Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 346
Filter
Add more filters

Country/Region as subject
Publication year range
1.
EMBO J ; 43(13): 2715-2732, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38769437

ABSTRACT

Microtubules regulate cell polarity and migration via local activation of focal adhesion turnover, but the mechanism of this process is insufficiently understood. Molecular complexes containing KANK family proteins connect microtubules with talin, the major component of focal adhesions. Here, local optogenetic activation of KANK1-mediated microtubule/talin linkage promoted microtubule targeting to an individual focal adhesion and subsequent withdrawal, resulting in focal adhesion centripetal sliding and rapid disassembly. This sliding is preceded by a local increase of traction force due to accumulation of myosin-II and actin in the proximity of the focal adhesion. Knockdown of the Rho activator GEF-H1 prevented development of traction force and abolished sliding and disassembly of focal adhesions upon KANK1 activation. Other players participating in microtubule-driven, KANK-dependent focal adhesion disassembly include kinases ROCK, PAK, and FAK, as well as microtubules/focal adhesion-associated proteins kinesin-1, APC, and αTAT. Based on these data, we develop a mathematical model for a microtubule-driven focal adhesion disruption involving local GEF-H1/RhoA/ROCK-dependent activation of contractility, which is consistent with experimental data.


Subject(s)
Focal Adhesions , Kinesins , Microtubules , Rho Guanine Nucleotide Exchange Factors , Focal Adhesions/metabolism , Microtubules/metabolism , Humans , Rho Guanine Nucleotide Exchange Factors/metabolism , Rho Guanine Nucleotide Exchange Factors/genetics , Kinesins/metabolism , Kinesins/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Cytoskeletal Proteins/metabolism , Cytoskeletal Proteins/genetics , Myosin Type II/metabolism , Talin/metabolism , Talin/genetics , Animals
2.
Nat Immunol ; 16(5): 505-16, 2015 May.
Article in English | MEDLINE | ID: mdl-25751747

ABSTRACT

A cytosolic role for the histone methyltransferase Ezh2 in regulating lymphocyte activation has been suggested, but the molecular mechanisms underpinning this extranuclear function have remained unclear. Here we found that Ezh2 regulated the integrin signaling and adhesion dynamics of neutrophils and dendritic cells (DCs). Ezh2 deficiency impaired the integrin-dependent transendothelial migration of innate leukocytes and restricted disease progression in an animal model of multiple sclerosis. Direct methylation of talin, a key regulatory molecule in cell migration, by Ezh2 disrupted the binding of talin to F-actin and thereby promoted the turnover of adhesion structures. This regulatory effect was abolished by targeted disruption of the interactions of Ezh2 with the cytoskeletal-reorganization effector Vav1. Our studies reveal an unforeseen extranuclear function for Ezh2 in regulating adhesion dynamics, with implications for leukocyte migration, immune responses and potentially pathogenic processes.


Subject(s)
Cell Nucleus/metabolism , Dendritic Cells/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Multiple Sclerosis/immunology , Neutrophils/immunology , Polycomb Repressive Complex 2/metabolism , Talin/metabolism , Actins/metabolism , Animals , Cell Adhesion/genetics , Cell Movement , Cells, Cultured , Disease Models, Animal , Enhancer of Zeste Homolog 2 Protein , Humans , Lymphocyte Activation/genetics , Methylation , Mice , Mice, Knockout , Polycomb Repressive Complex 2/genetics , Protein Binding/genetics , Proto-Oncogene Proteins c-vav/metabolism , Talin/genetics , Transendothelial and Transepithelial Migration/genetics
3.
PLoS Genet ; 20(4): e1011224, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38662776

ABSTRACT

Cell adhesion requires linkage of transmembrane receptors to the cytoskeleton through intermediary linker proteins. Integrin-based adhesion to the extracellular matrix (ECM) involves large adhesion complexes that contain multiple cytoskeletal adapters that connect to the actin cytoskeleton. Many of these adapters, including the essential cytoskeletal linker Talin, have been shown to contain multiple actin-binding sites (ABSs) within a single protein. To investigate the possible role of having such a variety of ways of linking integrins to the cytoskeleton, we generated mutations in multiple actin binding sites in Drosophila talin. Using this approach, we have been able to show that different actin-binding sites in talin have both unique and complementary roles in integrin-mediated adhesion. Specifically, mutations in either the C-terminal ABS3 or the centrally located ABS2 result in lethality showing that they have unique and non-redundant function in some contexts. On the other hand, flies simultaneously expressing both the ABS2 and ABS3 mutants exhibit a milder phenotype than either mutant by itself, suggesting overlap in function in other contexts. Detailed phenotypic analysis of ABS mutants elucidated the unique roles of the talin ABSs during embryonic development as well as provided support for the hypothesis that talin acts as a dimer in in vivo contexts. Overall, our work highlights how the ability of adhesion complexes to link to the cytoskeleton in multiple ways provides redundancy, and consequently robustness, but also allows a capacity for functional specialization.


Subject(s)
Actins , Cell Adhesion , Extracellular Matrix , Talin , Animals , Actin Cytoskeleton/metabolism , Actin Cytoskeleton/genetics , Actins/metabolism , Actins/genetics , Binding Sites , Cell Adhesion/genetics , Cytoskeleton/metabolism , Cytoskeleton/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Extracellular Matrix/metabolism , Integrins/metabolism , Integrins/genetics , Mutation , Protein Binding , Talin/metabolism , Talin/genetics
4.
J Cell Sci ; 136(8)2023 04 15.
Article in English | MEDLINE | ID: mdl-37083041

ABSTRACT

Focal adhesions are composed of transmembrane integrins, linking the extracellular matrix to the actomyosin cytoskeleton, via cytoplasmic proteins. Adhesion depends on the activation of integrins. Talin and kindlin proteins are intracellular activators of integrins that bind to ß-integrin cytoplasmic tails. Integrin activation and clustering through extracellular ligands guide the organization of adhesion complexes. However, the roles of talin and kindlin in this process are poorly understood. To determine the contribution of talin, kindlin, lipids and actomyosin in integrin clustering, we used a biomimetic in vitro system, made of giant unilamellar vesicles, containing transmembrane integrins (herein αIIbß3), with purified talin (talin-1), kindlin (kindlin-2, also known as FERMT2) and actomyosin. Here, we show that talin and kindlin individually have the ability to cluster integrins. Talin and kindlin synergize to induce the formation of larger integrin clusters containing the three proteins. Comparison of protein density reveals that kindlin increases talin and integrin density, whereas talin does not affect kindlin and integrin density. Finally, kindlin increases integrin-talin-actomyosin coupling. Our study unambiguously demonstrates how kindlin and talin cooperate to induce integrin clustering, which is a major parameter for cell adhesion.


Subject(s)
Integrins , Talin , Integrins/metabolism , Talin/genetics , Talin/metabolism , Actomyosin , Membrane Proteins/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Cell Adhesion
5.
Development ; 149(23)2022 12 01.
Article in English | MEDLINE | ID: mdl-36314606

ABSTRACT

The assembly of a mature vascular network involves coordinated endothelial cell (EC) shape changes, including the process of EC elongation. How EC elongation is dynamically regulated in vivo is not fully understood. Here, we have generated a zebrafish mutant that is deficient for the integrin adaptor protein Talin 1 (Tln1). Using a new focal adhesion (FA) marker line expressing endothelial Vinculinb-eGFP, we demonstrate that EC FAs function dynamically and are lost in our tln1 mutants, allowing us to uncouple the primary roles of FAs in EC morphogenesis from the secondary effects that occur due to systemic vessel failure or loss of blood flow. Tln1 loss led to compromised F-actin rearrangements, perturbed EC elongation and disrupted cell-cell junction linearisation in vessel remodelling. Finally, chemical induction of actin polymerisation restored actin dynamics and EC elongation during vascular morphogenesis. Together, we identify that FAs are essential for EC elongation and junction linearisation in flow-pressured vessels and that they influence actin polymerisation in cellular morphogenesis. These observations can explain the severely compromised vessel beds and vascular leakage observed in mutant models that lack integrin signalling. This article has an associated 'The people behind the papers' interview.


Subject(s)
Focal Adhesions , Talin , Animals , Focal Adhesions/metabolism , Talin/genetics , Talin/metabolism , Actins/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Endothelial Cells/metabolism , Integrins/genetics , Integrins/metabolism , Cell Adhesion
6.
Arterioscler Thromb Vasc Biol ; 44(8): 1799-1812, 2024 08.
Article in English | MEDLINE | ID: mdl-38899470

ABSTRACT

BACKGROUND: Integrin-regulated monocyte recruitment and cellular responses of monocyte-derived macrophages are critical for the pathogenesis of atherosclerosis. In the canonical model, talin1 controls ligand binding to integrins, a prerequisite for integrins to mediate leukocyte recruitment and induce immune responses. However, the role of talin1 in the development of atherosclerosis has not been studied. Our study investigated how talin1 in myeloid cells regulates the progression of atherosclerosis. METHODS: On an Apoe-/- background, myeloid talin1-deficient mice and the control mice were fed with a high-fat diet for 8 or 12 weeks to induce atherosclerosis. The atherosclerosis development in the aorta and monocyte recruitment into atherosclerotic lesions were analyzed. RESULTS: Myeloid talin1 deletion facilitated the formation of atherosclerotic lesions and macrophage deposition in lesions. Talin1 deletion abolished integrin ß2-mediated adhesion of monocytes but did not impair integrin α4ß1-dependent cell adhesion in a flow adhesion assay. Strikingly, talin1 deletion did not prevent Mn2+- or chemokine-induced activation of integrin α4ß1 to the high-affinity state for ligands. In an in vivo competitive homing assay, monocyte infiltration into inflamed tissues was prohibited by antibodies to integrin α4ß1 but was not affected by talin1 deletion or antibodies to integrin ß2. Furthermore, quantitative polymerase chain reaction and ELISA (enzyme-linked immunosorbent assay) analysis showed that macrophages produced cytokines to promote inflammation and the proliferation of smooth muscle cells. Ligand binding to integrin ß3 inhibited cytokine generation in macrophages, although talin1 deletion abolished the negative effects of integrin ß3. CONCLUSIONS: Integrin α4ß1 controls monocyte recruitment during atherosclerosis. Talin1 is dispensable for integrin α4ß1 activation to the high-affinity state and integrin α4ß1-mediated monocyte recruitment. Yet, talin1 is required for integrin ß3 to inhibit the production of inflammatory cytokines in macrophages. Thus, intact monocyte recruitment and elevated inflammatory responses cause enhanced atherosclerosis in talin1-deficient mice. Our study provides novel insights into the roles of myeloid talin1 and integrins in the progression of atherosclerosis.


Subject(s)
Atherosclerosis , Cell Adhesion , Disease Models, Animal , Macrophages , Mice, Inbred C57BL , Mice, Knockout, ApoE , Myeloid Cells , Talin , Animals , Talin/metabolism , Talin/genetics , Atherosclerosis/genetics , Atherosclerosis/pathology , Atherosclerosis/metabolism , Myeloid Cells/metabolism , Myeloid Cells/pathology , Macrophages/metabolism , Aortic Diseases/pathology , Aortic Diseases/genetics , Aortic Diseases/metabolism , Aortic Diseases/immunology , Aortic Diseases/prevention & control , Male , CD18 Antigens/metabolism , CD18 Antigens/genetics , Integrin alpha4beta1/metabolism , Integrin alpha4beta1/genetics , Monocytes/metabolism , Monocytes/immunology , Plaque, Atherosclerotic , Mice , Cells, Cultured , Aorta/pathology , Aorta/metabolism , Signal Transduction
7.
Nat Rev Mol Cell Biol ; 14(8): 503-17, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23860236

ABSTRACT

Integrin receptors provide a dynamic, tightly-regulated link between the extracellular matrix (or cellular counter-receptors) and intracellular cytoskeletal and signalling networks, enabling cells to sense and respond to their chemical and physical environment. Talins and kindlins, two families of FERM-domain proteins, bind the cytoplasmic tail of integrins, recruit cytoskeletal and signalling proteins involved in mechanotransduction and synergize to activate integrin binding to extracellular ligands. New data reveal the domain structure of full-length talin, provide insights into talin-mediated integrin activation and show that RIAM recruits talin to the plasma membrane, whereas vinculin stabilizes talin in cell-matrix junctions. How kindlins act is less well-defined, but disease-causing mutations show that kindlins are also essential for integrin activation, adhesion, cell spreading and signalling.


Subject(s)
Cell Communication/genetics , Integrins/physiology , Membrane Proteins/physiology , Neoplasm Proteins/physiology , Talin/physiology , Animals , Cell Adhesion/genetics , Cell Communication/physiology , Humans , Integrins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Models, Biological , Multigene Family/physiology , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Protein Binding/physiology , Talin/genetics , Talin/metabolism
8.
Proc Natl Acad Sci U S A ; 119(10): e2109329119, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35245171

ABSTRACT

SignificanceTalin is a mechanosensitive adaptor protein that links integrins to the actin cytoskeleton at cell-extracellular matrix adhesions. Although the C-terminal actin-binding domain ABS3 of talin is required for function, it binds weakly to actin in solution. We show that ABS3 binds actin strongly only when subjected to mechanical forces comparable to those generated by the cytoskeleton. Moreover, the interaction between ABS3 and actin depends strongly on the direction of force in a manner predicted to organize actin to facilitate adhesion growth and efficient cytoskeletal force generation. These characteristics can explain how force sensing by talin helps to nucleate adhesions precisely when and where they are required to transmit force between the cytoskeleton and the extracellular matrix.


Subject(s)
Actins/chemistry , Talin/chemistry , Actins/genetics , Actins/metabolism , Animals , Humans , Protein Binding , Protein Domains , Talin/genetics , Talin/metabolism
9.
Hum Mol Genet ; 31(24): 4159-4172, 2022 12 16.
Article in English | MEDLINE | ID: mdl-35861643

ABSTRACT

Adhesion of cells to the extracellular matrix (ECM) must be exquisitely coordinated to enable development and tissue homeostasis. Cell-ECM interactions are regulated by multiple signalling pathways that coordinate the activation state of the integrin family of ECM receptors. The protein talin is pivotal in this process, and talin's simultaneous interactions with the cytoplasmic tails of the integrins and the plasma membrane are essential to enable robust, dynamic control of integrin activation and cell-ECM adhesion. Here, we report the identification of a de novo heterozygous c.685C>T (p.Pro229Ser) variant in the TLN1 gene from a patient with a complex phenotype. The mutation is located in the talin head region at the interface between the F2 and F3 domains. The characterization of this novel p.P229S talin variant reveals the disruption of adhesion dynamics that result from disturbance of the F2-F3 domain interface in the talin head. Using biophysical, computational and cell biological techniques, we find that the variant perturbs the synergy between the integrin-binding F3 and the membrane-binding F2 domains, compromising integrin activation, adhesion and cell migration. Whilst this remains a variant of uncertain significance, it is probable that the dysregulation of adhesion dynamics we observe in cells contributes to the multifaceted clinical symptoms of the patient and may provide insight into the multitude of cellular processes dependent on talin-mediated adhesion dynamics.


Subject(s)
Integrins , Talin , Talin/genetics , Talin/chemistry , Talin/metabolism , Integrins/genetics , Integrins/metabolism , Protein Binding , Cell Membrane/metabolism , Cell Adhesion/genetics
10.
Reprod Biomed Online ; 48(3): 103646, 2024 03.
Article in English | MEDLINE | ID: mdl-38290387

ABSTRACT

RESEARCH QUESTION: What is the relationship between ATG8 and integrin α4ß1, Talin-1, and Treg cell differentiation, and the effects on endometriosis (EMS)? DESIGN: First, the correlation between the ATG8, Talin-1, integrin α4ß1, and differentiation of Treg cells and EMS was examined in clinical samples. Human peripheral blood mononuclear cells (PBMC) and endometrial stromal cells were extracted and identified, oe-ATG8 and oe-integrin α4ß1 were transfected to overexpress ATG8 and integrin α4ß1, and Tregs cell differentiation and endometrial stromal cells (ESC) function were detected. In addition, the molecular mechanism by which ATG8 inhibited EMS disease progression at the molecular and animal levels was investigated. RESULTS: ATG8 expression was negatively correlated with positive proportion of Tregs cells (P = 0.0463). The expression of Talin-1 and integrin-α4ß1 (both P < 0.0001) in PBMC decreased significantly after oe-ATG8 transfection, whereas the Treg cells' positive rate significantly increased (P = 0.0003). The ESC proliferation, adhesion, migration, and invasion (all P < 0.0001) declined after co-culture with Treg cells that underwent oe-ATG8 transfection. The expression of Talin-1 (P = 0.0025) and integrin-α4ß1 (P = 0.0002) in PBMC increased significantly after oe-integrin α4ß1 and oe-ATG8 transfection. In addition, this transfection reversed the corresponding regulation of oe-ATG8 transfection. Finally, animal experiments in vivo confirmed that ATG8 inhibited EMS disease progression. CONCLUSION: The ATG8 regulated Treg cell differentiation and inhibited EMS formation by influencing the interaction between integrin α4ß1 and Talin-1.


Subject(s)
Endometriosis , Integrin alpha4beta1 , Animals , Female , Humans , Integrin alpha4beta1/metabolism , T-Lymphocytes, Regulatory , Talin/genetics , Talin/metabolism , Leukocytes, Mononuclear/metabolism , Cell Differentiation , Disease Progression , Cell Adhesion
11.
Arterioscler Thromb Vasc Biol ; 43(6): 1015-1030, 2023 06.
Article in English | MEDLINE | ID: mdl-37051931

ABSTRACT

BACKGROUND: AGK (acylglycerol kinase) was first identified as a mitochondrial transmembrane protein that exhibits a lipid kinase function. Recent studies have established that AGK promotes cancer growth and metastasis, enhances glycolytic metabolism and function fitness of CD8+ T cells, or regulates megakaryocyte differentiation. However, the role of AGK in platelet activation and arterial thrombosis remains to be elaborated. METHODS: We performed hematologic analysis using automated hematology analyzer and investigated platelets morphology by transmission electron microscope. We explored the role of AGK in platelet activation and arterial thrombosis utilizing transgenic mice, platelet functional experiments in vitro, and thrombosis models in vivo. We revealed the regulation effect of AGK on Talin-1 by coimmunoprecipitation, mass spectrometry, immunofluorescence, and Western blot. We tested the role of AGK on lipid synthesis of phosphatidic acid/lysophosphatidic acid and thrombin generation by specific Elisa kits. RESULTS: In this study, we found that AGK depletion or AGK mutation had no effect on the platelet average volumes, the platelet microstructures, or the expression levels of the major platelet membrane receptors. However, AGK deficiency or AGK mutation conspicuously decreased multiple aspects of platelet activation, including agonists-induced platelet aggregation, granules secretion, JON/A binding, spreading on Fg (fibrinogen), and clot retraction. AGK deficiency or AGK mutation also obviously delayed arterial thrombus formation but had no effect on tail bleeding time and platelet procoagulant function. Mechanistic investigation revealed that AGK may promote Talin-1Ser425 phosphorylation and affect the αIIbß3-mediated bidirectional signaling pathway. However, AGK does not affect lipid synthesis of phosphatidic acid/lysophosphatidic acid in platelets. CONCLUSIONS: AGK, through its kinase activity, potentiates platelet activation and arterial thrombosis by promoting Talin-1 Ser425 phosphorylation and affecting the αIIbß3-mediated bidirectional signaling pathway.


Subject(s)
Talin , Thrombosis , Animals , Mice , Blood Platelets/metabolism , CD8-Positive T-Lymphocytes/metabolism , Mice, Transgenic , Phosphatidic Acids/metabolism , Phosphatidic Acids/pharmacology , Platelet Activation , Platelet Aggregation , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Signal Transduction , Talin/genetics , Talin/metabolism , Talin/pharmacology , Thrombosis/pathology
12.
J Immunol ; 208(6): 1378-1388, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35197328

ABSTRACT

Agonist-induced Rap1 GTP loading results in integrin activation involved in T cell trafficking and functions. MRL proteins Rap1-interacting adapter molecule (RIAM) and lamellipodin (LPD) are Rap1 effectors that can recruit talin1 to integrins, resulting in integrin activation. Recent work also implicates direct Rap1-talin1 interaction in integrin activation. Here, we analyze in mice the connections between Rap1 and talin1 that support integrin activation in conventional CD4+ T (Tconv) and CD25HiFoxp3+CD4+ regulatory T (Treg) cells. Talin1(R35E, R118E) mutation that disrupts both Rap1 binding sites results in a partial defect in αLß2, α4ß1, and α4ß7 integrin activation in both Tconv and Treg cells with resulting defects in T cell homing. Talin1(R35E,R118E) Tconv manifested reduced capacity to induce colitis in an adoptive transfer mouse model. Loss of RIAM exacerbates the defects in Treg cell function caused by the talin1(R35E,R118E) mutation, and deleting both MRL proteins in combination with talin1(R35E,R118E) phenocopy the complete lack of integrin activation observed in Rap1a/b-null Treg cells. In sum, these data reveal the functionally significant connections between Rap1 and talin1 that enable αLß2, α4ß1, and α4ß7 integrin activation in CD4+ T cells.


Subject(s)
Talin , rap1 GTP-Binding Proteins , Animals , Binding Sites , CD4-Positive T-Lymphocytes/metabolism , Integrins/metabolism , Mice , Talin/genetics , Talin/metabolism , rap1 GTP-Binding Proteins/metabolism
13.
J Cell Sci ; 134(20)2021 10 15.
Article in English | MEDLINE | ID: mdl-34708856

ABSTRACT

Talins are cytoskeletal linker proteins that consist of an N-terminal head domain, a flexible neck region and a C-terminal rod domain made of 13 helical bundles. The head domain binds integrin ß-subunit cytoplasmic tails, which triggers integrin conformational activation to increase affinity for extracellular matrix proteins. The rod domain links to actin filaments inside the cell to transmit mechanical loads and serves as a mechanosensitive signalling hub for the recruitment of many other proteins. The α-helical bundles function as force-dependent switches - proteins that interact with folded bundles are displaced when force induces unfolding, exposing previously cryptic binding sites for other ligands. This leads to the notion of a talin code. In this Cell Science at a Glance article and the accompanying poster, we propose that the multiple switches within the talin rod function to process and store time- and force-dependent mechanical and chemical information.


Subject(s)
Mechanotransduction, Cellular , Talin , Binding Sites , Integrins/metabolism , Protein Binding , Signal Transduction , Talin/genetics , Talin/metabolism
14.
Development ; 147(14)2020 07 17.
Article in English | MEDLINE | ID: mdl-32580934

ABSTRACT

Melanoblasts disperse throughout the skin and populate hair follicles through long-range cell migration. During migration, cells undergo cycles of coordinated attachment and detachment from the extracellular matrix (ECM). Embryonic migration processes that require cell-ECM attachment are dependent on the integrin family of adhesion receptors. Precise regulation of integrin-mediated adhesion is important for many developmental migration events. However, the mechanisms that regulate integrin-mediated adhesion in vivo in melanoblasts are not well understood. Here, we show that autoinhibitory regulation of the integrin-associated adapter protein talin coordinates cell-ECM adhesion during melanoblast migration in vivo Specifically, an autoinhibition-defective talin mutant strengthens and stabilizes integrin-based adhesions in melanocytes, which impinges on their ability to migrate. Mice with defective talin autoinhibition exhibit delays in melanoblast migration and pigmentation defects. Our results show that coordinated integrin-mediated cell-ECM attachment is essential for melanoblast migration and that talin autoinhibition is an important mechanism for fine-tuning cell-ECM adhesion during cell migration in development.


Subject(s)
Cell Adhesion , Extracellular Matrix/metabolism , Actins/metabolism , Animals , Cell Movement , Cell Shape , Cells, Cultured , Embryo, Mammalian/metabolism , Integrins/metabolism , Male , Melanocytes/cytology , Melanocytes/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Fluorescence , Mutagenesis, Site-Directed , Pigmentation , Talin/genetics , Talin/metabolism
15.
J Mol Recognit ; 36(6): e3012, 2023 06.
Article in English | MEDLINE | ID: mdl-36987702

ABSTRACT

Vinculin is an integral component of integrin adhesions, where it functions as a molecular clutch coupling intracellular contraction to the extracellular matrix. Quantitating its contribution to the reinforcement of newly forming adhesions, however, requires ultrasensitive cell force assays covering short time and low force ranges. Here, we have combined atomic force microscopy-based single-cell force spectroscopy (SCFS) and optical tweezers force spectroscopy to investigate the role of vinculin in reinforcement of individual nascent adhesions during the first 5 min of cell contact with fibronectin or vitronectin. At minimal adhesion times (5-10 s), mouse embryonic fibroblast (MEF) wildtype (wt) and vinculin knock-out (vin(-/-) ) cells develop comparable adhesion forces on the scale of several individual integrin-ligand bonds, confirming that vinculin is dispensable for adhesion initiation. In contrast, after 60 to 120 s, adhesion strength and traction reinforce quickly in wt cells, while remaining low in vin(-/-) cells. Re-expression of full-length vinculin or a constitutively active vinculin mutant (vinT12) in MEF vin(-/-) cells restored adhesion and traction with the same efficiency, while vinculin with a mutated talin-binding head region (vinA50I) or missing the actin-binding tail-domain (vin880) was ineffective. Integrating total internal reflection fluorescence imaging into the SCFS setup furthermore enabled us to correlate vinculin-green fluorescent protein (GFP) recruitment to nascent adhesion sites with the built-up of vinculin-dependent adhesion forces directly. Vinculin recruitment and cell adhesion reinforcement followed synchronous biphasic patterns, suggesting vinculin recruitment, but not activation, as the rate-limiting step for adhesion reinforcement. Combining sensitive SCFS with fluorescence microscopy thus provides insight into the temporal sequence of vinculin-dependent mechanical reinforcement in nascent integrin adhesions.


Subject(s)
Fibroblasts , Focal Adhesions , Animals , Mice , Cell Adhesion/physiology , Fibroblasts/metabolism , Focal Adhesions/metabolism , Integrins/metabolism , Talin/genetics , Talin/chemistry , Talin/metabolism , Vinculin/genetics , Vinculin/chemistry , Vinculin/metabolism
16.
BMC Cancer ; 23(1): 302, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37013489

ABSTRACT

BACKGROUND: Talin-1 as a component of multi-protein adhesion complexes plays a role in tumor formation and migration in various malignancies. This study investigated Talin-1 in protein levels as a potential prognosis biomarker in skin tumors. METHODS: Talin-1 was evaluated in 106 skin cancer (33 melanomas and 73 non-melanomas skin cancer (NMSC)) and 11 normal skin formalin-fixed paraffin-embedded (FFPE) tissue samples using immunohistochemical technique on tissue microarrays (TMAs). The association between the expression of Talin-1 and clinicopathological parameters, as well as survival outcomes, were assessed. RESULTS: Our findings from data minings through bioinformatics tools indicated dysregulation of Talin-1 in mRNA levels for skin cancer samples. In addition, there was a statistically significant difference in Talin-1 expression in terms of intensity of staining, percentage of positive tumor cells, and H-score in melanoma tissues compared to NMSC (P = 0.001, P < 0.001, and P < 0.001, respectively). Moreover, high cytoplasmic expression of Talin-1 was found to be associated with significantly advanced stages (P = 0.024), lymphovascular invasion (P = 0.023), and recurrence (P = 0.006) in melanoma cancer tissues. Our results on NMSC showed a statistically significant association between high intensity of staining and the poor differentiation (P = 0.044). No significant associations were observed between Talin-1 expression levels and survival outcomes of melanoma and NMSC patients. CONCLUSION: Our observations showed that higher expression of Talin1 in protein level may be significantly associated with more aggressive tumor behavior and advanced disease in patients with skin cancer. However, further studies are required to find the mechanism of action of Talin-1 in skin cancers.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Talin/genetics , Skin Neoplasms/pathology , Melanoma/pathology , Neoplastic Processes , Prognosis , Melanoma, Cutaneous Malignant
17.
Circ Res ; 128(1): 8-23, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33092471

ABSTRACT

RATIONALE: Thoracic aortic aneurysm (TAA) leads to substantial mortality worldwide. Familial and syndromic TAAs are highly correlated with genetics. However, the incidence of sporadic isolated TAA (iTAA) is much higher, and the genetic contribution is not yet clear. OBJECTIVE: Here, we examined the genetic characteristics of sporadic iTAA. METHODS AND RESULTS: We performed a genetic screen of 551 sporadic iTAA cases and 1071 controls via whole-exome sequencing. The prevalence of pathogenic mutations in known causal genes was 5.08% in the iTAA cohort. We selected 100 novel candidate genes using a strict strategy, and the suspected functional variants of these genes were significantly enriched in cases compared with controls and carried by 60.43% of patients. We found more severe phenotypes and a lower proportion of hypertension in cases with pathogenic mutations or suspected functional variants. Among the candidate genes, Testin (TES), which encodes a focal adhesion scaffold protein, was identified as a potential TAA causal gene, accounting for 4 patients with 2 missense variants in the LIM1 domain (c.751T>C encoding p.Y251H; c.838T>C encoding p.Y280H) and highly expressed in the aorta. The 2 variants led to a decrease in TES expression. The thoracic aorta was spontaneously dilated in the TesY249H knock-in and Tes-/- mice. Mechanistically, the p.Y249H variant or knockdown of TES led to the repression of vascular smooth muscle cell contraction genes and disturbed the vascular smooth muscle cell contractile phenotype. Interestingly, suspected functional variants of other focal adhesion scaffold genes, including TLN1 (Talin-1) and ZYX (zyxin), were also significantly enriched in patients with iTAA; moreover, their knockdown resulted in decreased contractility of vascular smooth muscle cells. CONCLUSIONS: For the first time, this study revealed the genetic landscape across iTAA and showed that the focal adhesion scaffold genes are critical in the pathogenesis of iTAA.


Subject(s)
Aortic Aneurysm, Thoracic/genetics , Aortic Dissection/genetics , Cytoskeletal Proteins/genetics , Focal Adhesions/genetics , Mutation, Missense , Polymorphism, Single Nucleotide , RNA-Binding Proteins/genetics , Adult , Aortic Dissection/diagnostic imaging , Aortic Dissection/metabolism , Aortic Dissection/physiopathology , Animals , Aorta, Thoracic/diagnostic imaging , Aorta, Thoracic/metabolism , Aorta, Thoracic/physiopathology , Aortic Aneurysm, Thoracic/diagnostic imaging , Aortic Aneurysm, Thoracic/metabolism , Aortic Aneurysm, Thoracic/physiopathology , Case-Control Studies , Cells, Cultured , Cytoskeletal Proteins/metabolism , Female , Focal Adhesions/metabolism , Genetic Predisposition to Disease , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Muscle, Smooth, Vascular/diagnostic imaging , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/physiopathology , Phenotype , RNA-Binding Proteins/metabolism , Talin/genetics , Talin/metabolism , Vasoconstriction , Exome Sequencing , Zyxin/genetics , Zyxin/metabolism
18.
Cell Mol Biol Lett ; 28(1): 56, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37460977

ABSTRACT

BACKGROUND: Focal adhesions (FAs) are integrin-containing, multi-protein structures that link intracellular actin to the extracellular matrix and trigger multiple signaling pathways that control cell proliferation, differentiation, survival and motility. Microtubules (MTs) are stabilized in the vicinity of FAs through interaction with the components of the cortical microtubule stabilizing complex (CMSC). KANK (KN motif and ankyrin repeat domains) family proteins within the CMSC, KANK1 or KANK2, bind talin within FAs and thus mediate actin-MT crosstalk. We previously identified in MDA-MB-435S cells, which preferentially use integrin αVß5 for adhesion, KANK2 as a key molecule enabling the actin-MT crosstalk. KANK2 knockdown also resulted in increased sensitivity to MT poisons, paclitaxel (PTX) and vincristine and reduced migration. Here, we aimed to analyze whether KANK1 has a similar role and to distinguish which talin isoform binds KANK2. METHODS: The cell model consisted of human melanoma cell line MDA-MB-435S and stably transfected clone with decreased expression of integrin αV (3αV). For transient knockdown of talin1, talin2, KANK1 or KANK2 we used gene-specific siRNAs transfection. Using previously standardized protocol we isolated integrin adhesion complexes. SDS-PAGE and Western blot was used for protein expression analysis. The immunofluorescence analysis and live cell imaging was done using confocal microscopy. Cell migration was analyzed with Transwell Cell Culture Inserts. Statistical analysis using GraphPad Software consisted of either one-way analysis of variance (ANOVA), unpaired Student's t-test or two-way ANOVA analysis. RESULTS: We show that KANK1 is not a part of the CMSC associated with integrin αVß5 FAs and its knockdown did not affect the velocity of MT growth or cell sensitivity to PTX. The talin2 knockdown mimicked KANK2 knockdown i.e. led to the perturbation of actin-MT crosstalk, which is indicated by the increased velocity of MT growth and increased sensitivity to PTX and also reduced migration. CONCLUSION: We conclude that KANK2 functionally interacts with talin2 and that the mechanism of increased sensitivity to PTX involves changes in microtubule dynamics. These data elucidate a cell-type-specific role of talin2 and KANK2 isoforms and we propose that talin2 and KANK2 are therefore potential therapeutic targets for improved cancer therapy.


Subject(s)
Melanoma , Talin , Humans , Actins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Cell Movement , Cytoskeletal Proteins/genetics , Integrins/metabolism , Microtubules/metabolism , Paclitaxel/pharmacology , Protein Isoforms/metabolism , Talin/genetics , Talin/chemistry , Talin/metabolism , Cell Line, Tumor/metabolism
19.
Proc Natl Acad Sci U S A ; 117(51): 32413-32422, 2020 12 22.
Article in English | MEDLINE | ID: mdl-33262280

ABSTRACT

Integrin-dependent adhesions mediate reciprocal exchange of force and information between the cell and the extracellular matrix. These effects are attributed to the "focal adhesion clutch," in which moving actin filaments transmit force to integrins via dynamic protein interactions. To elucidate these processes, we measured force on talin together with actin flow speed. While force on talin in small lamellipodial adhesions correlated with actin flow, talin tension in large adhesions further from the cell edge was mainly flow-independent. Stiff substrates shifted force transfer toward the flow-independent mechanism. Flow-dependent force transfer required talin's C-terminal actin binding site, ABS3, but not vinculin. Flow-independent force transfer initially required vinculin and at later times the central actin binding site, ABS2. Force transfer through integrins thus occurs not through a continuous clutch but through a series of discrete states mediated by distinct protein interactions, with their ratio modulated by substrate stiffness.


Subject(s)
Actins/metabolism , Integrins/metabolism , Actins/genetics , Animals , Binding Sites , Fluorescence Resonance Energy Transfer , Focal Adhesions/physiology , Mice , Mutation , NIH 3T3 Cells , Talin/genetics , Talin/metabolism , Time-Lapse Imaging , Vinculin/genetics , Vinculin/metabolism
20.
Proc Natl Acad Sci U S A ; 117(51): 32402-32412, 2020 12 22.
Article in English | MEDLINE | ID: mdl-33288722

ABSTRACT

Binding of the intracellular adapter proteins talin and its cofactor, kindlin, to the integrin receptors induces integrin activation and clustering. These processes are essential for cell adhesion, migration, and organ development. Although the talin head, the integrin-binding segment in talin, possesses a typical FERM-domain sequence, a truncated form has been crystallized in an unexpected, elongated form. This form, however, lacks a C-terminal fragment and possesses reduced ß3-integrin binding. Here, we present a crystal structure of a full-length talin head in complex with the ß3-integrin tail. The structure reveals a compact FERM-like conformation and a tightly associated N-P-L-Y motif of ß3-integrin. A critical C-terminal poly-lysine motif mediates FERM interdomain contacts and assures the tight association with the ß3-integrin cytoplasmic segment. Removal of the poly-lysine motif or disrupting the FERM-folded configuration of the talin head significantly impairs integrin activation and clustering. Therefore, structural characterization of the FERM-folded active talin head provides fundamental understanding of the regulatory mechanism of integrin function.


Subject(s)
Integrin beta3/metabolism , Talin/chemistry , Talin/metabolism , Amino Acid Motifs , Animals , Binding Sites , Humans , Integrin beta3/chemistry , Leucine/metabolism , Mice , Microscopy, Electron, Transmission , Models, Molecular , Mutagenesis , Polylysine/chemistry , Protein Domains , Protein Folding , Talin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL