Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 774
Filter
Add more filters

Publication year range
1.
Traffic ; 25(1): e12928, 2024 01.
Article in English | MEDLINE | ID: mdl-38272447

ABSTRACT

Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant disorder affecting 1 in 5000-8000 individuals. Hereditary hemorrhagic telangiectasia type 1 (HHT1) is the most common HHT and manifests as diverse vascular malformations ranging from mild symptoms such as epistaxis and mucosal and cutaneous telangiectases to severe arteriovenous malformations (AVMs) in the lungs, brain or liver. HHT1 is caused by heterozygous mutations in the ENG gene, which encodes endoglin, the TGFß homodimeric co-receptor. It was previously shown that some endoglin HHT1-causing variants failed to traffic to the plasma membrane due to their retention in the endoplasmic reticulum (ER) and consequent degradation by ER-associated degradation (ERAD). Endoglin is a homodimer formed in the ER, and we therefore hypothesized that mixed heterodimers might form between ER-retained variants and WT protein, thus hampering its maturation and trafficking to the plasma membrane causing dominant negative effects. Indeed, HA-tagged ER-retained mutants formed heterodimers with Myc-tagged WT endoglin. Moreover, variants L32R, V105D, P165L, I271N and C363Y adversely affected the trafficking of WT endoglin by reducing its maturation and plasma membrane localization. These results strongly suggest dominant negative effects exerted by these ER-retained variants aggravating endoglin loss of function in patients expressing them in the heterozygous state with the WT allele. Moreover, this study may help explain some of the variability observed among HHT1 patients due to the additional loss of function exerted by the dominant negative effects in addition to that due to haploinsufficiency. These findings might also have implications for some of the many conditions impacted by ERAD.


Subject(s)
Telangiectasia, Hereditary Hemorrhagic , Humans , Alleles , Endoglin/genetics , Endoplasmic Reticulum/metabolism , Mutation , Receptors, Cell Surface/genetics , Receptors, Growth Factor , Telangiectasia, Hereditary Hemorrhagic/genetics , Telangiectasia, Hereditary Hemorrhagic/diagnosis , Telangiectasia, Hereditary Hemorrhagic/metabolism
2.
Am J Hum Genet ; 110(11): 1903-1918, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37816352

ABSTRACT

Despite whole-genome sequencing (WGS), many cases of single-gene disorders remain unsolved, impeding diagnosis and preventative care for people whose disease-causing variants escape detection. Since early WGS data analytic steps prioritize protein-coding sequences, to simultaneously prioritize variants in non-coding regions rich in transcribed and critical regulatory sequences, we developed GROFFFY, an analytic tool that integrates coordinates for regions with experimental evidence of functionality. Applied to WGS data from solved and unsolved hereditary hemorrhagic telangiectasia (HHT) recruits to the 100,000 Genomes Project, GROFFFY-based filtration reduced the mean number of variants/DNA from 4,867,167 to 21,486, without deleting disease-causal variants. In three unsolved cases (two related), GROFFFY identified ultra-rare deletions within the 3' untranslated region (UTR) of the tumor suppressor SMAD4, where germline loss-of-function alleles cause combined HHT and colonic polyposis (MIM: 175050). Sited >5.4 kb distal to coding DNA, the deletions did not modify or generate microRNA binding sites, but instead disrupted the sequence context of the final cleavage and polyadenylation site necessary for protein production: By iFoldRNA, an AAUAAA-adjacent 16-nucleotide deletion brought the cleavage site into inaccessible neighboring secondary structures, while a 4-nucleotide deletion unfolded the downstream RNA polymerase II roadblock. SMAD4 RNA expression differed to control-derived RNA from resting and cycloheximide-stressed peripheral blood mononuclear cells. Patterns predicted the mutational site for an unrelated HHT/polyposis-affected individual, where a complex insertion was subsequently identified. In conclusion, we describe a functional rare variant type that impacts regulatory systems based on RNA polyadenylation. Extension of coding sequence-focused gene panels is required to capture these variants.


Subject(s)
Smad4 Protein , Telangiectasia, Hereditary Hemorrhagic , Humans , Base Sequence , DNA , Leukocytes, Mononuclear/pathology , Nucleotides , Polyadenylation/genetics , RNA , Smad4 Protein/genetics , Telangiectasia, Hereditary Hemorrhagic/genetics , Whole Genome Sequencing
3.
Blood ; 143(22): 2314-2331, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38457357

ABSTRACT

ABSTRACT: For monogenic diseases caused by pathogenic loss-of-function DNA variants, attention focuses on dysregulated gene-specific pathways, usually considering molecular subtypes together within causal genes. To better understand phenotypic variability in hereditary hemorrhagic telangiectasia (HHT), we subcategorized pathogenic DNA variants in ENG/endoglin, ACVRL1/ALK1, and SMAD4 if they generated premature termination codons (PTCs) subject to nonsense-mediated decay. In 3 patient cohorts, a PTC-based classification system explained some previously puzzling hemorrhage variability. In blood outgrowth endothelial cells (BOECs) derived from patients with ACVRL1+/PTC, ENG+/PTC, and SMAD4+/PTC genotypes, PTC-containing RNA transcripts persisted at low levels (8%-23% expected, varying between replicate cultures); genes differentially expressed to Bonferroni P < .05 in HHT+/PTC BOECs clustered significantly only to generic protein terms (isopeptide-bond/ubiquitin-like conjugation) and pulse-chase experiments detected subtle protein maturation differences but no evidence for PTC-truncated protein. BOECs displaying highest PTC persistence were discriminated in unsupervised hierarchical clustering of near-invariant housekeeper genes, with patterns compatible with higher cellular stress in BOECs with >11% PTC persistence. To test directionality, we used a HeLa reporter system to detect induction of activating transcription factor 4 (ATF4), which controls expression of stress-adaptive genes, and showed that ENG Q436X but not ENG R93X directly induced ATF4. AlphaFold accurately modeled relevant ENG domains, with AlphaMissense suggesting that readthrough substitutions would be benign for ENG R93X and other less rare ENG nonsense variants but more damaging for Q436X. We conclude that PTCs should be distinguished from other loss-of-function variants, PTC transcript levels increase in stressed cells, and readthrough proteins and mechanisms provide promising research avenues.


Subject(s)
Activin Receptors, Type II , Codon, Nonsense , Endoglin , Telangiectasia, Hereditary Hemorrhagic , Humans , Telangiectasia, Hereditary Hemorrhagic/genetics , Telangiectasia, Hereditary Hemorrhagic/pathology , Endoglin/genetics , Endoglin/metabolism , Activin Receptors, Type II/genetics , Smad4 Protein/genetics , Endothelial Cells/metabolism , Endothelial Cells/pathology , Mutation , Male , Female , Nonsense Mediated mRNA Decay
4.
Circulation ; 149(12): 944-962, 2024 03 19.
Article in English | MEDLINE | ID: mdl-38126211

ABSTRACT

BACKGROUND: Distinct endothelial cell cycle states (early G1 versus late G1) provide different "windows of opportunity" to enable the differential expression of genes that regulate venous versus arterial specification, respectively. Endothelial cell cycle control and arteriovenous identities are disrupted in vascular malformations including arteriovenous shunts, the hallmark of hereditary hemorrhagic telangiectasia (HHT). To date, the mechanistic link between endothelial cell cycle regulation and the development of arteriovenous malformations (AVMs) in HHT is not known. METHODS: We used BMP (bone morphogenetic protein) 9/10 blocking antibodies and endothelial-specific deletion of activin A receptor like type 1 (Alk1) to induce HHT in Fucci (fluorescent ubiquitination-based cell cycle indicator) 2 mice to assess endothelial cell cycle states in AVMs. We also assessed the therapeutic potential of inducing endothelial cell cycle G1 state in HHT to prevent AVMs by repurposing the Food and Drug Administration-approved CDK (cyclin-dependent kinase) 4/6 inhibitor (CDK4/6i) palbociclib. RESULTS: We found that endothelial cell cycle state and associated gene expressions are dysregulated during the pathogenesis of vascular malformations in HHT. We also showed that palbociclib treatment prevented AVM development induced by BMP9/10 inhibition and Alk1 genetic deletion. Mechanistically, endothelial cell late G1 state induced by palbociclib modulates the expression of genes regulating arteriovenous identity, endothelial cell migration, metabolism, and VEGF-A (vascular endothelial growth factor A) and BMP9 signaling that collectively contribute to the prevention of vascular malformations. CONCLUSIONS: This study provides new insights into molecular mechanisms leading to HHT by defining how endothelial cell cycle is dysregulated in AVMs because of BMP9/10 and Alk1 signaling deficiencies, and how restoration of endothelial cell cycle control may be used to treat AVMs in patients with HHT.


Subject(s)
Arteriovenous Malformations , Telangiectasia, Hereditary Hemorrhagic , Humans , Mice , Animals , Telangiectasia, Hereditary Hemorrhagic/genetics , Telangiectasia, Hereditary Hemorrhagic/pathology , Vascular Endothelial Growth Factor A/metabolism , Arteriovenous Malformations/metabolism , Endothelial Cells/metabolism , Growth Differentiation Factor 2/metabolism , Cell Cycle Checkpoints
5.
Angiogenesis ; 27(2): 211-227, 2024 May.
Article in English | MEDLINE | ID: mdl-38294582

ABSTRACT

Heterozygous activin receptor-like kinase 1 (ALK1) mutations are associated with two vascular diseases: hereditary hemorrhagic telangiectasia (HHT) and more rarely pulmonary arterial hypertension (PAH). Here, we aimed to understand the impact of ALK1 mutations on BMP9 and BMP10 transcriptomic responses in endothelial cells. Endothelial colony-forming cells (ECFCs) and microvascular endothelial cells (HMVECs) carrying loss of function ALK1 mutations were isolated from newborn HHT and adult PAH donors, respectively. RNA-sequencing was performed on each type of cells compared to controls following an 18 h stimulation with BMP9 or BMP10. In control ECFCs, BMP9 and BMP10 stimulations induced similar transcriptomic responses with around 800 differentially expressed genes (DEGs). ALK1-mutated ECFCs unexpectedly revealed highly similar transcriptomic profiles to controls, both at the baseline and upon stimulation, and normal activation of Smad1/5 that could not be explained by a compensation in cell-surface ALK1 level. Conversely, PAH HMVECs revealed strong transcriptional dysregulations compared to controls with > 1200 DEGs at the baseline. Consequently, because our study involved two variables, ALK1 genotype and BMP stimulation, we performed two-factor differential expression analysis and identified 44 BMP9-dysregulated genes in mutated HMVECs, but none in ECFCs. Yet, the impaired regulation of at least one hit, namely lunatic fringe (LFNG), was validated by RT-qPCR in three different ALK1-mutated endothelial models. In conclusion, ALK1 heterozygosity only modified the BMP9/BMP10 regulation of few genes, including LFNG involved in NOTCH signaling. Future studies will uncover whether dysregulations in such hits are enough to promote HHT/PAH pathogenesis, making them potential therapeutic targets, or if second hits are necessary.


Subject(s)
Pulmonary Arterial Hypertension , Telangiectasia, Hereditary Hemorrhagic , Adult , Infant, Newborn , Humans , Endothelial Cells/metabolism , Growth Differentiation Factor 2/genetics , Growth Differentiation Factor 2/metabolism , Pulmonary Arterial Hypertension/metabolism , Telangiectasia, Hereditary Hemorrhagic/genetics , Telangiectasia, Hereditary Hemorrhagic/metabolism , Bone Morphogenetic Proteins/genetics , Mutation/genetics , Gene Expression Profiling , Activin Receptors, Type II/genetics , Activin Receptors, Type II/metabolism
6.
Eur Respir J ; 63(4)2024 Apr.
Article in English | MEDLINE | ID: mdl-38514094

ABSTRACT

BACKGROUND: Bone morphogenetic proteins 9 and 10 (BMP9 and BMP10), encoded by GDF2 and BMP10, respectively, play a pivotal role in pulmonary vascular regulation. GDF2 variants have been reported in pulmonary arterial hypertension (PAH) and hereditary haemorrhagic telangiectasia (HHT). However, the phenotype of GDF2 and BMP10 carriers remains largely unexplored. METHODS: We report the characteristics and outcomes of PAH patients in GDF2 and BMP10 carriers from the French and Dutch pulmonary hypertension registries. A literature review explored the phenotypic spectrum of these patients. RESULTS: 26 PAH patients were identified: 20 harbouring heterozygous GDF2 variants, one homozygous GDF2 variant, four heterozygous BMP10 variants, and one with both GDF2 and BMP10 variants. The prevalence of GDF2 and BMP10 variants was 1.3% and 0.4%, respectively. Median age at PAH diagnosis was 30 years, with a female/male ratio of 1.9. Congenital heart disease (CHD) was present in 15.4% of the patients. At diagnosis, most of the patients (61.5%) were in New York Heart Association Functional Class III or IV with severe haemodynamic compromise (median (range) pulmonary vascular resistance 9.0 (3.3-40.6) WU). Haemoptysis was reported in four patients; none met the HHT criteria. Two patients carrying BMP10 variants underwent lung transplantation, revealing typical PAH histopathology. The literature analysis showed that 7.6% of GDF2 carriers developed isolated HHT, and identified cardiomyopathy and developmental disorders in BMP10 carriers. CONCLUSIONS: GDF2 and BMP10 pathogenic variants are rare among PAH patients, and occasionally associated with CHD. HHT cases among GDF2 carriers are limited according to the literature. BMP10 full phenotypic ramifications warrant further investigation.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Telangiectasia, Hereditary Hemorrhagic , Humans , Male , Female , Adult , Bone Morphogenetic Proteins/genetics , Bone Morphogenetic Proteins/metabolism , Hypertension, Pulmonary/diagnosis , Pulmonary Arterial Hypertension/genetics , Pulmonary Arterial Hypertension/complications , Familial Primary Pulmonary Hypertension , Telangiectasia, Hereditary Hemorrhagic/complications , Telangiectasia, Hereditary Hemorrhagic/genetics , Phenotype , Growth Differentiation Factor 2/genetics , Multicenter Studies as Topic
7.
Hepatology ; 77(4): 1211-1227, 2023 04 01.
Article in English | MEDLINE | ID: mdl-35776660

ABSTRACT

BACKGROUND AND AIMS: In hereditary hemorrhagic telangiectasia (HHT), severe liver vascular malformations are associated with mutations in the Activin A Receptor-Like Type 1 ( ACVRL1 ) gene encoding ALK1, the receptor for bone morphogenetic protein (BMP) 9/BMP10, which regulates blood vessel development. Here, we established an HHT mouse model with exclusive liver involvement and adequate life expectancy to investigate ALK1 signaling in liver vessel formation and metabolic function. APPROACH AND RESULTS: Liver sinusoidal endothelial cell (LSEC)-selective Cre deleter line, Stab2-iCreF3 , was crossed with Acvrl1 -floxed mice to generate LSEC-specific Acvrl1 -deficient mice ( Alk1HEC-KO ). Alk1HEC-KO mice revealed hepatic vascular malformations and increased posthepatic flow, causing right ventricular volume overload. Transcriptomic analyses demonstrated induction of proangiogenic/tip cell gene sets and arterialization of hepatic vessels at the expense of LSEC and central venous identities. Loss of LSEC angiokines Wnt2 , Wnt9b , and R-spondin-3 ( Rspo3 ) led to disruption of metabolic liver zonation in Alk1HEC-KO mice and in liver specimens of patients with HHT. Furthermore, prion-like protein doppel ( Prnd ) and placental growth factor ( Pgf ) were upregulated in Alk1HEC-KO hepatic endothelial cells, representing candidates driving the organ-specific pathogenesis of HHT. In LSEC in vitro , stimulation or inhibition of ALK1 signaling counter-regulated Inhibitors of DNA binding (ID)1-3, known Alk1 transcriptional targets. Stimulation of ALK1 signaling and inhibition of ID1-3 function confirmed regulation of Wnt2 and Rspo3 by the BMP9/ALK1/ID axis. CONCLUSIONS: Hepatic endothelial ALK1 signaling protects from development of vascular malformations preserving organ-specific endothelial differentiation and angiocrine signaling. The long-term surviving Alk1HEC-KO HHT model offers opportunities to develop targeted therapies for this severe disease.


Subject(s)
Telangiectasia, Hereditary Hemorrhagic , Mice , Female , Animals , Telangiectasia, Hereditary Hemorrhagic/genetics , Endothelial Cells/metabolism , Placenta Growth Factor/metabolism , Liver/pathology , Signal Transduction , Growth Differentiation Factor 2/metabolism , Cell Adhesion Molecules, Neuronal/metabolism
8.
Clin Genet ; 105(5): 543-548, 2024 05.
Article in English | MEDLINE | ID: mdl-38225712

ABSTRACT

Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant form of vascular dysplasia. Genetic diagnosis is made by identifying loss-of-function variants in genes, such as ENG and ACVRL1. However, the causal mechanisms of various variants of unknown significance remains unclear. In this study, we analyzed 12 Japanese patients from 11 families who were clinically diagnosed with HHT. Sequencing analysis identified 11 distinct variants in ACVRL1 and ENG. Three of the 11 were truncating variants, leading to a definitive diagnosis, whereas the remaining eight were splice-site and missense variants that required functional analyses. In silico splicing analyses demonstrated that three variants, c.526-3C > G and c.598C > G in ACVRL1, and c.690-1G > A in ENG, caused aberrant splicing, as confirmed by a minigene assay. The five remaining missense variants were p.Arg67Gln, p.Ile256Asn, p.Leu285Pro, and p.Pro424Leu in ACVRL and p.Pro165His in ENG. Nanoluciferase-based bioluminescence analyses demonstrated that these ACVRL1 variants impaired cell membrane trafficking, resulting in the loss of bone morphogenetic protein 9 (BMP9) signal transduction. In contrast, the ENG mutation impaired BMP9 signaling despite normal cell membrane expression. The updated functional analysis methods performed in this study will facilitate effective genetic testing and appropriate medical care for patients with HHT.


Subject(s)
Telangiectasia, Hereditary Hemorrhagic , Humans , Telangiectasia, Hereditary Hemorrhagic/genetics , Endoglin/genetics , Japan/epidemiology , Mutation , Genetic Testing , Activin Receptors, Type II/genetics
9.
Arterioscler Thromb Vasc Biol ; 43(8): 1384-1403, 2023 08.
Article in English | MEDLINE | ID: mdl-37288572

ABSTRACT

BACKGROUND: Hereditary hemorrhagic telangiectasia (HHT) is a vascular disorder characterized by arteriovenous malformations and blood vessel enlargements. However, there are no effective drug therapies to combat arteriovenous malformation formation in patients with HHT. Here, we aimed to address whether elevated levels of ANG2 (angiopoietin-2) in the endothelium is a conserved feature in mouse models of the 3 major forms of HHT that could be neutralized to treat brain arteriovenous malformations and associated vascular defects. In addition, we sought to identify the angiogenic molecular signature linked to HHT. METHODS: Cerebrovascular defects, including arteriovenous malformations and increased vessel calibers, were characterized in mouse models of the 3 common forms of HHT using transcriptomic and dye injection labeling methods. RESULTS: Comparative RNA sequencing analyses of isolated brain endothelial cells revealed a common, but unique proangiogenic transcriptional program associated with HHT. This included a consistent upregulation in cerebrovascular expression of ANG2 and downregulation of its receptor Tyr kinase with Ig and EGF homology domains (TIE2/TEK) in HHT mice compared with controls. Furthermore, in vitro experiments revealed TEK signaling activity was hampered in an HHT setting. Pharmacological blockade of ANG2 improved brain vascular pathologies in all HHT models, albeit to varying degrees. Transcriptomic profiling further indicated that ANG2 inhibition normalized the brain vasculature by impacting a subset of genes involved in angiogenesis and cell migration processes. CONCLUSIONS: Elevation of ANG2 in the brain vasculature is a shared trait among the mouse models of the common forms of HHT. Inhibition of ANG2 activity can significantly limit or prevent brain arteriovenous malformation formation and blood vessel enlargement in HHT mice. Thus, ANG2-targeted therapies may represent a compelling approach to treat arteriovenous malformations and vascular pathologies related to all forms of HHT.


Subject(s)
Arteriovenous Malformations , Telangiectasia, Hereditary Hemorrhagic , Animals , Mice , Telangiectasia, Hereditary Hemorrhagic/drug therapy , Telangiectasia, Hereditary Hemorrhagic/genetics , Endothelial Cells/metabolism , Angiopoietin-2/genetics , Angiopoietin-2/metabolism , Arteriovenous Malformations/metabolism , Phenotype
10.
J Med Genet ; 60(9): 905-909, 2023 09.
Article in English | MEDLINE | ID: mdl-36813543

ABSTRACT

BACKGROUND: EPHB4 loss of function is associated with type 2 capillary malformation-arteriovenous malformation syndrome, an autosomal dominant vascular disorder. The phenotype partially overlaps with hereditary haemorrhagic telangiectasia (HHT) due to epistaxis, telangiectases and cerebral arteriovenous malformations, but a similar liver involvement has never been described. METHODS: Members of the French HHT network reported their cases of EPHB4 mutation identified after an initial suspicion of HHT. Clinical, radiological and genetic characteristics were analysed. RESULTS: Among 21 patients with EPHB4, 15 had a liver imaging, including 7 with HHT-like abnormalities (2 female patients and 5 male patients, ages 43-69 years). Atypical epistaxis and telangiectases were noted in two cases each. They were significantly older than the eight patients with normal imaging (median: 51 vs 20 years, p<0.0006).The main hepatic artery was dilated in all the cases (diameter: 8-11 mm). Six patients had hepatic telangiectases. All kind of shunts were described (arteriosystemic: five patients, arterioportal: two patients, portosystemic: three patients). The overall liver appearance was considered as typical of HHT in six cases.Six EPHB4 variants were classified as pathogenic and one as likely pathogenic, with no specific hot spot. CONCLUSION: EPHB4 loss-of-function variants can be associated with HHT-like hepatic abnormalities and should be tested for atypical HHT presentations.


Subject(s)
Intracranial Arteriovenous Malformations , Telangiectasia, Hereditary Hemorrhagic , Male , Humans , Female , Telangiectasia, Hereditary Hemorrhagic/complications , Telangiectasia, Hereditary Hemorrhagic/diagnosis , Telangiectasia, Hereditary Hemorrhagic/genetics , Epistaxis/complications , Liver , Mutation
11.
J Med Genet ; 60(5): 464-468, 2023 05.
Article in English | MEDLINE | ID: mdl-36038259

ABSTRACT

BACKGROUND AND AIMS: Hereditary haemorrhagic telangiectasia (HHT) is an autosomal dominant condition characterised by recurrent epistaxis, telangiectatic lesions in the skin and mucosal membranes, and arteriovenous malformations (AVMs) in various organs. In 3%-5% of patients, HHT is caused by pathogenic germline variants (PVs) in SMAD4, and these patients often have additional symptoms of juvenile polyposis syndrome and thoracic aneurysms. The phenotypic spectrum of SMAD4-associated HHT is less known, including the penetrance and severity of HHT. We aimed to investigate the phenotypic spectrum of HHT manifestations in Danish patients with PVs in SMAD4 and compare the findings with current literature. METHODS: The study is a retrospective nationwide study with all known Danish patients with PVs in SMAD4. In total, 35 patients were included. The patients were identified by collecting data from genetic laboratories, various databases and clinical genetic departments across the country. Clinical information was mainly collected from the Danish HHT-Centre at Odense University Hospital. RESULTS: Twenty-nine patients with PVs in SMAD4 (83%) were seen at the HHT-Centre. Seventy-six per cent of these fulfilled the Curaçao criteria, 86% experienced recurrent epistaxis and 83% presented with telangiectatic lesions at different anatomical localisations. Almost 60% had AVMs, mainly pulmonary and hepatic, while none was found to have cerebral AVMs. Fifteen per cent had thoracic aortic abnormalities. CONCLUSION: We present a nationwide study of one of the largest populations of patients with PVs in SMAD4 that has systematically been examined for HHT manifestations. The patients presented the full spectrum of HHT-related manifestations and the majority fulfilled the Curaçao criteria.


Subject(s)
Smad4 Protein , Telangiectasia, Hereditary Hemorrhagic , Humans , Denmark/epidemiology , Epistaxis/etiology , Epistaxis/genetics , Intracranial Arteriovenous Malformations , Mutation , Retrospective Studies , Smad4 Protein/genetics , Telangiectasia, Hereditary Hemorrhagic/epidemiology , Telangiectasia, Hereditary Hemorrhagic/genetics , Telangiectasia, Hereditary Hemorrhagic/diagnosis
12.
Eur Arch Otorhinolaryngol ; 281(1): 237-243, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37603052

ABSTRACT

PURPOSE: Hereditary hemorrhagic telangiectasia (HHT) is a dominantly inherited disorder that involves epistaxis, mucocutaneous telangiectases, and visceral arteriovenous malformations (AVMs). This study aims to investigate the genetic causes in a Chinese family with HHT. METHODS: HHT was confirmed according to Curaçao's diagnostic criteria. Three patients diagnosed with HHT and healthy members were recruited. Whole-exome sequencing (WES) and sanger sequencing were performed to define the patient's genetically pathogenic factor. RESULTS: The proband presented with recurrent epistaxis, hepatopulmonary arteriovenous malformation, and adenocarcinoma. A novel frameshift mutation (c.1376_1377delAC, p.H459Lfs*41) of the ENG gene was revealed in affected individuals by WES. There was no report of this variant and predicted to be highly damaging by causing truncation of the ENG protein. CONCLUSION: We report a novel variant in the ENG gene in Chinese that extends the mutational and phenotypic spectra of the ENG gene, and also demonstrates the feasibility of WES in the application of genetic diagnosis of HHT.


Subject(s)
Frameshift Mutation , Telangiectasia, Hereditary Hemorrhagic , Humans , Endoglin/genetics , Telangiectasia, Hereditary Hemorrhagic/complications , Telangiectasia, Hereditary Hemorrhagic/diagnosis , Telangiectasia, Hereditary Hemorrhagic/genetics , Epistaxis , Mutation , China
13.
Int J Mol Sci ; 25(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38892351

ABSTRACT

Pulmonary arteriovenous malformations (PAVMs) are vascular anomalies resulting in abnormal connections between pulmonary arteries and veins. In 80% of cases, PAVMs are present from birth, but clinical manifestations are rarely seen in childhood. These congenital malformations are typically associated with Hereditary Hemorrhagic Telangiectasia (HHT), a rare disease that affects 1 in 5000/8000 individuals. HHT disease is frequently caused by mutations in genes involved in the TGF-ß pathway. However, approximately 15% of patients do not have a genetic diagnosis and, among the genetically diagnosed, more than 33% do not meet the Curaçao criteria. This makes clinical diagnosis even more challenging in the pediatric age group. Here, we introduce an 8-year-old patient bearing a severe phenotype of multiple diffuse PAVMs caused by an unknown mutation which ended in lung transplantation. Phenotypically, the case under study follows a molecular pattern which is HHT-like. Therefore, molecular- biological and cellular-functional analyses have been performed in primary endothelial cells (ECs) isolated from the explanted lung. The findings revealed a loss of functionality in lung endothelial tissue and a stimulation of endothelial-to-mesenchymal transition. Understanding the molecular basis of this transition could potentially offer new therapeutic strategies to delay lung transplantation in severe cases.


Subject(s)
Endothelial Cells , Pulmonary Artery , Pulmonary Veins , Telangiectasia, Hereditary Hemorrhagic , Humans , Telangiectasia, Hereditary Hemorrhagic/genetics , Telangiectasia, Hereditary Hemorrhagic/pathology , Child , Pulmonary Artery/abnormalities , Pulmonary Artery/pathology , Pulmonary Veins/abnormalities , Pulmonary Veins/pathology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Male , Mutation , Arteriovenous Malformations/genetics , Arteriovenous Malformations/pathology , Arteriovenous Malformations/metabolism , Epithelial-Mesenchymal Transition/genetics , Lung Transplantation , Arteriovenous Fistula/pathology , Arteriovenous Fistula/genetics , Lung/pathology , Lung/blood supply , Female
14.
J Pak Med Assoc ; 74(4): 800-803, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38751284

ABSTRACT

Osler-Weber-Rendu syndrome or Hereditary Haemorrhagic Telangiectasia (HHT) is a rare condition, with very few reported cases, especially in Pakistan. As healthcare workers, we encounter multiple cases of recurrent epistaxis in the emergency as well as outpatient departments. However, patients are usually treated symptomatically without a thorough workup. HHT should be considered among the differentials for recurrent epistaxis, as a clinical diagnosis can be made with detailed family history and physical examination. Here is the case of a 58-year-old male who presented to the Gastroenterology OPD, Combined Military Hospital, Lahore, in November 2021, with complaints of generalised weakness and blood in stools. He had a history of recurrent epistaxis and telangiectasias, and further inquiry revealed a strong family history of similar symptoms. He was diagnosed as a case of Osler-Weber- Rendu Syndrome. Informed consent was taken from the patient prior to the writing of the manuscript.


Subject(s)
Epistaxis , Recurrence , Telangiectasia, Hereditary Hemorrhagic , Humans , Telangiectasia, Hereditary Hemorrhagic/diagnosis , Telangiectasia, Hereditary Hemorrhagic/genetics , Telangiectasia, Hereditary Hemorrhagic/complications , Male , Epistaxis/etiology , Epistaxis/diagnosis , Middle Aged , Pakistan
15.
Angiogenesis ; 26(Suppl 1): 27-37, 2023 08.
Article in English | MEDLINE | ID: mdl-37695357

ABSTRACT

Hereditary Hemorrhagic Telangiectasia (HHT) is an autosomal dominant vascular disorder characterized by small, dilated clustered vessels (telangiectasias) and by larger visceral arteriovenous malformations (AVMs), which directly connect the feeding arteries with the draining veins. These lesions are fragile, prone to rupture, and lead to recurrent epistaxis and/or internal hemorrhage among other complications. Germline heterozygous loss-of-function (LOF) mutations in Bone Morphogenic Protein 9 (BMP9) and BMP10 signaling pathway genes (endoglin-ENG, activin like kinase 1 ACVRL1 aka ALK1, and SMAD4) cause different subtypes of HHT (HHT1, HHT2 and HHT-juvenile polyposis (JP)) and have a worldwide combined incidence of about 1:5000. Expert clinicians and international scientists gathered in Cascais, Portugal from September 29th to October 2nd, 2022 to present the latest scientific research in the HHT field and novel treatment strategies for people living with HHT. During the largest HHT scientific conference yet, participants included 293 in person and 46 virtually. An impressive 209 abstracts were accepted to the meeting and 59 were selected for oral presentations. The remaining 150 abstracts were presented during judged poster sessions. This review article summarizes the basic and clinical abstracts selected as oral presentations with their new observations and discoveries as well as surrounding discussion and debate. Two discussion-based workshops were also held during the conference, each focusing on mechanisms and clinical perspectives in either AVM formation and progression or current and future therapies for HHT. Our hope is that this paper will represent the current progress and the remaining unanswered questions surrounding HHT, in order to serve as an update for those within the field and an invitation to those scientists and clinicians as yet outside of the field of HHT.


Subject(s)
Telangiectasia, Hereditary Hemorrhagic , Humans , Activin Receptors, Type II/genetics , Arteriovenous Malformations/genetics , Arteriovenous Malformations/pathology , Bone Morphogenetic Proteins/genetics , Mutation , Signal Transduction , Telangiectasia, Hereditary Hemorrhagic/genetics , Telangiectasia, Hereditary Hemorrhagic/therapy
16.
J Pediatr ; 263: 113665, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37572862

ABSTRACT

OBJECTIVE: To assess the utility of the Curaçao criteria by age over time in children with hereditary hemorrhagic telangiectasia (HHT). STUDY DESIGN: This was a single-center, retrospective analysis of patients attending the HHT clinic at the Hospital for Sick Children (Toronto, Canada) between 2000 and 2019. The evaluation of the Curaçao criteria was completed during initial and follow-up visits. Screening for pulmonary and brain arteriovenous malformations was completed at 5 yearly intervals. RESULTS: A total of 116 patients with genetic confirmation of HHT were included in the analysis. At initial screening at a median (IQR) age of 8.4 (2.8, 12.9) years, 41% met criteria for a definite clinical diagnosis (≥3 criteria). In children <6 years at presentation, only 23% fulfilled at least 3 criteria initially. In longitudinal follow-up, 63% reached a definite clinical diagnosis, with a median (IQR) follow-up duration of 5.2 (3.2, 7.9) years (P = .005). Specifically, more patients met the epistaxis and telangiectasia criteria at last visit compared with initial (79% vs 60%; P = .006; 47% vs 30%; P = .02) but not for the arteriovenous malformation criterion (59% vs 57%; P = .65). CONCLUSIONS: In the pediatric population, most patients do not meet definite clinical criteria of HHT at initial presentation. Although the number of diagnostic criteria met increased over time, mainly due to new onset of epistaxis and telangiectasia, accuracy remained low during follow-up visits. Relying solely on clinical criteria may lead to underdiagnosis of HHT in children.


Subject(s)
Arteriovenous Malformations , Telangiectasia, Hereditary Hemorrhagic , Humans , Child , Telangiectasia, Hereditary Hemorrhagic/diagnosis , Telangiectasia, Hereditary Hemorrhagic/genetics , Retrospective Studies , Curacao , Epistaxis/etiology , Mutation , Endoglin/genetics , Activin Receptors, Type II/genetics , Arteriovenous Malformations/diagnosis , Arteriovenous Malformations/genetics
17.
Am J Med Genet A ; 191(5): 1250-1260, 2023 05.
Article in English | MEDLINE | ID: mdl-36760094

ABSTRACT

Arteriovenous malformations (AVM) are characterized by abnormal vessels connecting arteries and veins resulting in a disruption of normal blood flow. Hereditary hemorrhagic telangiectasia (HHT) is the most common cause of pulmonary AVM characterized by a right to left shunt. Here we describe a distinct malformation where the flow of blood was from a systemic artery to the pulmonary artery (PA) resulting in a left to right shunt instead of the right to left shunt seen in individuals with HHT. This distinct malformation was identified in seven probands, one from a multiplex family containing 10 affected individuals from five generations. To identify the molecular basis of this distinct malformation, we performed exome sequencing (ES) on the seven probands and the affected paternal female cousin from the multiplex family. PhenoDB was used to prioritize candidate causative variants along with burden analysis. We describe the clinical and radiological details of the new systemic artery to PA malformation with or without pulmonary artery aneurysm (SA-PA(A)) and recommend distinct treatment techniques. Moreover, ES analysis revealed possible causative variants identified in three families with variants in a novel candidate disease gene, MCF2L. Further functional studies will be necessary to better understand the molecular mechanisms involved on SA-PA(A) malformation, however our findings suggest that MCF2L is a novel disease gene associated with SA-PA(A).


Subject(s)
Aneurysm , Arteriovenous Malformations , Telangiectasia, Hereditary Hemorrhagic , Vascular Malformations , Humans , Female , Pulmonary Artery/diagnostic imaging , Pulmonary Artery/abnormalities , Vascular Malformations/genetics , Telangiectasia, Hereditary Hemorrhagic/diagnostic imaging , Telangiectasia, Hereditary Hemorrhagic/genetics , Aneurysm/diagnostic imaging , Aneurysm/genetics , Rho Guanine Nucleotide Exchange Factors
18.
Vasc Med ; 28(2): 153-165, 2023 04.
Article in English | MEDLINE | ID: mdl-36890671

ABSTRACT

Hereditary hemorrhagic telangiectasia (HHT), also known as Osler-Weber-Rendu disease, is a rare disorder with a case prevalence as high as one in 5000, causing arteriovenous malformations in multiple organ systems. HHT is familial with autosomal dominant inheritance, with genetic testing allowing confirmation of the diagnosis in asymptomatic kindreds. Common clinical manifestations are epistaxis and intestinal lesions causing anemia and requiring transfusions. Pulmonary vascular malformations predispose to ischemic stroke and brain abscess and may cause dyspnea and cardiac failure. Brain vascular malformations can cause hemorrhagic stroke and seizures. Rarely, liver arteriovenous malformations can cause hepatic failure. A form of HHT can cause juvenile polyposis syndrome and colon cancer. Specialists in multiple fields may be called to care for one or more aspects of HHT, but few are familiar with evidence-based guidelines for HHT management or see a sufficient number of patients to gain experience with the unique characteristics of the disease. Primary care physicians and specialists are often unaware of the important manifestations of HHT in multiple systems and the thresholds for their screening and appropriate management. To improve familiarity, experience, and coordinated multisystem care for patients with HHT, the Cure HHT Foundation, which advocates for patients and families with this disease, has accredited 29 centers in North America with designated specialists for the evaluation and care of patients with HHT. Team assembly and current screening and management protocols are described as a model for evidence-based, multidisciplinary care in this disease.


Subject(s)
Arteriovenous Malformations , Central Nervous System Vascular Malformations , Telangiectasia, Hereditary Hemorrhagic , Humans , Telangiectasia, Hereditary Hemorrhagic/diagnosis , Telangiectasia, Hereditary Hemorrhagic/genetics , Telangiectasia, Hereditary Hemorrhagic/therapy , Arteriovenous Malformations/diagnostic imaging , Arteriovenous Malformations/therapy , Lung , Prevalence
19.
BMC Cardiovasc Disord ; 23(1): 224, 2023 04 29.
Article in English | MEDLINE | ID: mdl-37120586

ABSTRACT

BACKGROUND: Noncompaction of ventricular myocardium(NVM) is a rare kind of cardiomyopathy associated with genetic mutations and nongenetic factors, among which the isolated right ventricular noncompaction (iRVNC) is the most rare type. ACVRL1 is the pathogenic gene of type 2 hereditary hemorrhagic telangiectasia (HHT2), and there's no NVM reported to be associated with ACVRL1 mutation. CASE PRESENTATION: This is a rare case diagnosed as iRVNC and pulmonary hypertention with ACVRL1 mutation detected. CONCLUSION: iRVNC in this case may be due to ACVRL1 mutation, secondary to pulmonary hypertention and right ventricular failure caused by ACVRL1 mutation, or they happened in the same case coincidently.


Subject(s)
Heart Failure , Telangiectasia, Hereditary Hemorrhagic , Humans , Telangiectasia, Hereditary Hemorrhagic/genetics , Telangiectasia, Hereditary Hemorrhagic/pathology , Mutation , Lung , Myocardium/pathology , Activin Receptors, Type II/genetics
20.
Jpn J Clin Oncol ; 53(3): 275-279, 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36546711

ABSTRACT

Juvenile polyposis syndrome (JPS) is an autosomal dominant, inherited disorder caused by pathogenic germline variants of mainly SMAD4 or BMPR1A genes. Some patients with JPS, especially with SMAD4 variants, also develop hereditary, hemorrhagic telangiectasia (HHT). HHT is also an autosomal dominant inherited disorder. Herein, we identified a novel germline pathogenic variant of the SMAD4 in a Japanese family with JPS and HHT. A six-base pair deletion in the SMAD4 gene (NM_005359.6:c.1495_1500delTGCATA) was identified in the patients. Two amino acids are deleted from SMAD4 protein (p.Cys499_Ile500del), which are located in MSH2 domain essential for the binding with SMAD3. This is a novel variant that has not been registered in any database surveyed. Amino acid structural analysis predicted significant changes in the secondary and three-dimensional structures in the vicinity of the two amino acids' deletion. The variant is classified as 'Likely Pathogenic' according to the American College of Medical Genetics and Genomics guidelines.


Subject(s)
Intestinal Polyposis , Neoplastic Syndromes, Hereditary , Telangiectasia, Hereditary Hemorrhagic , Humans , Telangiectasia, Hereditary Hemorrhagic/genetics , Telangiectasia, Hereditary Hemorrhagic/complications , Smad4 Protein/genetics , East Asian People , Neoplastic Syndromes, Hereditary/genetics , Neoplastic Syndromes, Hereditary/complications , Intestinal Polyposis/genetics , Intestinal Polyposis/complications , Germ Cells
SELECTION OF CITATIONS
SEARCH DETAIL