Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 186
Filter
Add more filters

Coleção CLAP
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(24): e2319179121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38833467

ABSTRACT

To test the hypothesis that early-life adversity accelerates the pace of biological aging, we analyzed data from the Dutch Hunger Winter Families Study (DHWFS, N = 951). DHWFS is a natural-experiment birth-cohort study of survivors of in-utero exposure to famine conditions caused by the German occupation of the Western Netherlands in Winter 1944 to 1945, matched controls, and their siblings. We conducted DNA methylation analysis of blood samples collected when the survivors were aged 58 to quantify biological aging using the DunedinPACE, GrimAge, and PhenoAge epigenetic clocks. Famine survivors had faster DunedinPACE, as compared with controls. This effect was strongest among women. Results were similar for GrimAge, although effect-sizes were smaller. We observed no differences in PhenoAge between survivors and controls. Famine effects were not accounted for by blood-cell composition and were similar for individuals exposed early and later in gestation. Findings suggest in-utero undernutrition may accelerate biological aging in later life.


Subject(s)
Aging , DNA Methylation , Famine , Prenatal Exposure Delayed Effects , Humans , Female , Prenatal Exposure Delayed Effects/epidemiology , Pregnancy , Middle Aged , Netherlands/epidemiology , Male , Epigenesis, Genetic , Starvation
2.
J Biol Chem ; 300(3): 105663, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38246353

ABSTRACT

The maternal nutritional environment can impact progeny development, stress tolerance, and longevity. Such phenotypic variation of offspring resulting from the maternal environment is often referred to as the 'maternal effect' and is observed across taxa, including in humans. While some mechanisms behind maternal effects have been revealed, such as histone modification, many studies rely on drastic genetic or nutritional manipulation in describing these mechanisms. Here we aimed to reveal how the maternal environment is regulated under physiological conditions to affect the progeny. Specifically, we detailed metabolic regulation in oocytes in response to mating using Drosophila melanogaster fruit flies. Using liquid chromatography-mass spectrometry, we found that upon mating, the ovary metabolites shifted, predominantly toward increasing amino acids and the tryptophan/kynurenine (Kyn) pathway. This mating-induced increase in ovary Kyn was driven by increased Kyn production in the fat body, a functional counterpart of the mammalian liver and white adipose tissue and the source of Kyn storage for the ovary after mating. Furthermore, we show that maternal Kyn repression decreased the starvation resistance of progeny and that administering exogenous Kyn to the maternal generation enhanced the starvation resistance of female progeny. Taken together, these findings point to a previously unidentified role of fat body Kyn distribution during reproduction on progeny survival.


Subject(s)
Kynurenine , Starvation , Animals , Female , Drosophila melanogaster/metabolism , Kynurenine/metabolism , Ovary/metabolism , Reproduction , Male , Signal Transduction , Oocytes/metabolism , Biological Transport
4.
Neuroendocrinology ; 114(5): 453-467, 2024.
Article in English | MEDLINE | ID: mdl-38142675

ABSTRACT

INTRODUCTION: Neuropeptides regulate vital physiological processes in multicellular organisms, including growth, reproduction, metamorphosis, and feeding. Recent transcriptome analyses have revealed neuropeptide genes with potential roles in vertebrate and invertebrate growth and reproduction. Among these genes, haliotid growth-associated peptide (HGAP) was identified as a novel gene in abalone. METHODS: This study focused on HGAP in Pacific abalone (Haliotis discus hannai), where the complete cDNA sequence named Hdh-HGAP was identified and characterized. Samples from different experiments, such as metamorphosis, juvenile abalone growth, gonad development stages, muscle remodeling, and starvation, were collected for mRNA expression analysis. RESULTS: The sequence spans 552 bp, encoding 96 amino acids with a molecular weight of 10.96 kDa. Expression analysis revealed that Hdh-HGAP exhibited higher levels in muscle tissue. Notably, during metamorphosis, Hdh-HGAP exhibited greater expression in the trochophore, veliger, and juvenile stages than in the cell division stages. Regarding growth patterns, Hdh-HGAP was highly expressed during rapid growth compared to stunted, minimal, and normal growth. In gonadal development, Hdh-HGAP mRNA reached its highest expression level during the ripening stage, indicating a potential role in gonadal cell proliferation and maturation. The in vivo effects of GnRH on gonad development and the expression of the Hdh-HGAP neuropeptide indicate its involvement in regulating reproduction in Pacific abalone. While tissue remodeling is primarily governed by immune genes, Hdh-HGAP was also upregulated during muscle tissue remodeling. Conversely, Hdh-HGAP was downregulated during prolonged starvation. CONCLUSION: This study marks the first comprehensive exploration of the Hdh-HGAP neuropeptide gene in Pacific abalone, shedding light on its involvement in growth, reproduction, metamorphosis, tissue remodeling, and response to starvation, although regulatory mechanisms are mostly unknown.


Subject(s)
Gastropoda , Metamorphosis, Biological , Neuropeptides , Reproduction , Animals , Gastropoda/growth & development , Gastropoda/genetics , Gastropoda/metabolism , Metamorphosis, Biological/physiology , Reproduction/physiology , Neuropeptides/metabolism , Neuropeptides/genetics , Starvation/metabolism , Gene Expression Regulation, Developmental
5.
Mol Biol Rep ; 51(1): 843, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39042338

ABSTRACT

BACKGROUND: Energy homeostasis is vital for insects to survive food shortages. This study investigated the starvation tolerance of Spodoptera frugiperda, which invaded China in 2019, focusing on its storage protein family, crucial for energy balance. 10 storage protein family members were identified and their expression patterns at different development stages and under different starvation stress were analyzed. METHODS AND RESULTS: We used qPCR to evaluate the expression levels of storage protein family members under various larval instars and starvation conditions. We discovered that, among above 10 members, only 2 storage proteins, SfSP8 and SfSP7 showed significant upregulation in response to starvation stress. Notably, SfSP8 upregulated markedly after 24 h of fasting, whereas SfSP7 exhibited a delayed response, with significant upregulation observed only after 72 h of starvation. Then we significantly reduced the starvation tolerance of larvae through RNAi-mediated knockdown of SfSP8 and also altered the starvation response of SfSP7 from a late to an early activation pattern. Finally, we constructed transgenic Drosophila melanogaster with heterologous overexpressing SfSP8 revealed that the starvation tolerance of the transgenic line was significantly stronger than that of wild-type lines. CONCLUSIONS: SfSP8 was the core storage protein member that mediated the starvation tolerance of larvae of S. frugiperda. Our study on the novel function of storage proteins in mediating larval starvation tolerance of S. frugiperda is conducive to understanding the strong colonization of this terrible invasive pest.


Subject(s)
Insect Proteins , Larva , Spodoptera , Starvation , Animals , Spodoptera/genetics , Larva/genetics , Larva/metabolism , Starvation/genetics , Insect Proteins/genetics , Insect Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Animals, Genetically Modified , Stress, Physiological/genetics
6.
Health Econ ; 33(1): 121-136, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37823589

ABSTRACT

The Great Chinese Famine (1959-1961) claimed tens of millions of lives. This study aims to causally examine the long-term mental health cost it imposed on those who survived. To estimate the nationwide total mental health cost, we use a novel dataset to measure the famine intensity of every prefecture-level region, match it to a nationally representative survey, and then identify the long-term effects of the famine on the depression of rural residents then in the early years of their lives. Difference-in-differences estimates reveal that a one-standard-deviation rise in the experienced famine intensity increased a standard measure of depression by about 0.039 and 0.064 if the individual experienced the famine at ages 0-2 and 3-5, respectively. This translates into roughly 7.99 million cases of severe depressive symptoms caused by the famine, which is likely an undercount. Examining the mechanisms behind the large effects, we find that important roles were played by starvation experience and childhood maltreatment, as well as the primary mediators including other health outcomes, economic status, and social relationship. Our findings shed light on how large-scale food security failures impact the mental well-being of the survivors.


Subject(s)
Famine , Starvation , Humans , Mental Health , Starvation/epidemiology , Surveys and Questionnaires , China/epidemiology
7.
Pestic Biochem Physiol ; 201: 105902, 2024 May.
Article in English | MEDLINE | ID: mdl-38685224

ABSTRACT

CRF-like diuretic hormone receptor (CRF/DHR), also known as DH44R in insects, are G-protein coupled receptors (GPCRs) that play a role in regulating osmotic balance in various insect species. These receptors have the potential to be targeted for the development of insecticides. However, our understanding of the role of DHR genes in aphids, including Rhopalosiphum padi, a major wheat pest, is currently limited. In this study, we isolated and characterized two R. padi DHRs (RpDHR1 and RpDHR2). The expression levels of RpDHR1 increased after starvation and were restored after re-feeding. The expression levels of RpDHR1 gene decreased significantly 24 h after injection of dsRNA targeting the gene. Knockdown of RpDHR1 increased aphid mortality under starvation conditions (24, 36, 48 and 60 h). Under starvation and desiccation condition, the aphid mortality decreased after knockdown of RpDHR1. This is the first study to report the role of DHR genes in the starvation and desiccation response of aphids. The results suggest that RpDHR1 is involved in the resistance of R. padi to starvation and dehydration, making it a potential target for insecticide development. Novel insecticides could be created by utilizing DHR agonists to disrupt the physiological processes of insect pests.


Subject(s)
Aphids , Insect Proteins , Animals , Aphids/genetics , Aphids/physiology , Insect Proteins/genetics , Insect Proteins/metabolism , Starvation/genetics , Desiccation , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Phylogeny
8.
Disasters ; 48(3): e12621, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38441338

ABSTRACT

The risk of famine is rising in many countries today. Bold changes to famine information and response systems are urgently needed to improve capacities to prevent famine. To this end, the paper identifies six insights from social-ecological systems (SES) thinking for understanding and preventing famine. It argues that a state of famine emerges from human-environment interdependencies, complex causality, and non-linear system dynamics, shaped by history and context. The likelihood of famine can be reduced by strengthening resilience to the diverse stresses and shocks that drive destitution, food insecurity, undernutrition, morbidity, and mortality. SES thinking offers new opportunities to understand the dynamics of famine, diagnose lesser-known drivers, pinpoint new metrics, ascertain leverage points for intervention, and develop conceptual frameworks to inform policy. SES concepts and methods could also support the development of practical analytical tools to guide decisionmakers on how, where, and when to intervene most effectively and efficiently to strengthen resilience to the drivers of famine.


Subject(s)
Famine , Humans , Social Environment , Starvation
9.
Int J Mol Sci ; 25(2)2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38255774

ABSTRACT

Variability in food availability leads to condition-dependent investments in reproduction. This study is aimed at understanding the metabolic response and regulatory mechanism of female Scylla paramamosain in response to starvation in a temporal- and tissue-specific manner. The mud crabs were starved for 7 (control), 14, 28, and 40 days for histological and biochemical analysis in the hepatopancreas, ovary, and serum, as well as for RNA sequencing on the hepatopancreas and ovary. We further highlighted candidate gene modules highly linked to physiological traits. Collectively, our observations suggested that starvation triggered endogenous ovarian maturation at the expense of hepatopancreas mass, with both metabolic adjustments to optimize energy and fatty acid supply from hepatopancreas to ovary in the early phase, followed by the activation of autophagy-related pathways in both organs over prolonged starvation. These specific adaptive responses might be considered efficient strategies to stimulate ovarian maturation of Scylla paramamosain under fasting stress, which improves the nutritional value of female mud crabs and other economically important crustaceans.


Subject(s)
Brachyura , Starvation , Female , Animals , Brachyura/genetics , Transcriptome , Starvation/genetics , Fasting , Autophagy
10.
Eur Eat Disord Rev ; 32(3): 557-574, 2024 May.
Article in English | MEDLINE | ID: mdl-38303556

ABSTRACT

Based on the recent observation that human recombinant leptin (r-Met-hu-leptin; metreleptin) may induce a profound alleviation of the complex symptomatology of patients with anorexia nervosa (AN), we examine the implications for our conceptualisation of this eating disorder. Hypoleptinemia as a core endocrine feature of AN serves as a central and peripheral trigger of tissue-specific adaptations to starvation. In this narrative review, we argue that leptin deficiency may explain many of the puzzling features of this eating disorder. Weight loss can be viewed as a two-step process, with only the second step entailing hypoleptinemia and thereby the entrapment characteristic of AN. We discuss the central and peripheral distribution of leptin receptors and consider possible functional implications of hypoleptinemia. We contrast the slow psychological recovery of patients with AN and of people who experienced starvation upon weight recovery with the rapid onset of improvements upon off-label metreleptin treatment. Characteristics of the sex and age dependent secretion of leptin may contribute to the elevated vulnerability of young females to develop AN.


Subject(s)
Anorexia Nervosa , Feeding and Eating Disorders , Starvation , Female , Humans , Leptin , Weight Loss/physiology
11.
Fish Physiol Biochem ; 50(3): 1065-1077, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38367082

ABSTRACT

The present study aims to investigate nutritional programming through early starvation in the European seabass (Dicentrarchus labrax). European seabass larvae were fasted at three different developmental periods for three durations from 60 to 65 dph (F1), 81 to 87 dph (F2), and 123 to 133 dph (F3). Immediate effects were investigated by studying gene expression of npy (neuropeptide Y) and avt (Arginine vasotocin) in the head, while potential long-term effects (i.e., programming) were evaluated on intermediary metabolism later in life (in juveniles). Our findings indicate a direct effect regarding gene expression in the head only for F1, with higher avt mRNA level in fasted larved compared to controls. The early starvation periods had no long-term effect on growth performance (body weight and body length). Regarding intermediary metabolism, we analyzed related key plasma metabolites which reflect the intermediary metabolism: no differences for glucose, triglycerides, and free fatty acids in the plasma were observed in juveniles irrespective of the three early starvation stimuli. As programming is mainly linked to molecular mechanisms, we then studied hepatic mRNA levels for 23 key actors of glucose, lipid, amino acid, and energy metabolism. For many of the metabolic genes, there was no impact of early starvation in juveniles, except for three genes involved in glucose metabolism (glut2-glucose transporter and pk-pyruvate kinase) and lipid metabolism (acly-ATP citrate lyase) which were higher in F2 compared to control. Together, these results highlight that starvation between 81 to 87 dph may have more long-term impact, suggesting the existence of a developmental window for programming by starvation. In conclusion, European seabass appeared to be resilient to early starvation during larvae stages without drastic impacts on intermediary metabolism later in life.


Subject(s)
Bass , Larva , Liver , Starvation , Animals , Bass/growth & development , Bass/metabolism , Bass/genetics , Liver/metabolism , Larva/growth & development , Larva/metabolism , Starvation/metabolism , Neuropeptide Y/metabolism , Neuropeptide Y/genetics , Vasotocin/metabolism , Fish Proteins/genetics , Fish Proteins/metabolism
12.
Fish Physiol Biochem ; 50(3): 911-925, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38300371

ABSTRACT

Clarias gariepinus is an important freshwater fish with high economic value and breeding potential in China. It is a fast-growing and adaptable catfish, but the main problems facing the current market are its low price and poor taste, although starvation is a good solution to these problems. In this study, the effects of starvation on the physiology, biochemistry, and muscle quality of C. gariepinus were investigated. The results showed that compared with the control group, the weight gain rate and specific growth rate of the starvation group were significantly different. Body weight, visceral weight, condition factor, viscerosomatic index, hepatosomatic index, and viscera fat index all decreased, while visceral weight and hepatosomatic index decreased significantly after starvation for 30 days. The hardness and crude protein of muscle increased significantly and crude lipid decreased significantly. Taste-enhancing amino acids increased slightly, and fatty acids increased significantly. Compared with the control group, starvation led to changes in antioxidant defense parameters. The level of malondialdehyde (MDA) in liver increased significantly; the activities of superoxide dismutase (SOD) increased in serum after 30 days; the activities of glutathione peroxidase (GSH-Px) increased considerably in the serum and liver after 15 days; the activities of alanine aminotransferase (ALT) increased considerably in the serum and liver after 30 days. The in-depth study of changes in physiological, biochemical, and nutritional components of fish under starvation is helpful to understand the ecological strategy of fish to adapt to starvation and of great guiding significance for fishery resource management and aquaculture production.


Subject(s)
Antioxidants , Catfishes , Animals , Catfishes/physiology , Catfishes/metabolism , Catfishes/growth & development , Antioxidants/metabolism , Liver/metabolism , Superoxide Dismutase/metabolism , Malondialdehyde/metabolism , Malondialdehyde/blood , Starvation/metabolism , Glutathione Peroxidase/metabolism
13.
Int J Mol Sci ; 25(1)2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38203680

ABSTRACT

High-affinity nitrate transporters (NRT) are key components for nitrogen (N) acquisition and distribution within plants. However, insights on these transporters in wheat are scarce. This study presents a comprehensive analysis of the NRT2 and NRT3 gene families, where the aim is to shed light on their functionality and to evaluate their responses to N availability. A total of 53 NRT2s and 11 NRT3s were identified in the bread wheat genome, and these were grouped into different clades and homoeologous subgroups. The transcriptional dynamics of the identified NRT2 and NRT3 genes, in response to N starvation and nitrate resupply, were examined by RT-qPCR in the roots and shoots of hydroponically grown wheat plants through a time course experiment. Additionally, the spatial expression patterns of these genes were explored within the plant. The NRT2s of clade 1, TaNRT2.1-2.6, showed a root-specific expression and significant upregulation in response to N starvation, thus emphasizing a role in N acquisition. However, most of the clade 2 NRT2s displayed reduced expression under N-starved conditions. Nitrate resupply after N starvation revealed rapid responsiveness in TaNRT2.1-2.6, while clade 2 genes exhibited gradual induction, primarily in the roots. TaNRT2.18 was highly expressed in above-ground tissues and exhibited distinct nitrate-related response patterns for roots and shoots. The TaNRT3 gene expression closely paralleled the profiles of TaNRT2.1-2.6 in response to nitrate induction. These findings enhance the understanding of NRT2 and NRT3 involvement in nitrogen uptake and utilization, and they could have practical implications for improving nitrogen use efficiency. The study also recommends a standardized nomenclature for wheat NRT2 genes, thereby addressing prior naming inconsistencies.


Subject(s)
Starvation , Triticum , Triticum/genetics , Nitrates , Nitrate Transporters , Biological Transport , Nitrogen
14.
Lancet ; 403(10434): 1309, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38582552
15.
Endocr J ; 71(3): 207-208, 2024.
Article in English | MEDLINE | ID: mdl-38538332

Subject(s)
Glucagon , Starvation , Humans , Insulin
16.
PLoS One ; 19(6): e0304453, 2024.
Article in English | MEDLINE | ID: mdl-38923974

ABSTRACT

Hirudo nipponia is an important medicinal animal in China. Its salivary gland secretions contain a variety of protein bioactive substances. Investigations of its salivary glands are of great significance in the study of the medicinal value and mechanism of leech secretions. Illumina RNA-Seq technology was used to perform transcriptome sequencing of salivary gland tissue of H. nipponia under starvation (D30) and fed (D0) states. A total of 2,650 differentially expressed genes (DEGs) were screened. Using the label-free protein quantification technique and bioinformatics analysis, the expression of differentially expressed proteins (DEPs) in the salivary gland tissue of H. nipponia was compared. A total of 2,021 proteins were identified, among which 181 proteins were differentially expressed between the starvation and fed states, with 72 significantly upregulated and 109 significantly downregulated. The salivary glands of H. nipponia synthesized protein-based active substances after 30 days of starvation and adapted to the starvation environment by weakening respiratory activity and reducing metabolic activity to reduce energy expenditure. Energy was produced by glycolysis and the tricarboxylic acid cycle for the synthesis of substances such as antibiotics. This study combined transcriptome and proteome sequencing data to provide a data reference for an in-depth study of the regulatory mechanism of salivary gland secretions of H. nipponia under starvation stress by analyzing DEGs and DEPs.


Subject(s)
Leeches , Proteome , Salivary Glands , Starvation , Transcriptome , Animals , Salivary Glands/metabolism , Proteome/metabolism , Starvation/metabolism , Starvation/genetics , Leeches/genetics , Leeches/metabolism , Gene Expression Profiling
17.
Elife ; 132024 Feb 28.
Article in English | MEDLINE | ID: mdl-38416131

ABSTRACT

Experiments involving periodic stimuli shed light on the interplay between hyper-osmotic stress and glucose starvation in yeast cells.


Subject(s)
Glucose , Starvation , Humans , Osmotic Pressure , Saccharomyces cerevisiae
18.
Life Sci Alliance ; 7(5)2024 May.
Article in English | MEDLINE | ID: mdl-38467419

ABSTRACT

Starvation causes the accumulation of lipid droplets in the liver, a somewhat counterintuitive phenomenon that is nevertheless conserved from flies to humans. Much like fatty liver resulting from overfeeding, hepatic lipid accumulation (steatosis) during undernourishment can lead to lipotoxicity and atrophy of the liver. Here, we found that although surface populations of Astyanax mexicanus undergo this evolutionarily conserved response to starvation, the starvation-resistant cavefish larvae of the same species do not display an accumulation of lipid droplets upon starvation. Moreover, cavefish are resistant to liver atrophy during starvation, providing a unique system to explore strategies for liver protection. Using comparative transcriptomics between zebrafish, surface fish, and cavefish, we identified the fatty acid transporter slc27a2a/fatp2 to be correlated with the development of fatty liver. Pharmacological inhibition of slc27a2a in zebrafish rescues steatosis and atrophy of the liver upon starvation. Furthermore, down-regulation of FATP2 in Drosophila larvae inhibits the development of starvation-induced steatosis, suggesting the evolutionarily conserved importance of the gene in regulating fatty liver upon nutrition deprivation. Overall, our study identifies a conserved, druggable target to protect the liver from atrophy during starvation.


Subject(s)
Fatty Liver , Starvation , Animals , Humans , Zebrafish , Fatty Liver/genetics , Starvation/complications , Larva , Atrophy
19.
Forensic Sci Int ; 355: 111941, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38290228

ABSTRACT

The recognition of abuse and/or neglect still represents a challenge for both clinicians and forensic pathologists. Whereas abusive behaviors have been largely described among pediatric and elderly populations, adults' abuse and neglect is less frequently encountered, and therefore investigated. We report a case of a middle-aged woman without any known organic or psychiatric disorders who died of a multiple organ failure (MOF) due to extreme cachexia and bed-resting syndrome. The integration of all clinical, autopsy and histopathological data highlighted a picture of severe malnutrition, restraint, and widespread traumatic injuries related to abuse and neglect. We believe that the case here presented could be useful for both clinicians and forensic pathologists as it underlines once again the importance of collecting and integrating all medical evidence (both in the ante- and post-mortem settings) for reconstructing the most probable pathophysiology of disorders and injuries, comparing that reconstruction with the allegations of the caregivers, and thus identifying any potential abuse and/or neglect behaviors.


Subject(s)
Child Abuse , Starvation , Aged , Adult , Female , Humans , Child , Middle Aged , Autopsy , Forensic Pathology , Aggression
20.
Life Sci Alliance ; 7(5)2024 May.
Article in English | MEDLINE | ID: mdl-38408795

ABSTRACT

Starvation and refeeding are mostly unanticipated in the wild in terms of duration, frequency, and nutritional value of the refed state. Notwithstanding this, organisms mount efficient and reproducible responses to restore metabolic homeostasis. Hence, it is intuitive to invoke expectant molecular mechanisms that build anticipatory responses to enable physiological toggling during fed-fast cycles. In this regard, we report anticipatory biogenesis of oscillatory hepatic microRNAs that peak during a fed state and inhibit starvation-responsive genes. Our results clearly demonstrate that the levels of primary and precursor microRNA transcripts increase during a fasting state, in anticipation of a fed response. We delineate the importance of both metabolic and circadian cues in orchestrating hepatic fed microRNA homeostasis in a physiological setting. Besides illustrating metabo-endocrine control, our findings provide a mechanistic basis for the overarching influence of starvation on anticipatory biogenesis. Importantly, by using pharmacological agents that are widely used in clinics, we point out the high potential of interventions to restore homeostasis of hepatic microRNAs, whose deregulated expression is otherwise well established to cause metabolic diseases.


Subject(s)
MicroRNAs , Starvation , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Liver/metabolism , Starvation/metabolism , Homeostasis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL