrations of 0.1, 1, and 10 mg L-1 of PSNPs were used alongside a control sample with zero concentration, with four repetitions in one-liter containers for 20 days under optimal temperature and light conditions. Various analyses, including growth rate, dry weight, proline, chlorophyll a and carotenoid levels, and lipid peroxidation, were performed. The results indicated that exposure to PSNP stress led to a significant decrease in growth rate, dry weight, and chlorophyll a and carotenoid levels compared to the control sample. Furthermore, this stress increased the levels of proline and lipid peroxidation in Spirulina platensis. Morphological analysis via microscopy supported these findings, indicating considerable environmental risks associated with PSNPs.


Subject(s)
Carotenoids , Chlorophyll , Lipid Peroxidation , Microalgae , Polystyrenes , Proline , Spirulina , Spirulina/drug effects , Spirulina/growth & development , Spirulina/metabolism , Polystyrenes/toxicity , Carotenoids/metabolism , Lipid Peroxidation/drug effects , Proline/metabolism , Chlorophyll/metabolism , Microalgae/drug effects , Microalgae/growth & development , Chlorophyll A/metabolism , Nanoparticles/toxicity
18.
Ecotoxicology ; 22(1): 199-205, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23138333

ABSTRACT

Microbial mats are coastal ecosystems that consist mainly of cyanobacteria, primary producers in these habitats that play an important role in stabilising delta sediments. However, these ecosystems are subject to various kinds of pollution, including metal contamination, placing their survival at risk. Among heavy metals, copper is an essential metal at low doses and toxic at high doses. This metal is present in different pesticides used in rice production, a thriving agro-industry in the Ebro Delta (Spain). For several years, our group has been studying the Ebro Delta microbial mats and has developed a method for determining the effect that metals cause on cyanobacteria populations. This method is based on confocal laser microscopy coupled to a spectrofluorometer, which rapidly provides simultaneous three-dimensional information on photosynthetic microorganisms and their fluorescence spectra profiles. The current study determines the copper effect on different photosynthetic microorganisms from culture collection (Chroococcus sp. PCC 9106 and Spirulina sp. PCC 6313) and isolated from the environment (Microcoleus-like and the microalga DE2009). Comparing all results obtained it can be observed that the minimum dose of Cu that is capable of significantly altering chlorophyll a (chl a) fluorescence intensity were 1 × 10(-7) M in Chroococcus sp. PCC 9106; 1 × 10(-7) M in Spirulina sp. PCC 6313; 3 × 10(-7) M in Microcoleus and 5 × 10(-6) M in the microalga DE2009. Moreover, the sensitivity of the technique used was 1 × 10(-7) M.


Subject(s)
Copper Sulfate/toxicity , Cyanobacteria/drug effects , Microalgae/drug effects , Microscopy, Confocal/methods , Chlorophyll/chemistry , Chlorophyll A , Copper Sulfate/administration & dosage , Cyanobacteria/metabolism , Dose-Response Relationship, Drug , Ecosystem , Geologic Sediments/microbiology , Microalgae/metabolism , Photosynthesis , Spain , Spectrometry, Fluorescence , Spirulina/drug effects , Spirulina/metabolism
19.
World J Microbiol Biotechnol ; 28(8): 2661-70, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22806192

ABSTRACT

This paper presents the effects of various phosphorus concentrations (10, 50, 250 and 500 mg l(-1) K(2)HPO(4)) on the biomass production and composition of Arthrospira (Spirulina) platensis in relation to light intensity (24, 42 and 60 µE m(-2) s(-1)). The maximum biomass production was 3,592 ± 392 mg l(-1) and this was observed in 250 mg l(-1) K(2)HPO(4) at 60 µE m(-2) s(-1) light intensity after 32 days of cultivation. A maximum specific growth rate (µ(max)) of 0.55 d(-1) was obtained in 500 mg l(-1) K(2)HPO(4) at 60 µE m(-2) s(-1). The protein, lipid and chlorophyll contents of the biomass varied from 33.59 to 60.57 %, 5.34 to 13.33 % and 0.78 to 2.00 %, respectively. The most significant finding was that phosphorus limitation (10 mg l(-1) K(2)HPO(4)) caused a drastic increase of the carbohydrate content (59.64 %). The effect of phosphorus limitation on the carbohydrate content was independent of the light intensity. The accumulated carbohydrates are proposed to be used as substrate for biofuel generation via one of the appropriate biomass energy conversion technologies. Also, it was observed that phosphorus removal is a function of biomass density, phosphorus concentration and light intensity.


Subject(s)
Phosphorus/pharmacology , Spirulina/drug effects , Spirulina/growth & development , Bacterial Proteins/metabolism , Biofuels , Biomass , Carbohydrate Metabolism , Chlorophyll/metabolism , Light , Lipid Metabolism , Phosphorus/metabolism , Spirulina/metabolism , Spirulina/radiation effects
20.
Curr Microbiol ; 62(4): 1253-9, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21188588

ABSTRACT

The experimental enhancement of UV-B radiation resulted in damage to chlorophyll-a in Spirulina platensis 794, and the degree of this damage was modified by chemical treatments. The addition of 0.5 mM sodium nitroprusside (SNP), a donor of nitric oxide (NO), to cultures of Spirulina platensis 794 could markedly alleviate the damage to chlorophyll-a caused by enhanced ultraviolet-B radiation. Exposure of N(2)-fixing cyanobacterium Spirulina platensis 794 to enhanced ultraviolet-B radiation resulted in an intensity-dependent inhibition of nitrogenase activity. In cultured cells that were treated with 0.5 mM SNP and enhanced UV-B for 6 h, nitrogenase activity increased by 47.3% compared with UV-B treated control cells. SNP apparently counteracted the decrease in nitrogenase activity caused by UV-B stress. NAC (a free radical scavenger) significantly increased nitrogenase activity, but PTIO (a nitric oxide scavenger) decreased nitrogenase activity in UV-B treated S. platensis 794. Thus, the free radical scavenger NAC and NO may counteract the effects of enhanced UV-B radiation. The activity of UV-B-inhibited nitrogenase did not recover upon transfer of exposed cells to fluorescent light, suggesting that the inhibition may be due to specific inactivation of the enzyme. By experimentally manipulating the inhibitors of photosystem-II activity, it was demonstrated that nitrogenase activity in cyanobacterium S. platensis 794 is limited by the amount of reductant and ATP. This result further confirmed that nitrogenase activity requires a continued and abundant supply of suitable reductant and ATP for conversion of N(2) to NH(3). The effects of UV-B treatment on nitratase activity were also examined, and enhanced UV-B radiation increased nitratase activity. In addition, enhanced UV-B in combination with SNP and NAC resulted in significant increases in the activity of nitratase.


Subject(s)
Bacterial Proteins/antagonists & inhibitors , Down-Regulation/drug effects , Nitric Oxide/pharmacology , Nitrogenase/antagonists & inhibitors , Spirulina/drug effects , Spirulina/radiation effects , Bacterial Proteins/metabolism , Chlorophyll/metabolism , Nitrogenase/metabolism , Nitroprusside/pharmacology , Spirulina/enzymology , Spirulina/metabolism , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL