Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.074
Filter
Add more filters

Publication year range
1.
Cell ; 184(4): 957-968.e21, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33567265

ABSTRACT

Ligand-gated ion channels mediate signal transduction at chemical synapses and transition between resting, open, and desensitized states in response to neurotransmitter binding. Neurotransmitters that produce maximum open channel probabilities (Po) are full agonists, whereas those that yield lower than maximum Po are partial agonists. Cys-loop receptors are an important class of neurotransmitter receptors, yet a structure-based understanding of the mechanism of partial agonist action has proven elusive. Here, we study the glycine receptor with the full agonist glycine and the partial agonists taurine and γ-amino butyric acid (GABA). We use electrophysiology to show how partial agonists populate agonist-bound, closed channel states and cryo-EM reconstructions to illuminate the structures of intermediate, pre-open states, providing insights into previously unseen conformational states along the receptor reaction pathway. We further correlate agonist-induced conformational changes to Po across members of the receptor family, providing a hypothetical mechanism for partial and full agonist action at Cys-loop receptors.


Subject(s)
Ion Channel Gating , Receptors, Glycine/agonists , Receptors, Glycine/metabolism , Animals , Binding Sites , Cell Line , Cryoelectron Microscopy , Glycine , HEK293 Cells , Humans , Imaging, Three-Dimensional , Maleates/chemistry , Models, Molecular , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Mutation/genetics , Neurotransmitter Agents/metabolism , Protein Domains , Receptors, Glycine/genetics , Receptors, Glycine/ultrastructure , Styrene/chemistry , Zebrafish , gamma-Aminobutyric Acid/metabolism
2.
Nature ; 617(7960): 403-408, 2023 05.
Article in English | MEDLINE | ID: mdl-37138074

ABSTRACT

Biosynthesis is an environmentally benign and renewable approach that can be used to produce a broad range of natural and, in some cases, new-to-nature products. However, biology lacks many of the reactions that are available to synthetic chemists, resulting in a narrower scope of accessible products when using biosynthesis rather than synthetic chemistry. A prime example of such chemistry is carbene-transfer reactions1. Although it was recently shown that carbene-transfer reactions can be performed in a cell and used for biosynthesis2,3, carbene donors and unnatural cofactors needed to be added exogenously and transported into cells to effect the desired reactions, precluding cost-effective scale-up of the biosynthesis process with these reactions. Here we report the access to a diazo ester carbene precursor by cellular metabolism and a microbial platform for introducing unnatural carbene-transfer reactions into biosynthesis. The α-diazoester azaserine was produced by expressing a biosynthetic gene cluster in Streptomyces albus. The intracellularly produced azaserine was used as a carbene donor to cyclopropanate another intracellularly produced molecule-styrene. The reaction was catalysed by engineered P450 mutants containing a native cofactor with excellent diastereoselectivity and a moderate yield. Our study establishes a scalable, microbial platform for conducting intracellular abiological carbene-transfer reactions to functionalize a range of natural and new-to-nature products and expands the scope of organic products that can be produced by cellular metabolism.


Subject(s)
Azaserine , Azaserine/biosynthesis , Azaserine/chemistry , Biological Products/chemistry , Biological Products/metabolism , Multigene Family/genetics , Styrene/chemistry , Cyclopropanes/chemistry , Coenzymes/chemistry , Coenzymes/metabolism , Biocatalysis , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism
3.
Proc Natl Acad Sci U S A ; 120(12): e2217922120, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36913593

ABSTRACT

Cytochrome bc1 complexes are ubiquinol:cytochrome c oxidoreductases, and as such, they are centrally important components of respiratory and photosynthetic electron transfer chains in many species of bacteria and in mitochondria. The minimal complex has three catalytic components, which are cytochrome b, cytochrome c1, and the Rieske iron-sulfur subunit, but the function of mitochondrial cytochrome bc1 complexes is modified by up to eight supernumerary subunits. The cytochrome bc1 complex from the purple phototrophic bacterium Rhodobacter sphaeroides has a single supernumerary subunit called subunit IV, which is absent from current structures of the complex. In this work we use the styrene-maleic acid copolymer to purify the R. sphaeroides cytochrome bc1 complex in native lipid nanodiscs, which retains the labile subunit IV, annular lipids, and natively bound quinones. The catalytic activity of the four-subunit cytochrome bc1 complex is threefold higher than that of the complex lacking subunit IV. To understand the role of subunit IV, we determined the structure of the four-subunit complex at 2.9 Å using single particle cryogenic electron microscopy. The structure shows the position of the transmembrane domain of subunit IV, which lies across the transmembrane helices of the Rieske and cytochrome c1 subunits. We observe a quinone at the Qo quinone-binding site and show that occupancy of this site is linked to conformational changes in the Rieske head domain during catalysis. Twelve lipids were structurally resolved, making contacts with the Rieske and cytochrome b subunits, with some spanning both of the two monomers that make up the dimeric complex.


Subject(s)
Rhodobacter sphaeroides , Rhodobacter sphaeroides/chemistry , Cytochromes c , Cytochromes b , Styrene , Cryoelectron Microscopy , Quinones , Lipids , Electron Transport Complex III , Oxidation-Reduction
4.
J Neuroinflammation ; 21(1): 4, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38178142

ABSTRACT

BACKGROUND: Redox imbalance and inflammation have been proposed as the principal mechanisms of damage in the auditory system, resulting in functional alterations and hearing loss. Microglia and astrocytes play a crucial role in mediating oxidative/inflammatory injury in the central nervous system; however, the role of glial cells in the auditory damage is still elusive. OBJECTIVES: Here we investigated glial-mediated responses to toxic injury in peripheral and central structures of the auditory pathway, i.e., the cochlea and the auditory cortex (ACx), in rats exposed to styrene, a volatile compound with well-known oto/neurotoxic properties. METHODS: Male adult Wistar rats were treated with styrene (400 mg/kg daily for 3 weeks, 5/days a week). Electrophysiological, morphological, immunofluorescence and molecular analyses were performed in both the cochlea and the ACx to evaluate the mechanisms underlying styrene-induced oto/neurotoxicity in the auditory system. RESULTS: We showed that the oto/neurotoxic insult induced by styrene increases oxidative stress in both cochlea and ACx. This was associated with macrophages and glial cell activation, increased expression of inflammatory markers (i.e., pro-inflammatory cytokines and chemokine receptors) and alterations in connexin (Cxs) and pannexin (Panx) expression, likely responsible for dysregulation of the microglia/astrocyte network. Specifically, we found downregulation of Cx26 and Cx30 in the cochlea, and high level of Cx43 and Panx1 in the ACx. CONCLUSIONS: Collectively, our results provide novel evidence on the role of immune and glial cell activation in the oxidative/inflammatory damage induced by styrene in the auditory system at both peripheral and central levels, also involving alterations of gap junction networks. Our data suggest that targeting glial cells and connexin/pannexin expression might be useful to attenuate oxidative/inflammatory damage in the auditory system.


Subject(s)
Connexins , Styrene , Rats , Male , Animals , Connexins/metabolism , Styrene/toxicity , Styrene/metabolism , Rats, Wistar , Gap Junctions/metabolism , Neuroglia/metabolism , Inflammation/chemically induced , Inflammation/metabolism , Oxidative Stress , Models, Theoretical
5.
Chembiochem ; 25(7): e202300833, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38306174

ABSTRACT

The styrene monooxygenase, a two-component enzymatic system for styrene epoxidation, was characterised through the study of Fus-SMO - a chimera resulting from the fusion of StyA and StyB using a flexible linker. Notably, it remains debated whether the transfer of FADH2 from StyB to StyA occurs through diffusion, channeling, or a combination of both. Fus-SMO was identified as a trimer with one bound FAD molecule. In silico modelling revealed a well-distanced arrangement (45-50 Å) facilitated by the flexible linker's loopy structure. Pre-steady-state kinetics elucidated the FADox reduction intricacies (kred=110 s-1 for bound FADox), identifying free FADox binding as the rate-determining step. The aerobic oxidation of FADH2 (kox=90 s-1) and subsequent decomposition to FADox and H2O2 demonstrated StyA's protective effect on the bound hydroperoxoflavin (kdec=0.2 s-1) compared to free cofactor (kdec=1.8 s-1). At varied styrene concentrations, kox for FADH2 ranged from 80 to 120 s-1. Studies on NADH consumption vs. styrene epoxidation revealed Fus-SMO's ability to achieve quantitative coupling efficiency in solution, surpassing natural two-component SMOs. The results suggest that Fus-SMO exhibits enhanced FADH2 channelling between subunits. This work contributes to comprehending FADH2 transfer mechanisms in SMO and illustrates how protein fusion can elevate catalytic efficiency for biocatalytic applications.


Subject(s)
Hydrogen Peroxide , Oxygenases , Oxygenases/metabolism , Styrene , Computer Simulation , Kinetics , Flavin-Adenine Dinucleotide/metabolism
6.
J Virol ; 97(6): e0032723, 2023 06 29.
Article in English | MEDLINE | ID: mdl-37255444

ABSTRACT

The mature human immunodeficiency virus (HIV) envelope glycoprotein (Env) trimer, which consists of noncovalently associated gp120 exterior and gp41 transmembrane subunits, mediates virus entry into cells. The pretriggered (State-1) Env conformation is the major target for broadly neutralizing antibodies (bNAbs), whereas receptor-induced downstream Env conformations elicit immunodominant, poorly neutralizing antibody (pNAb) responses. To examine the contribution of membrane anchorage to the maintenance of the metastable pretriggered Env conformation, we compared wild-type and State-1-stabilized Envs solubilized in detergents or in styrene-maleic acid (SMA) copolymers. SMA directly incorporates membrane lipids and resident membrane proteins into lipid nanoparticles (styrene-maleic acid lipid particles [SMALPs]). The integrity of the Env trimer in SMALPs was maintained at both 4°C and room temperature. In contrast, Envs solubilized in Cymal-5, a nonionic detergent, were unstable at room temperature, although their stability was improved at 4°C and/or after incubation with the entry inhibitor BMS-806. Envs solubilized in ionic detergents were relatively unstable at either temperature. Comparison of Envs solubilized in Cymal-5 and SMA at 4°C revealed subtle differences in bNAb binding to the gp41 membrane-proximal external region, consistent with these distinct modes of Env solubilization. Otherwise, the antigenicity of the Cymal-5- and SMA-solubilized Envs was remarkably similar, both in the absence and in the presence of BMS-806. However, both solubilized Envs were recognized differently from the mature membrane Env by specific bNAbs and pNAbs. Thus, detergent-based and detergent-free solubilization at 4°C alters the pretriggered membrane Env conformation in consistent ways, suggesting that Env assumes default conformations when its association with the membrane is disrupted. IMPORTANCE The human immunodeficiency virus (HIV) envelope glycoproteins (Envs) in the viral membrane mediate virus entry into the host cell and are targeted by neutralizing antibodies elicited by natural infection or vaccines. Detailed studies of membrane proteins rely on purification procedures that allow the proteins to maintain their natural conformation. In this study, we show that a styrene-maleic acid (SMA) copolymer can extract HIV-1 Env from a membrane without the use of detergents. The Env in SMA is more stable at room temperature than Env in detergents. The purified Env in SMA maintains many but not all of the characteristics expected of the natural membrane Env. Our results underscore the importance of the membrane environment to the native conformation of HIV-1 Env. Purification methods that bypass the need for detergents could be useful tools for future studies of HIV-1 Env structure and its interaction with receptors and antibodies.


Subject(s)
HIV Envelope Protein gp120 , HIV Envelope Protein gp41 , HIV-1 , Broadly Neutralizing Antibodies , env Gene Products, Human Immunodeficiency Virus , Glycoproteins/chemistry , HIV Antibodies , HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp41/chemistry , Lipids , Protein Conformation , Styrene/metabolism , Detergents
7.
Crit Rev Toxicol ; 54(2): 134-151, 2024 02.
Article in English | MEDLINE | ID: mdl-38440945

ABSTRACT

Risk assessment of human health hazards has traditionally relied on experiments that use animal models. Although exposure studies in rats and mice are a major basis for determining risk in many cases, observations made in animals do not always reflect health hazards in humans due to differences in biology. In this critical review, we use the mode-of-action (MOA) human relevance framework to assess the likelihood that bronchiolar lung tumors observed in mice chronically exposed to styrene represent a plausible tumor risk in humans. Using available datasets, we analyze the weight-of-evidence 1) that styrene-induced tumors in mice occur through a MOA based on metabolism of styrene by Cyp2F2; and 2) whether the hypothesized key event relationships are likely to occur in humans. This assessment describes how the five modified Hill causality considerations support that a Cyp2F2-dependent MOA causing lung tumors is active in mice, but only results in tumorigenicity in susceptible strains. Comparison of the key event relationships assessed in the mouse was compared to an analogous MOA hypothesis staged in the human lung. While some biological concordance was recognized between key events in mice and humans, the MOA as hypothesized in the mouse appears unlikely in humans due to quantitative differences in the metabolic capacity of the airways and qualitative uncertainties in the toxicological and prognostic concordance of pre-neoplastic and neoplastic lesions arising in either species. This analysis serves as a rigorous demonstration of the framework's utility in increasing transparency and consistency in evidence-based assessment of MOA hypotheses in toxicological models and determining relevance to human health.


Subject(s)
Lung Neoplasms , Humans , Mice , Rats , Animals , Lung Neoplasms/chemically induced , Risk Assessment , Styrene/toxicity , Uncertainty
8.
Microb Cell Fact ; 23(1): 69, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38419048

ABSTRACT

We are interested in converting second generation feedstocks into styrene, a valuable chemical compound, using the solvent-tolerant Pseudomonas putida DOT-T1E as a chassis. Styrene biosynthesis takes place from L-phenylalanine in two steps: firstly, L-phenylalanine is converted into trans-cinnamic acid (tCA) by PAL enzymes and secondly, a decarboxylase yields styrene. This study focuses on designing and synthesizing a functional trans-cinnamic acid decarboxylase in Pseudomonas putida. To achieve this, we utilized the "wholesale" method, involving deriving two consensus sequences from multi-alignments of homologous yeast ferulate decarboxylase FDC1 sequences with > 60% and > 50% identity, respectively. These consensus sequences were used to design Pseudomonas codon-optimized genes named psc1 and psd1 and assays were conducted to test the activity in P. putida. Our results show that the PSC1 enzyme effectively decarboxylates tCA into styrene, whilst the PSD1 enzyme does not. The optimal conditions for the PSC1 enzyme, including pH and temperature were determined. The L-phenylalanine DOT-T1E derivative Pseudomonas putida CM12-5 that overproduces L-phenylalanine was used as the host for expression of pal/psc1 genes to efficiently convert L-phenylalanine into tCA, and the aromatic carboxylic acid into styrene. The highest styrene production was achieved when the pal and psc1 genes were co-expressed as an operon in P. putida CM12-5. This construction yielded styrene production exceeding 220 mg L-1. This study serves as a successful demonstration of our strategy to tailor functional enzymes for novel host organisms, thereby broadening their metabolic capabilities. This breakthrough opens the doors to the synthesis of aromatic hydrocarbons using Pseudomonas putida as a versatile biofactory.


Subject(s)
Carboxy-Lyases , Cinnamates , Pseudomonas putida , Styrene/metabolism , Pseudomonas/genetics , Pseudomonas/metabolism , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Pseudomonas putida/metabolism , Phenylalanine/metabolism
9.
J Toxicol Environ Health B Crit Rev ; 27(7): 264-286, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39056307

ABSTRACT

Rodent inhalation studies indicate styrene is a mouse lung-specific carcinogen. Mode-of-action (MOA) analyses indicate that the lung tumors cannot be excluded as weakly quantitatively relevant to humans due to shared oxidative metabolites detected in rodents and humans. However, styrene also is not genotoxic following in vivo dosing. The objective of this review was to characterize occupational and general population cancer risks by conservatively assuming mouse lung tumors were relevant to humans but operating by a non-genotoxic MOA. Inhalation cancer values reference concentrations for respective occupational and general population exposures (RfCcar-occup and RfCcar-genpop) were derived from initial benchmark dose (BMD) modeling of mouse inhalation tumor dose-response data. An overall lowest BMDL10 of 4.7 ppm was modeled for lung tumors, which was further duration- and dose-adjusted by physiologically based pharmacokinetic (PBPK) modeling to derive RfCcar-occup/genpop values of 6.2 ppm and 0.8 ppm, respectively. With the exception of open-mold fiber reinforced composite workers not using personal protective equipment (PPE), the RfCcar-occup/genpop values are greater than typical occupational and general population human exposures, thus indicating styrene exposures represent a low potential for human lung cancer risk. Consistent with this conclusion, a review of styrene occupational epidemiology did not support a conclusion of an association between styrene exposure and lung cancer occurrence, and further supports a conclusion that the conservatively derived RfCcar-occup is lung cancer protective.


Subject(s)
Lung Neoplasms , Occupational Exposure , Styrene , Animals , Humans , Lung Neoplasms/chemically induced , Lung Neoplasms/epidemiology , Styrene/toxicity , Mice , Risk Assessment , Occupational Exposure/adverse effects , Occupational Exposure/analysis , Inhalation Exposure/adverse effects , Inhalation Exposure/analysis , Carcinogens/toxicity , Dose-Response Relationship, Drug
10.
Environ Res ; 245: 118016, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38154563

ABSTRACT

Recovery of carbon fibres and resin from wind turbine blade waste (WTB) composed of carbon fibres (CF)-reinforced unsaturated polyester resin (UPR) has been environmentally challenging due to its complex structure that is not biodegradable and that is rich in highly toxic styrene (main component of UPR). Within this framework, this paper aims to liberate CF and UPR from WTB using a pyrolysis process. The treatment was performed on commercial WTB (CF/UPR) up to 600 °C using a 250 g reactor. The UPR fraction was decomposed into liquid and gaseous phases, while CF remained as a residue. The composition of gaseous phase was monitored during the entire treatment using a digital gas analyser, while gas chromatography-mass spectrometry (GC-MS) was used to characterize the collected liquid phase. CF fraction was collected and exposed to additional oxidation process after treatment at 450 °C for purification propose, then it was analysed using FTIR and SEM-EDX. Finally, the life cycle assessment (LCA) of the CF/UPR pyrolysis was studied using SimaPro software and the results were compared with landfill disposal practices. The pyrolysis results manifested that 500 °C was sufficient for UPR decomposition into styrene-rich oil and gaseous products with yields of 15.23 wt% and 6.83 wt%, respectively, accompanied by 77.93 wt% solid residue including CF. The LCA results showed that pyrolysis with oxidation process has high environmental potential in WTB recycling with significant reduction in several impact categories compared to landfill. However, the pyrolysis scenario revealed several additional environmental burdens related to ecosystems, acidification, Ozone formation, and fine particulate matter formation that must be overcome before upscaling.


Subject(s)
Ecosystem , Pyrolysis , Carbon Fiber , Polyesters , Styrene , Carbon
11.
Luminescence ; 39(6): e4811, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38924260

ABSTRACT

Water pollution has become a serious issue, and mercury(II) ion (Hg(II)) is highly toxic even at low concentrations. Therefore, Hg(II) concentration should be strictly monitored. This study evaluated pyrazoline compounds as fluorescence chemosensor agents for Hg(II) detection. These compounds were prepared from vanillin via etherification, Claisen-Schmidt, and cyclocondensation reactions, to yield benzothiazole-pyrazoline-styrene hybrid compounds. The hybrid compound without styrene was successfully synthesized in 97.70% yield with limit of detection (LoD) and limit of quantification (LoQ) values of 323.5 and 1078 µM, respectively. Conversely, the hybrid compound was produced in 97.29% yield with the LoD and LoQ values of 8.94 and 29.79 nM, respectively. Further spectroscopic investigations revealed that Hg(II) ions can either chelate with three nitrogen of pyridine, pyrazoline, and benzothiazole structures or two oxygen of vanillin and styrene. Furthermore, the hybrid compound was successfully applied in the direct quantification of Hg(II) ions in tap and underground water samples with a validity of 91.63% and 86.08%, respectively, compared with mercury analyzer measurement. The regeneration of pyrazoline was also easily achieved via the addition of an ethylenediaminetetraacetic acid solution. These findings show the promising application of the benzothiazole-pyrazoline-styrene hybrid compound for Hg(II) monitoring in real environmental samples.


Subject(s)
Benzothiazoles , Fluorescent Dyes , Limit of Detection , Mercury , Pyrazoles , Benzothiazoles/chemistry , Pyrazoles/chemistry , Mercury/analysis , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Styrene/chemistry , Spectrometry, Fluorescence , Water Pollutants, Chemical/analysis , Molecular Structure , Ions/analysis
12.
J Occup Environ Hyg ; 21(5): 353-364, 2024 05.
Article in English | MEDLINE | ID: mdl-38560919

ABSTRACT

Structural firefighters are exposed to a complex set of contaminants and combustion byproducts, including volatile organic compounds (VOCs). Additionally, recent studies have found structural firefighters' skin may be exposed to multiple chemical compounds via permeation or penetration of chemical byproducts through or around personal protective equipment (PPE). This mannequin-based study evaluated the effectiveness of four different PPE conditions with varying contamination control measures (incorporating PPE interface design features and particulate blocking materials) to protect against ingress of several VOCs in a smoke exposure chamber. We also investigated the effectiveness of long-sleeve base layer clothing to provide additional protection against skin contamination. Outside gear air concentrations were measured from within the smoke exposure chamber at the breathing zone, abdomen, and thigh heights. Personal air concentrations were collected from mannequins under PPE at the same general heights and under the base layer at abdomen and thigh heights. Sampled contaminants included benzene, toluene, styrene, and naphthalene. Results suggest that VOCs can readily penetrate the ensembles. Workplace protection factors (WPFs) were near one for benzene and toluene and increased with increasing molecular weight of the contaminants. WPFs were generally lower under hoods and jackets compared to under pants. For all PPE conditions, the pants appeared to provide the greatest overall protection against ingress of VOCs, but this may be due in part to the lower air concentrations toward the floor (and cuffs of pants) relative to the thigh-height outside gear concentrations used in calculating the WPFs. Providing added interface control measures and adding particulate-blocking materials appeared to provide a protective benefit against less-volatile chemicals, like naphthalene and styrene.


Subject(s)
Air Pollutants, Occupational , Firefighters , Naphthalenes , Occupational Exposure , Protective Clothing , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Occupational Exposure/prevention & control , Occupational Exposure/analysis , Air Pollutants, Occupational/analysis , Humans , Benzene/analysis , Toluene/analysis , Personal Protective Equipment , Styrene/analysis , Manikins , Smoke/analysis , Workplace
13.
Biophys J ; 122(11): 2256-2266, 2023 06 06.
Article in English | MEDLINE | ID: mdl-36641625

ABSTRACT

Discoidal lipid-protein nanoparticles known as nanodiscs are widely used tools in structural and membrane biology. Amphipathic, synthetic copolymers have recently become an attractive alternative to membrane scaffold proteins for the formation of nanodiscs. Such copolymers can directly intercalate into, and form nanodiscs from, intact membranes without detergents. Although these copolymer nanodiscs can extract native membrane lipids, it remains unclear whether native membrane properties are also retained. To determine the extent to which bilayer lipid packing is retained in nanodiscs, we measured the behavior of packing-sensitive fluorescent dyes in various nanodisc preparations compared with intact lipid bilayers. We analyzed styrene-maleic acid (SMA), diisobutylene-maleic acid (DIBMA), and polymethacrylate (PMA) as nanodisc scaffolds at various copolymer-to-lipid ratios and temperatures. Measurements of Laurdan spectral shifts revealed that dimyristoyl-phosphatidylcholine (DMPC) nanodiscs had increased lipid headgroup packing compared with large unilamellar vesicles (LUVs) above the lipid melting temperature for all three copolymers. Similar effects were observed for DMPC nanodiscs stabilized by membrane scaffolding protein MSP1E1. Increased lipid headgroup packing was also observed when comparing nanodiscs with intact membranes composed of binary mixtures of 1-palmitoyl-2-oleoyl-phosphocholine (POPC) and di-palmitoyl-phosphocholine (DPPC), which show fluid-gel-phase coexistence. Similarly, Laurdan reported increased headgroup packing in nanodiscs for biomimetic mixtures containing cholesterol, most notable for relatively disordered membranes. The magnitudes of these ordering effects were not identical for the various copolymers, with SMA being the most and DIBMA being the least perturbing. Finally, nanodiscs derived from mammalian cell membranes showed similarly increased lipid headgroup packing. We conclude that nanodiscs generally do not completely retain the physical properties of intact membranes.


Subject(s)
Dimyristoylphosphatidylcholine , Nanostructures , Animals , Phosphorylcholine , Lipid Bilayers/chemistry , Maleates/chemistry , Polymers/chemistry , Membrane Proteins/chemistry , Styrene , Unilamellar Liposomes , Nanostructures/chemistry , Mammals
14.
Crit Rev Toxicol ; 53(2): 53-68, 2023 02.
Article in English | MEDLINE | ID: mdl-37216681

ABSTRACT

Styrene is among the U.S. EPA's List 2 chemicals for Tier 1 endocrine screening subject to the agency's two-tiered Endocrine Disruptor Screening Program (EDSP). Both U.S. EPA and OECD guidelines require a Weight of Evidence (WoE) to evaluate a chemical's potential for disrupting the endocrine system. Styrene was evaluated for its potential to disrupt estrogen, androgen, thyroid, and steroidogenic (EATS) pathways using a rigorous WoE methodology that included problem formulation, systematic literature search and selection, data quality evaluation, relevance weighting of endpoint data, and application of specific interpretive criteria. Sufficient data were available to assess the endocrine disruptive potential of styrene based on endpoints that would respond to EATS modes of action in some Tier 1-type and many Tier 2-type reproductive, developmental, and repeat dose toxicity studies. Responses to styrene were inconsistent with patterns of responses expected for chemicals and hormones known to operate via EATS MoAs, and thus, styrene cannot be deemed an endocrine disruptor, a potential endocrine disruptor, or to exhibit endocrine disruptive properties. Because Tier 1 EDSP screening results would trigger Tier 2 studies, like those evaluated here, subjecting styrene to further endocrine screening would produce no additional useful information and would be unjustified from animal welfare perspectives.


Subject(s)
Endocrine Disruptors , Animals , Endocrine Disruptors/toxicity , Endocrine System/chemistry , Estrogens/pharmacology , Styrene/toxicity , Toxicity Tests/methods , United States , United States Environmental Protection Agency
15.
Arch Microbiol ; 205(6): 243, 2023 May 20.
Article in English | MEDLINE | ID: mdl-37209212

ABSTRACT

Recent improvements in 3D printing technology have increased the usage of 3D printed materials in several areas. An exciting and emerging area of applying these next-generation manufacturing strategies is the development of devices for biomedical applications. The main aim of this work was to investigate the effect of tannic acid, gallic acid, and epicatechin gallate on the physicochemical characteristics of acrylonitrile butadiene-styrene (ABS) and Nylon 3D printing materials using the contact angle method. The adhesion of Staphylococcus aureus on untreated and treated materials was evaluated by scanning electron microscopy (SEM) analysis and the images were treated by MATLAB software. The results of the contact angle measurements showed a significant change in the physicochemical properties of both surfaces, indicated an increase in the electron donor character of 3D printing materials following treatment. Thus, the ABS surfaces treated with tannic acid, gallic acid, and epicatechin gallate have become more electron donating. Furthermore, our results proved the ability of S. aureus to adhere on all materials with a percentage of 77.86% for ABS and 91.62% for nylon. The SEM has shown that all actives molecules were sufficient to obtain better inhibition of bacterial adhesion, which tannic acid has shown a total inhibition of S. aureus on ABS. From these results, our treatment presents a high potential for utilization as an active coating to prevent bacterial attachment and the eventual biofilm development in medical field.


Subject(s)
Staphylococcal Infections , Staphylococcus aureus , Humans , Nylons/pharmacology , Printing, Three-Dimensional , Styrene/chemistry , Styrene/pharmacology , Tannins/pharmacology , Gallic Acid/pharmacology
16.
Langmuir ; 39(6): 2450-2459, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36724350

ABSTRACT

Membrane proteins are an essential part of signaling and transport processes and are targeted by multiple drugs. To isolate and investigate them in their native state, polymer-bounded nanodiscs have become valuable tools. In this study, we investigate the lipid model system dimyristoyl-phosphocholine (DMPC) with the nanodisc-forming copolymers styrene maleic acid (SMA) and diisobutylene maleic acid (DIBMA). Using small-angle X-ray scattering (SAXS) and dynamic light scattering (DLS), we studied the influence of polymer concentration and temperature on the nanodisc structure. In Tris buffer, the size of nanodiscs formed with SMA is smaller compared to DIBMA at the same polymer ratio. In both cases, the size decreases monotonically with increasing polymer concentration, and this effect is more pronounced when using SMA. Measurements at temperatures (T) between 5 and 30 °C in phosphate buffer showed an incomplete solubilization at high T even at polymer/lipid ratios above that required for complete lipid solubilization. For DIBMA, the nanodiscs developed at lower temperatures are stable and the net repulsion increases, while for SMA, the individual nanodiscs possess smaller sizes and are less affected by T. However, using DLS, one can observe SMA agglomerates at low T. Interestingly, for both polymers, no drastic changes of the observable parameters (radius and bilayer thickness) are seen upon cooling, which would indicate a sharp (first-order) phase transition from liquid-crystalline to gel, but only gradual changes. Hence, we conclude that the transition from a gel toward a liquid-crystalline lipid phase proceeds over a broad T-range compared to a continuous lipid bilayer. These results can pave the way toward the development of better protocols for studying membrane proteins stabilized in this type of membrane mimics.


Subject(s)
Nanostructures , Nanostructures/chemistry , Polymers/chemistry , Scattering, Small Angle , X-Ray Diffraction , Lipid Bilayers/chemistry , Maleates/chemistry , Membrane Proteins/chemistry , Styrene/chemistry
17.
Eur Biophys J ; 52(1-2): 39-51, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36786921

ABSTRACT

From the discovery of the first membrane-interacting polymer, styrene maleic-acid (SMA), there has been a rapid development of membrane solubilising polymers. These new polymers can solubilise membranes under a wide range of conditions and produce varied sizes of nanoparticles, yet there has been a lack of broad comparison between the common polymer types and solubilising conditions. Here, we present a comparative study on the three most common commercial polymers: SMA 3:1, SMA 2:1, and DIBMA. Additionally, this work presents, for the first time, a comparative characterisation of polymethacrylate copolymer (PMA). Absorbance and dynamic light scattering measurements were used to evaluate solubilisation across key buffer conditions in a simple, adaptable assay format that looked at pH, salinity, and divalent cation concentration. Lipid-polymer nanoparticles formed from SMA variants were found to be the most susceptible to buffer effects, with nanoparticles from either zwitterionic DMPC or POPC:POPG (3:1) bilayers only forming in low to moderate salinity (< 600 mM NaCl) and above pH 6. DIBMA-lipid nanoparticles could be formed above a pH of 5 and were stable in up to 4 M NaCl. Similarly, PMA-lipid nanoparticles were stable in all NaCl concentrations tested (up to 4 M) and a broad pH range (3-10). However, for both DIBMA and PMA nanoparticles there is a severe penalty observed for bilayer solubilisation in non-optimal conditions or when using a charged membrane. Additionally, lipid fluidity of the DMPC-polymer nanoparticles was analysed through cw-EPR, showing no cooperative gel-fluid transition as would be expected for native-like lipid membranes.


Subject(s)
Nanoparticles , Polymers , Dimyristoylphosphatidylcholine , Sodium Chloride , Lipid Bilayers , Styrene , Maleates
18.
Eur Phys J E Soft Matter ; 46(11): 107, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37917241

ABSTRACT

Virus-like particles (VLPs) are noninfectious nanocapsules that can be used for drug delivery or vaccine applications. VLPs can be assembled from virus capsid proteins around a condensing agent, such as RNA, DNA, or a charged polymer. Electrostatic interactions play an important role in the assembly reaction. VLPs assemble from many copies of capsid protein, with a combinatorial number of intermediates. Hence, the mechanism of the reaction is poorly understood. In this paper, we combined solution small-angle X-ray scattering (SAXS), cryo-transmission electron microscopy (TEM), and computational modeling to determine the effect of ionic strength on the assembly of Simian Vacuolating Virus 40 (SV40)-like particles. We mixed poly(styrene sulfonate) with SV40 capsid protein pentamers at different ionic strengths. We then characterized the assembly product by SAXS and cryo-TEM. To analyze the data, we performed Langevin dynamics simulations using a coarse-grained model that revealed incomplete, asymmetric VLP structures consistent with the experimental data. We found that close to physiological ionic strength, [Formula: see text] VLPs coexisted with VP1 pentamers. At lower or higher ionic strengths, incomplete particles coexisted with pentamers and [Formula: see text] particles. Including the simulated structures was essential to explain the SAXS data in a manner that is consistent with the cryo-TEM images.


Subject(s)
Capsid Proteins , Capsid , Capsid Proteins/chemistry , Capsid Proteins/genetics , Capsid Proteins/metabolism , Capsid/chemistry , Capsid/metabolism , Styrene/analysis , Styrene/metabolism , Scattering, Small Angle , X-Ray Diffraction , Simian virus 40/chemistry , Simian virus 40/genetics , Simian virus 40/metabolism , Virus Assembly
19.
Macromol Rapid Commun ; 44(20): e2300344, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37552045

ABSTRACT

High-performance polypropylene (PP) foam is a vital polymer product in industrial areas. However, the poor melt strength of ordinary PP homopolymer limits its foaming molding. In this work, high melt strength polypropylene (HMSPP) is prepared by using styrene (St) and tripropylene glycol diacrylate (TPGDA) as comonomers, and then PP foams are prepared by mold foaming method. The results show that adding St in the grafting process of TPGDA will obviously improve the melt strength of the PP matrix, and its melt strength (28 184 Pa.s) is 7.4 times higher than that of pure PP. HMSPP foam has more regular and uniform cells and higher cell density, which significantly improves the sound and thermal insulation properties of PP foam. Compared with pure PP foam, the average sound transmission loss (52.9 dB) of HMSPP foam with a low foaming ratio increased by 64%, and the thermal conductivity (0.0867 W mK-1 ) decreased by 46%. Therefore, the obtained HMSPP foam can be used in sound insulation or thermal insulation area. This work provides an available route for the high-performance utilization of PP foam.


Subject(s)
Acrylates , Polypropylenes , Polymers , Propylene Glycols , Styrene
20.
Macromol Rapid Commun ; 44(7): e2200873, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36698325

ABSTRACT

A one-step dispersion copolymerization technique is demonstrated to fabricate biphasic particles as an approach to streamline the production of particles with complex morphology. The model system studies a monomer feed of hydrophobic styrene and hydrophilic, zwitterionic sulfobetaine methacrylate (SBMA) in a water/isopropanol cosolvent mixture. The resulting particles have a core-shell morphology that can be transformed, simply by washing the particles with water, into particles with a single surface opening connected to an interior cavity. Results indicate that particle morphology is dependent on the presence of nanoscopic SBMA-rich aggregates in the initial reaction mixture to act as nucleation sites, forming an SBMA-rich core encased in a styrene-rich shell. Systematic study of the morphology evolution reveals that the difference in monomer solubility profile can be exploited to control compositional drift of the particle composition during copolymerization yielding copolymer with sufficiently different composition to form phase-separated particle morphology. When SBMA is replaced with various ionic comonomers, the cavity-forming morphology is observed when reaction conditions result in low solubility of the comonomer in the cosolvent mixture. Based on these results, design guidelines are developed that may be applied to a variety of systems requiring complex and responsive particles made from chemically distinct comonomer pairings.


Subject(s)
Polymers , Styrene , Polymers/chemistry , Methacrylates/chemistry , Polymerization
SELECTION OF CITATIONS
SEARCH DETAIL