Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.083
Filter
Add more filters

Publication year range
1.
PLoS Genet ; 19(12): e1011067, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38109437

ABSTRACT

Organismal responses to temperature fluctuations include an evolutionarily conserved cytosolic chaperone machinery as well as adaptive alterations in lipid constituents of cellular membranes. Using C. elegans as a model system, we asked whether adaptable lipid homeostasis is required for survival during physiologically relevant heat stress. By systematic analyses of lipid composition in worms during and before heat stress, we found that unsaturated fatty acids are reduced in heat-stressed animals. This is accompanied by the transcriptional downregulation of fatty acid desaturase enzymes encoded by fat-1, fat-3, fat-4, fat-5, fat-6, and fat-7 genes. Conversely, overexpression of the Δ9 desaturase FAT-7, responsible for the synthesis of PUFA precursor oleic acid, and supplementation of oleic acid causes accelerated death of worms during heat stress. Interestingly, heat stress causes permeability defects in the worm's cuticle. We show that fat-7 expression is reduced in the permeability defective collagen (PDC) mutant, dpy-10, known to have enhanced heat stress resistance (HSR). Further, we show that the HSR of dpy-10 animals is dependent on the upregulation of PTR-23, a patched-like receptor in the epidermis, and that PTR-23 downregulates the expression of fat-7. Consequently, abrogation of ptr-23 in wild type animals affects its survival during heat stress. This study provides evidence for the negative regulation of fatty acid desaturase expression in the soma of C. elegans via the non-canonical role of a patched receptor signaling component. Taken together, this constitutes a skin-gut axis for the regulation of lipid desaturation to promote the survival of worms during heat stress.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/physiology , Caenorhabditis elegans Proteins/metabolism , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Fatty Acids, Unsaturated/genetics , Fatty Acids, Unsaturated/metabolism , Stearoyl-CoA Desaturase/genetics , Homeostasis , Heat-Shock Response/genetics , Oleic Acids
2.
J Biol Chem ; 300(6): 107351, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718868

ABSTRACT

SCAP plays a central role in controlling lipid homeostasis by activating SREBP-1, a master transcription factor in controlling fatty acid (FA) synthesis. However, how SCAP expression is regulated in human cancer cells remains unknown. Here, we revealed that STAT3 binds to the promoter of SCAP to activate its expression across multiple cancer cell types. Moreover, we identified that STAT3 also concurrently interacts with the promoter of SREBF1 gene (encoding SREBP-1), amplifying its expression. This dual action by STAT3 collaboratively heightens FA synthesis. Pharmacological inhibition of STAT3 significantly reduces the levels of unsaturated FAs and phospholipids bearing unsaturated FA chains by reducing the SCAP-SREBP-1 signaling axis and its downstream effector SCD1. Examination of clinical samples from patients with glioblastoma, the most lethal brain tumor, demonstrates a substantial co-expression of STAT3, SCAP, SREBP-1, and SCD1. These findings unveil STAT3 directly regulates the expression of SCAP and SREBP-1 to promote FA synthesis, ultimately fueling tumor progression.


Subject(s)
Fatty Acids , Membrane Proteins , STAT3 Transcription Factor , Signal Transduction , Sterol Regulatory Element Binding Protein 1 , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Humans , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Fatty Acids/metabolism , Fatty Acids/biosynthesis , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics , Animals , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/genetics , Up-Regulation , Mice
3.
Mol Microbiol ; 121(5): 940-953, 2024 05.
Article in English | MEDLINE | ID: mdl-38419272

ABSTRACT

Plasmodium is an obligate intracellular parasite that requires intense lipid synthesis for membrane biogenesis and survival. One of the principal membrane components is oleic acid, which is needed to maintain the membrane's biophysical properties and fluidity. The malaria parasite can modify fatty acids, and stearoyl-CoA Δ9-desaturase (Scd) is an enzyme that catalyzes the synthesis of oleic acid by desaturation of stearic acid. Scd is dispensable in P. falciparum blood stages; however, its role in mosquito and liver stages remains unknown. We show that P. berghei Scd localizes to the ER in the blood and liver stages. Disruption of Scd in the rodent malaria parasite P. berghei did not affect parasite blood stage propagation, mosquito stage development, or early liver-stage development. However, when Scd KO sporozoites were inoculated intravenously or by mosquito bite into mice, they failed to initiate blood-stage infection. Immunofluorescence analysis revealed that organelle biogenesis was impaired and merozoite formation was abolished, which initiates blood-stage infections. Genetic complementation of the KO parasites restored merozoite formation to a level similar to that of WT parasites. Mice immunized with Scd KO sporozoites confer long-lasting sterile protection against infectious sporozoite challenge. Thus, the Scd KO parasite is an appealing candidate for inducing protective pre-erythrocytic immunity and hence its utility as a GAP.


Subject(s)
Liver , Malaria , Merozoites , Organelle Biogenesis , Plasmodium berghei , Sporozoites , Stearoyl-CoA Desaturase , Plasmodium berghei/genetics , Plasmodium berghei/growth & development , Plasmodium berghei/metabolism , Plasmodium berghei/enzymology , Animals , Mice , Liver/parasitology , Merozoites/growth & development , Merozoites/metabolism , Malaria/parasitology , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics , Sporozoites/growth & development , Sporozoites/metabolism , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Anopheles/parasitology , Female , Endoplasmic Reticulum/metabolism
4.
Cell Mol Life Sci ; 81(1): 81, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38334797

ABSTRACT

Papillary thyroid carcinoma (PTC) stands as the leading cancer type among endocrine malignancies, and there exists a strong correlation between thyroid cancer and obesity. However, the clinical significance and molecular mechanism of lipid metabolism in the development of PTC remain unclear. In this study, it was demonstrated that the downregulation of METTL16 enhanced lipid metabolism and promoted the malignant progression of PTC. METTL16 was expressed at lower levels in PTC tissues because of DNMT1-mediated hypermethylation of its promoter. Loss- and gain-of-function studies clarified the effects of METTL16 on PTC progression. METTL16 overexpression increased the abundance of m6A in SCD1 cells, increasing RNA decay via the m6A reader YTHDC2. The SCD1 inhibitor A939572 inhibited growth and slowed down lipid metabolism in PTC cells. These results confirm the crucial role of METTL16 in restraining PTC progression through SCD1-activated lipid metabolism in cooperation with YTHDC2. This suggests that the combination of METTL16 and anti-SCD1 blockade might constitute an effective therapy for PTC.


Subject(s)
Lipid Metabolism , Thyroid Neoplasms , Humans , Thyroid Cancer, Papillary/genetics , Thyroid Cancer, Papillary/metabolism , Lipid Metabolism/genetics , Gene Expression Regulation, Neoplastic , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , DNA Methylation , Cell Line, Tumor , Cell Proliferation , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism , RNA Helicases/genetics , RNA Helicases/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism
5.
Proc Natl Acad Sci U S A ; 119(30): e2201160119, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35867834

ABSTRACT

Metabolic extremes provide opportunities to understand enzymatic and metabolic plasticity and biotechnological tools for novel biomaterial production. We discovered that seed oils of many Thunbergia species contain up to 92% of the unusual monounsaturated petroselinic acid (18:1Δ6), one of the highest reported levels for a single fatty acid in plants. Supporting the biosynthetic origin of petroselinic acid, we identified a Δ6-stearoyl-acyl carrier protein (18:0-ACP) desaturase from Thunbergia laurifolia, closely related to a previously identified Δ6-palmitoyl-ACP desaturase that produces sapienic acid (16:1Δ6)-rich oils in Thunbergia alata seeds. Guided by a T. laurifolia desaturase crystal structure obtained in this study, enzyme mutagenesis identified key amino acids for functional divergence of Δ6 desaturases from the archetypal Δ9-18:0-ACP desaturase and mutations that result in nonnative enzyme regiospecificity. Furthermore, we demonstrate the utility of the T. laurifolia desaturase for the production of unusual monounsaturated fatty acids in engineered plant and bacterial hosts. Through stepwise metabolic engineering, we provide evidence that divergent evolution of extreme petroselinic acid and sapienic acid production arises from biosynthetic and metabolic functional specialization and enhanced expression of specific enzymes to accommodate metabolism of atypical substrates.


Subject(s)
Acanthaceae , Fatty Acids, Monounsaturated , Plant Proteins , Stearoyl-CoA Desaturase , Acanthaceae/metabolism , Acyl Carrier Protein/metabolism , Evolution, Molecular , Fatty Acids, Monounsaturated/metabolism , Mutagenesis , Plant Oils/chemistry , Plant Proteins/analysis , Plant Proteins/genetics , Plant Proteins/metabolism , Seeds/enzymology , Stearoyl-CoA Desaturase/analysis , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism
6.
J Biol Chem ; 299(9): 105134, 2023 09.
Article in English | MEDLINE | ID: mdl-37562570

ABSTRACT

Membrane biophysical properties are critical to cell fitness and depend on unsaturated phospholipid acyl tails. These can only be produced in aerobic environments since eukaryotic desaturases require molecular oxygen. This raises the question of how cells maintain bilayer properties in anoxic environments. Using advanced microscopy, molecular dynamics simulations, and lipidomics by mass spectrometry we demonstrated the existence of an alternative pathway to regulate membrane fluidity that exploits phospholipid acyl tail length asymmetry, replacing unsaturated species in the membrane lipidome. We show that the fission yeast, Schizosaccharomyces japonicus, which can grow in aerobic and anaerobic conditions, is capable of utilizing this strategy, whereas its sister species, the well-known model organism Schizosaccharomyces pombe, cannot. The incorporation of asymmetric-tailed phospholipids might be a general adaptation to hypoxic environmental niches.


Subject(s)
Adaptation, Physiological , Anaerobiosis , Phospholipids , Schizosaccharomyces , Cell Membrane/metabolism , Membrane Fluidity/physiology , Molecular Dynamics Simulation , Phospholipids/chemistry , Phospholipids/metabolism , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Anaerobiosis/physiology , Lipidomics , Up-Regulation , Gene Expression Regulation, Fungal , Temperature , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism , Adaptation, Physiological/genetics
7.
J Biol Chem ; 299(7): 104882, 2023 07.
Article in English | MEDLINE | ID: mdl-37269945

ABSTRACT

Biosynthesis of the various lipid species that compose cellular membranes and lipid droplets depends on the activity of multiple enzymes functioning in coordinated pathways. The flux of intermediates through lipid biosynthetic pathways is regulated to respond to nutritional and environmental demands placed on the cell necessitating that there be flexibility in pathway activity and organization. This flexibility can in part be achieved through the organization of enzymes into metabolon supercomplexes. However, the composition and organization of such supercomplexes remain unclear. Here, we identified protein-protein interactions between acyltransferases Sct1, Gpt2, Slc1, Dga1, and the Δ9 acyl-CoA desaturase Ole1 in Saccharomyces cerevisiae. We further determined that a subset of these acyltransferases interact with each other independent of Ole1. We show that truncated versions of Dga1 lacking the carboxyl-terminal 20 amino acid residues are nonfunctional and unable to bind Ole1. Furthermore, charged-to-alanine scanning mutagenesis revealed that a cluster of charged residues near the carboxyl terminus was required for the interaction with Ole1. Mutation of these charged residues disrupted the interaction between Dga1 and Ole1 but allowed Dga1 to retain catalytic activity and to induce lipid droplet formation. These data support the formation of a complex of acyltransferases involved in lipid biosynthesis that interacts with Ole1, the sole acyl-CoA desaturase in S. cerevisiae, that can channel unsaturated acyl chains toward phospholipid or triacylglycerol synthesis. This desaturasome complex may provide the architecture that allows for the necessary flux of de novo-synthesized unsaturated acyl-CoA to phospholipid or triacylglycerol synthesis as demanded by cellular requirements.


Subject(s)
1-Acylglycerol-3-Phosphate O-Acyltransferase , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Stearoyl-CoA Desaturase , 1-Acylglycerol-3-Phosphate O-Acyltransferase/metabolism , Acyltransferases/metabolism , Fatty Acid Desaturases/genetics , Phospholipids/genetics , Phospholipids/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism , Triglycerides/metabolism
8.
J Cell Biochem ; 125(4): e30542, 2024 04.
Article in English | MEDLINE | ID: mdl-38362828

ABSTRACT

Ferroptosis is a form of regulated cell death that is induced by inhibiting glutathione peroxidase 4 (GPX4), which eliminates lipid peroxidation. Ferroptosis induction is influenced by the cell environment. However, the cellular states altering ferroptosis susceptibility remain largely unknown. We found that melanoma cell lines became resistant to ferroptosis as cell density increased. Comparative transcriptome and metabolome analyses revealed that cell density-dependent ferroptosis resistance was coupled with a shift toward a lipogenic phenotype accompanied by strong induction of stearoyl-CoA desaturase (SCD). Database analysis of gene dependency across hundreds of cancer cell lines uncovered a negative correlation between GPX4 and SCD dependency. Importantly, SCD inhibition, either pharmacologically or through genetic knockout, sensitized melanoma cells to GPX4 inhibition, thereby attenuating ferroptosis resistance in cells at high density. Our findings indicate that transition to an SCD-inducing, lipogenic cell state produces density-dependent resistance to ferroptosis, which may provide a therapeutic strategy against melanoma.


Subject(s)
Ferroptosis , Melanoma , Stearoyl-CoA Desaturase , Humans , Cell Count , Cell Death/genetics , Melanoma/genetics , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Stearoyl-CoA Desaturase/genetics
9.
Mol Biol Evol ; 40(2)2023 02 03.
Article in English | MEDLINE | ID: mdl-36661848

ABSTRACT

The evolution of phenotypic plasticity plays an essential role in adaptive responses to climate change; however, its regulatory mechanisms in marine organisms which exhibit high phenotypic plasticity still remain poorly understood. The temperature-responsive trait oleic acid content and its major gene stearoyl-CoA desaturase (Scd) expression have diverged in two allopatric congeneric oyster species, cold-adapted Crassostrea gigas and warm-adapted Crassostrea angulata. In this study, genetic and molecular methods were used to characterize fatty acid desaturation and membrane fluidity regulated by oyster Scd. Sixteen causative single-nucleotide polymorphisms (SNPs) were identified in the promoter/cis-region of the Scd between wild C. gigas and C. angulata. Further functional experiments showed that an SNP (g.-333C [C. gigas allele] >T [C. angulata allele]) may influence Scd transcription by creating/disrupting the binding motif of the positive trans-factor Y-box factor in C. gigas/C. angulata, which mediates the higher/lower constitutive expression of Scd in C. gigas/C. angulata. Additionally, the positive trans-factor sterol-regulatory element-binding proteins (Srebp) were identified to specifically bind to the promoter of Scd in both species, and were downregulated during cold stress in C. gigas compared to upregulated in C. angulata. This partly explains the relatively lower environmental sensitivity (plasticity) of Scd in C. gigas. This study serves as an experimental case to reveal that both cis- and trans-variations shape the diverged pattern of phenotypic plasticity, which provides new insights into the formation of adaptive traits and the prediction of the adaptive potential of marine organisms to future climate change.


Subject(s)
Crassostrea , Stearoyl-CoA Desaturase , Animals , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism , Temperature , Adaptation, Physiological/genetics , Polymorphism, Single Nucleotide , Crassostrea/genetics , Crassostrea/metabolism
10.
Toxicol Appl Pharmacol ; 482: 116788, 2024 01.
Article in English | MEDLINE | ID: mdl-38086441

ABSTRACT

Environmental chemicals, such as plasticizers, have been linked to increased rates of obesity, according to epidemiological studies. Acetyl triethyl citrate (ATEC) is a plasticizer that is commonly utilized in pharmaceutical products and food packaging as a non-phthalate alternative. Due to its direct contact with the human body and high leakage rate from the polymers, assessment of the potential risk of ATEC exposure at environmentally relevant low doses to human health is needed. Male C57BL/6 J mice were fed diets containing ATEC at doses of either 0.1 or 10 µg/kg per day in a period of 12 weeks to mimic the real exposure environment. The findings suggest that in C57BL/6 J mice, ATEC exposure resulted in increased body weight gain, body fat percentage, and benign hepatocytes, as well as adipocyte size. Consistent with in vivo models, ATEC treatment obviously stimulated the increase of intracellular lipid load in both mouse and human hepatocytes. Mechanically, ATEC induced the transcriptional expression of genes involved in de novo lipogenesis and lipid uptake. Using both enzyme inhibitor and small interfering RNA (siRNA) transfection, we found that stearoyl-coenzyme A desaturase 1 (SCD1) played a significant role in ATEC-induced intracellular lipid accumulation. This study for the first time provided initial evidence suggesting the obesogenic and fatty liver-inducing effect of ATEC at low doses near human exposure levels, and ATEC might be a potential environmental obesogen and its effect on human health need to be further evaluated.


Subject(s)
Citrates , Lipogenesis , Plasticizers , Male , Mice , Humans , Animals , Plasticizers/toxicity , Mice, Inbred C57BL , Obesity/chemically induced , Obesity/metabolism , Lipids , Liver , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism
11.
J Asthma ; 61(7): 707-716, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38315158

ABSTRACT

Background: The prevalence of childhood asthma and obesity is increasing, while obesity increases the risk and severity of asthma. Lipid metabolism has been considered as an important factor in the pathogenesis of obesity-associated asthma. Stearoyl-CoA desaturase 1 (SCD1) is a rate-limiting enzyme that catalyzes the production of monounsaturated fatty acids (MUFA).Methods: In the present study, the microarray data retrieved from the Gene Expression Comprehensive Database (GEO) was analyzed to further clarify the impact of SCD1 on Mast cell activation related lipid mediators and the correlation between SCD1 and obesity asthma in the population.Results: SCD1 was highly expressed in IgE-activated bone marrow-derived mast cells (BMMCs). Meanwhile, SCD1 was also verified expressed highly in dinitrophenyl human serum albumin (DNP-HAS) stimulated RBL-2H3 cells. The expression of SCD1 was up-regulated in peripheral blood leukocytes of asthmatic children, and was positively correlated with skinfold thickness of upper arm, abdominal skinfold and body mass index (BMI). Inhibition of SCD1 expression significantly suppressed the degranulation, lipid mediator production, as well as the migration ability in DNP-HAS-stimulated RBL-2H3 cells.Conclusion: SCD1 is involved in obese-related asthma through regulating mast cells.


Subject(s)
Asthma , Mast Cells , Stearoyl-CoA Desaturase , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics , Mast Cells/immunology , Mast Cells/metabolism , Humans , Child , Asthma/immunology , Asthma/metabolism , Male , Female , Animals , Mice , Obesity/metabolism , Rats , Body Mass Index
12.
Mol Cell ; 63(6): 1034-43, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27635761

ABSTRACT

Mitochondria divide to control their size, distribution, turnover, and function. Dynamin-related protein 1 (Drp1) is a critical mechanochemical GTPase that drives constriction during mitochondrial division. It is generally believed that mitochondrial division is regulated during recruitment of Drp1 to mitochondria and its oligomerization into a division apparatus. Here, we report an unforeseen mechanism that regulates mitochondrial division by coincident interactions of Drp1 with the head group and acyl chains of phospholipids. Drp1 recognizes the head group of phosphatidic acid (PA) and two saturated acyl chains of another phospholipid by penetrating into the hydrophobic core of the membrane. The dual phospholipid interactions restrain Drp1 via inhibition of oligomerization-stimulated GTP hydrolysis that promotes membrane constriction. Moreover, a PA-producing phospholipase, MitoPLD, binds Drp1, creating a PA-rich microenvironment in the vicinity of a division apparatus. Thus, PA controls the activation of Drp1 after the formation of the division apparatus.


Subject(s)
Dynamins/genetics , Mitochondria/metabolism , Mitochondrial Dynamics/genetics , Mitochondrial Proteins/genetics , Phosphatidic Acids/metabolism , Phospholipase D/genetics , Testis/metabolism , Animals , Binding Sites , Dynamins/metabolism , Fibroblasts/metabolism , Fibroblasts/ultrastructure , Gene Expression Regulation , Guanosine Triphosphate/metabolism , Male , Mice , Mitochondria/ultrastructure , Mitochondrial Membranes/metabolism , Mitochondrial Membranes/ultrastructure , Mitochondrial Proteins/metabolism , Phospholipase D/metabolism , Protein Binding , Signal Transduction , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism , Testis/ultrastructure
13.
Lipids Health Dis ; 23(1): 192, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909257

ABSTRACT

BACKGROUND: Overweight, often known as obesity, is the abnormal and excessive accumulation of fat that exposes the health of a person at risk by increasing the likelihood that they may experience many chronic conditions. Consequently, obesity has become a global health threat, presenting serious health issues, and attracting a lot of attention in the healthcare profession and the scientific community. METHOD: This study aims to explore the anti-adipogenic properties of 7-MEGA™ in an attempt to address obesity, using both in vitro and in vivo research. The effects of 7MEGA™ at three distinct concentrations were investigated in obese mice who were given a high-fat diet (HFD) and 3T3-L1 adipocytes. RESULTS: 7MEGA™ decreased the total fat mass, overall body weight, and the perirenal and subcutaneous white adipose tissue (PWAT and SWAT) contents in HFD mice. Additionally, 7MEGA™ showed promise in improving the metabolic health of individuals with obesity and regulate the levels of insulin hormone, pro-inflammatory cytokines and adipokines. Furthermore, Peroxisome proliferator-activated receptors (PPAR) α and γ, Uncoupling Protein 1 (UCP-1), Sterol Regulatory Element-Binding Protein 1 (SREBP-1), Fatty Acid-Binding Protein 4 (FABP4), Fatty Acid Synthase (FAS), Acetyl-CoA Carboxylase (ACC), Stearoyl-CoA Desaturase-1 (SCD-1) and CCAAT/Enhancer-Binding Protein (C/EBPα) were among the adipogenic regulators that 7MEGA™ could regulate. CONCLUSION: In summary, this study uncovered that 7MEGA™ demonstrates anti-adipogenic and anti-obesity effects, suggesting its potential in combating obesity.


Subject(s)
3T3-L1 Cells , Adipocytes , Adipogenesis , Diet, High-Fat , Mice, Inbred C57BL , Obesity , Animals , Diet, High-Fat/adverse effects , Adipogenesis/drug effects , Obesity/metabolism , Mice , Adipocytes/drug effects , Adipocytes/metabolism , Male , PPAR gamma/metabolism , PPAR gamma/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics , Mice, Obese , Fatty Acid-Binding Proteins/metabolism , Fatty Acid-Binding Proteins/genetics , Adipokines/metabolism , Anti-Obesity Agents/pharmacology , Uncoupling Protein 1/metabolism , Uncoupling Protein 1/genetics , Adipose Tissue, White/metabolism , Adipose Tissue, White/drug effects , CCAAT-Enhancer-Binding Proteins
14.
Int J Mol Sci ; 25(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38928125

ABSTRACT

Leptin regulates lipid metabolism, maximizing insulin sensitivity; however, peripheral leptin resistance is not fully understood, and its contribution to metabolic dysfunction-associated steatotic liver disease (MASLD) is unclear. This study evaluated the contribution of the leptin axis to MASLD in humans. Forty-three participants, mostly female (86.04%), who underwent cholecystectomy were biopsied. Of the participants, 24 were healthy controls, 8 had MASLD, and 11 had metabolic dysfunction-associated steatohepatitis (MASH). Clinical and biochemical data and the gene expression of leptin, leptin receptor (LEPR), suppressor of cytokine signaling 3 (SOCS3), sterol regulatory element-binding transcription factor 1 (SREBF1), stearoyl-CoA desaturase-1 (SCD1), and patatin-like phospholipase domain-containing protein 2 (PNPLA2), were determined from liver and adipose tissue. Higher serum leptin and LEPR levels in the omental adipose tissue (OAT) and liver with MASH were found. In the liver, LEPR was positively correlated with leptin expression in adipose tissue, and SOCS3 was correlated with SREBF1-SCD1. In OAT, SOCS3 was correlated with insulin resistance and transaminase enzymes (p < 0.05 for all. In conclusion, we evidenced the correlation between the peripheral leptin resistance axis in OAT-liver crosstalk and the complications of MASLD in humans.


Subject(s)
Adipose Tissue , Fatty Liver , Leptin , Liver , Omentum , Humans , Leptin/metabolism , Female , Male , Liver/metabolism , Middle Aged , Omentum/metabolism , Omentum/pathology , Adipose Tissue/metabolism , Adult , Fatty Liver/metabolism , Fatty Liver/pathology , Receptors, Leptin/metabolism , Receptors, Leptin/genetics , Suppressor of Cytokine Signaling 3 Protein/metabolism , Suppressor of Cytokine Signaling 3 Protein/genetics , Insulin Resistance , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Stearoyl-CoA Desaturase/metabolism , Stearoyl-CoA Desaturase/genetics
15.
J Sci Food Agric ; 104(4): 2398-2405, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-37996964

ABSTRACT

BACKGROUND: Yeast is often used to build cell factories to produce various chemicals or nutrient substances, which means the yeast has to encounter stressful environments. Previous research reported that unsaturated fatty acids were closely related to yeast stress resistance. Engineering unsaturated fatty acids may be a viable strategy for enhancing the stress resistance of cells. RESULTS: In this study, two desaturase genes, OLE1 and FAD2 from Z. rouxii, were overexpressed in S. cerevisiae to determine how unsaturated fatty acids affect cellular stress tolerance of cells. After cloning and plasmid recombination, the recombinant S. cerevisiae cells were constructed. Analysis of membrane fatty acid contents revealed that the recombinant S. cerevisiae with overexpression of OLE1 and FAD2 genes contained higher levels of fatty acids C16:1 (2.77 times), C18:1 (1.51 times) and C18:2 (4.15 times) than the wild-type S. cerevisiae pY15TEF1. In addition, recombinant S. cerevisiae cells were more resistant to multiple stresses, and exhibited improved membrane functionality, including membrane fluidity and integrity. CONCLUSION: These findings demonstrated that strengthening the expression of desaturases was beneficial to stress tolerance. Overall, this study may provide a suitable means to build a cell factory of industrial yeast cells with high tolerance during biological manufacturing. © 2023 Society of Chemical Industry.


Subject(s)
Fatty Acid Desaturases , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism , Fatty Acids, Unsaturated/metabolism , Fatty Acids/metabolism
16.
J Biol Chem ; 298(10): 102397, 2022 10.
Article in English | MEDLINE | ID: mdl-35988640

ABSTRACT

Sterols in eukaryotic cells play important roles in modulating membrane fluidity and in cell signaling and trafficking. During evolution, a combination of gene losses and acquisitions gave rise to an extraordinary diversity of sterols in different organisms. The sterol C-22 desaturase identified in plants and fungi as a cytochrome P-450 monooxygenase evolved from the first eukaryotic cytochrome P450 and was lost in many lineages. Although the ciliate Tetrahymena thermophila desaturates sterols at the C-22 position, no cytochrome P-450 orthologs are present in the genome. Here, we aim to identify the genes responsible for the desaturation as well as their probable origin. We used gene knockout and yeast heterologous expression approaches to identify two putative genes, retrieved from a previous transcriptomic analysis, as sterol C-22 desaturases. Furthermore, we demonstrate using bioinformatics and evolutionary analyses that both genes encode a novel type of sterol C-22 desaturase that belongs to the large fatty acid hydroxylase/desaturase superfamily and the genes originated by genetic duplication prior to functional diversification. These results stress the widespread existence of nonhomologous isofunctional enzymes among different lineages of the tree of life as well as the suitability for the use of T. thermophila as a valuable model to investigate the evolutionary process of large enzyme families.


Subject(s)
Protozoan Proteins , Stearoyl-CoA Desaturase , Tetrahymena thermophila , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Saccharomyces cerevisiae , Stearoyl-CoA Desaturase/chemistry , Stearoyl-CoA Desaturase/classification , Stearoyl-CoA Desaturase/genetics , Sterols/metabolism , Tetrahymena thermophila/enzymology , Phylogeny , Protozoan Proteins/chemistry , Protozoan Proteins/classification , Protozoan Proteins/genetics
17.
J Cell Physiol ; 238(12): 2888-2903, 2023 12.
Article in English | MEDLINE | ID: mdl-37814830

ABSTRACT

Increases in fatty acid (FA) biosynthesis meet the higher lipid demand by intensely proliferating cancer cells and promoting their progression. Stearoyl-CoA desaturase 1 (SCD1) is the key enzyme in FA biosynthesis, converting saturated FA (SFA) into monounsaturated FA (MUFA). Increases in the MUFA/SFA ratio and SCD1 expression have been observed in cancers of various origins and correlate with their aggressiveness. However, much is still unknown about the SCD1-dependent molecular mechanisms that promote specific changes in metabolic pathways of cancer cells. The present study investigated the involvement of SCD1 in shaping glucose and lipid metabolism in colorectal cancer (CRC) cells. Excess FAs that derive from de novo lipogenesis are stored in organelles, called lipid droplets (LDs), mainly in the form of triacylglycerol (TAG) and cholesteryl esters. LD accumulation is associated with key features of cancer development and progression. Consistent with our findings, the pharmacological inhibition of SCD1 activity affects CRC cell viability and impairs TAG accumulation and LD formation in these cells through the activation of lipolytic and lipophagic pathways. We showed that SCD1 suppression affects crucial lipogenic processes that promote lipid accumulation in CRC cells but in a sterol regulatory element-binding protein 1-independent manner. We propose that adenosine monophosphate-activated protein kinase contributes to these changes through the activation of lipolysis and inhibition of TAG synthesis. We also provide evidence of the involvement of SCD1 in the regulation of glucose uptake and utilization in CRC cells. These findings underscore the importance of SCD1 in regulating cellular processes that promote cancer development and progression.


Subject(s)
Colorectal Neoplasms , Stearoyl-CoA Desaturase , Humans , Colorectal Neoplasms/metabolism , Fatty Acids/metabolism , Lipid Droplets/metabolism , Lipid Metabolism/physiology , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism , Triglycerides/metabolism , Cell Line, Tumor
18.
Funct Integr Genomics ; 23(3): 280, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37612343

ABSTRACT

In this study, we aimed to explore the molecular role of Deltex E3 ubiquitin ligase 4 (DTX4) in thyroid cancer (TC) both in vitro and in vivo. The expression level of DTX4 in TC tissues was compared using The Cancer Genome Atlas (TCGA) database. We subsequently evaluated cell proliferation and migration in DTX4 knock down or DTX4 overexpression TC cell lines (TPC-1 and K1) by CCK-8, cell colony formation, and transwell assays. RNA sequencing and KEGG analysis were employed to identify potential genes that interact with DTX4. Our results showed that DTX4 was expressed at higher levels in both TC tissues and cells compared to normal controls. Knock down of DTX4 expression significantly inhibited TC cell progression in vitro. Furthermore, knockdown of endogenous DTX4 by shDTX4 markedly abrogated tumor growth, with significantly smaller tumor size and lower tumor weight in the shDTX4 group compared to the shCtrl group. Conversely, overexpression of DTX4 enhanced TC cell proliferation and migration. Through RNA sequencing, we identified 590 Differentially Expressed Genes (DEGs), with stearoyl-CoA desaturase 1 (SCD) ranking as the top gene. A positive correlation between DTX4 and SCD was observed in TC samples. Additionally, treatment with an SCD inhibitor, A939572, significantly rescued the enhanced growth effect induced by DTX4 overexpression. In conclusion, this study demonstrated that DTX4 promotes TC progression through SCD, indicating that the DTX4/SCD axis could be a promising target for TC therapy.


Subject(s)
Stearoyl-CoA Desaturase , Thyroid Neoplasms , Humans , Cell Line , Cell Proliferation , Stearoyl-CoA Desaturase/genetics , Thyroid Neoplasms/genetics , Ubiquitin-Protein Ligases/genetics
19.
Biochem Biophys Res Commun ; 667: 146-152, 2023 07 30.
Article in English | MEDLINE | ID: mdl-37229823

ABSTRACT

BACKGROUND: Acne is associated with the excessive production of sebum, a complex mixture of lipids, in the sebaceous glands. The transcription factor Krüppel-like factor 4 (KLF4) plays an important role in skin morphogenesis, but its role in sebum production by sebocytes is not well known. PURPOSE: In this study, we investigated the possible action mechanism of KLF4 during calcium-induced lipogenesis in immortalized human sebocytes. METHODS: Sebocytes were treated with calcium, and lipid production was confirmed by thin-layer chromatography (TLC) and Oil Red O staining. To investigate the effect of KLF4, sebocytes were transduced with the KLF4-overexpressing adenovirus, and then lipid production was evaluated. RESULTS: Calcium treatment resulted in increased sebum production in terms of squalene synthesis in sebocytes. In addition, calcium increased the expression of lipogenic regulators such as sterol-regulatory element binding protein 1 (SREBP1), sterol-regulatory element binding protein 2 (SREBP2), and stearoyl-CoA desaturase (SCD). Similarly, the expression of KLF4 was increased by calcium in sebocytes. To investigate the effect of KLF4, we overexpressed KLF4 in sebocytes using recombinant adenovirus. As a result, KLF4 overexpression increased the expression of SREBP1, SREBP2, and SCD. Parallel to this result, lipid production was also increased by KLF4 overexpression. Chromatin immunoprecipitation revealed the binding of KLF4 to the SREBP1 promoter, indicating that KLF4 may directly regulate the expression of lipogenic regulators. CONCLUSION: These results suggest that KLF4 is a novel regulator of lipid production in sebocytes.


Subject(s)
Calcium , Kruppel-Like Factor 4 , Humans , Calcium/metabolism , Cells, Cultured , Lipids , Lipogenesis , Sebaceous Glands/metabolism , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism , Sterols/metabolism
20.
PLoS Pathog ; 17(5): e1009486, 2021 05.
Article in English | MEDLINE | ID: mdl-34015060

ABSTRACT

Vitellogenesis and oocyte maturation require anautogenous female Anopheles mosquitoes to obtain a bloodmeal from a vertebrate host. The bloodmeal is rich in proteins that are readily broken down into amino acids in the midgut lumen and absorbed by the midgut epithelial cells where they are converted into lipids and then transported to other tissues including ovaries. The stearoyl-CoA desaturase (SCD) plays a pivotal role in this process by converting saturated (SFAs) to unsaturated (UFAs) fatty acids; the latter being essential for maintaining cell membrane fluidity amongst other housekeeping functions. Here, we report the functional and phenotypic characterization of SCD1 in the malaria vector mosquito Anopheles coluzzii. We show that RNA interference (RNAi) silencing of SCD1 and administration of sterculic acid (SA), a small molecule inhibitor of SCD1, significantly impact on the survival and reproduction of female mosquitoes following blood feeding. Microscopic observations reveal that the mosquito thorax is quickly filled with blood, a phenomenon likely caused by the collapse of midgut epithelial cell membranes, and that epithelial cells are depleted of lipid droplets and oocytes fail to mature. Transcriptional profiling shows that genes involved in protein, lipid and carbohydrate metabolism and immunity-related genes are the most affected by SCD1 knock down (KD) in blood-fed mosquitoes. Metabolic profiling reveals that these mosquitoes exhibit increased amounts of saturated fatty acids and TCA cycle intermediates, highlighting the biochemical framework by which the SCD1 KD phenotype manifests as a result of a detrimental metabolic syndrome. Accumulation of SFAs is also the likely cause of the potent immune response observed in the absence of infection, which resembles an auto-inflammatory condition. These data provide insights into mosquito bloodmeal metabolism and lipid homeostasis and could inform efforts to develop novel interventions against mosquito-borne diseases.


Subject(s)
Animal Feed/analysis , Anopheles/growth & development , Feeding Behavior , Mosquito Vectors/physiology , Reproduction , Stearoyl-CoA Desaturase/metabolism , Animals , Anopheles/enzymology , Anopheles/immunology , Female , Gene Expression Profiling , Mosquito Vectors/parasitology , Stearoyl-CoA Desaturase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL