Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 476
Filter
Add more filters

Publication year range
1.
Cell ; 174(2): 259-270.e11, 2018 07 12.
Article in English | MEDLINE | ID: mdl-29937224

ABSTRACT

Many community- and hospital-acquired bacterial infections are caused by antibiotic-resistant pathogens. Methicillin-resistant Staphylococcus aureus (MRSA) predisposes humans to invasive infections that are difficult to eradicate. We designed a closed-loop gene network programming mammalian cells to autonomously detect and eliminate bacterial infections. The genetic circuit contains human Toll-like receptors as the bacterial sensor and a synthetic promoter driving reversible and adjustable expression of lysostaphin, a bacteriolytic enzyme highly lethal to S. aureus. Immunomimetic designer cells harboring this genetic circuit exhibited fast and robust sense-and-destroy kinetics against live staphylococci. When tested in a foreign-body infection model in mice, microencapsulated cell implants prevented planktonic MRSA infection and reduced MRSA biofilm formation by 91%. Notably, this system achieved a 100% cure rate of acute MRSA infections, whereas conventional vancomycin treatment failed. These results suggest that immunomimetic designer cells could offer a therapeutic approach for early detection, prevention, and cure of pathogenic infections in the post-antibiotic era.


Subject(s)
Biomimetics/methods , Methicillin-Resistant Staphylococcus aureus/physiology , Staphylococcal Infections/prevention & control , Alkaline Phosphatase/blood , Alkaline Phosphatase/genetics , Alkaline Phosphatase/metabolism , Animals , Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Disk Diffusion Antimicrobial Tests , Female , HEK293 Cells , Humans , Lipopolysaccharide Receptors/genetics , Lysostaphin/metabolism , Lysostaphin/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Mice , Mice, Inbred C57BL , Plasmids/genetics , Plasmids/metabolism , Staphylococcal Infections/microbiology , Staphylococcal Infections/veterinary , Toll-Like Receptor 1/genetics , Toll-Like Receptor 2/genetics , Toll-Like Receptor 6/genetics , Transcription Factor AP-1/metabolism
2.
Nucleic Acids Res ; 52(12): 6906-6927, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38742642

ABSTRACT

MicroRNAs (miRNAs) play crucial regulatory roles in controlling immune responses, but their dynamic expression mechanisms are poorly understood. Here, we firstly confirm that the conserved miRNA miR-210 negatively regulates innate immune responses of Drosophila and human via targeting Toll and TLR6, respectively. Secondly, our findings demonstrate that the expression of miR-210 is dynamically regulated by NF-κB factor Dorsal in immune response of Drosophila Toll pathway. Thirdly, we find that Dorsal-mediated transcriptional inhibition of miR-210 is dependent on the transcriptional repressor Su(Hw). Mechanistically, Dorsal interacts with Su(Hw) to modulate cooperatively the dynamic expression of miR-210 in a time- and dose-dependent manner, thereby controlling the strength of Drosophila Toll immune response and maintaining immune homeostasis. Fourthly, we reveal a similar mechanism in human cells, where NF-κB/RelA cooperates with E4F1 to regulate the dynamic expression of hsa-miR-210 in the TLR immune response. Overall, our study reveals a conservative regulatory mechanism that maintains animal innate immune homeostasis and provides new insights into the dynamic regulation of miRNA expression in immune response.


Subject(s)
Drosophila Proteins , Immunity, Innate , MicroRNAs , Transcription Factors , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Humans , Immunity, Innate/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Gene Expression Regulation , Drosophila melanogaster/genetics , Drosophila melanogaster/immunology , NF-kappa B/metabolism , Toll-Like Receptor 6/genetics , Toll-Like Receptor 6/metabolism , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics , Repressor Proteins/metabolism , Repressor Proteins/genetics , Signal Transduction , Cell Line , Drosophila/genetics , Drosophila/immunology , Toll-Like Receptors/genetics , Toll-Like Receptors/metabolism , Nuclear Proteins , Phosphoproteins
3.
Proc Natl Acad Sci U S A ; 120(50): e2122178120, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38051771

ABSTRACT

Thrombocytopenia, hemorrhage, anemia, and infection are life-threatening issues following accidental or intentional radiation exposure. Since few therapeutics are available, safe and efficacious small molecules to mitigate radiation-induced injury need to be developed. Our previous study showed the synthetic TLR2/TLR6 ligand fibroblast stimulating lipopeptide (FSL-1) prolonged survival and provided MyD88-dependent mitigation of hematopoietic acute radiation syndrome (H-ARS) in mice. Although mice and humans differ in TLR number, expression, and function, nonhuman primate (NHP) TLRs are like those of humans; therefore, studying both animal models is critical for drug development. The objectives of this study were to determine the efficacy of FSL-1 on hematopoietic recovery in small and large animal models subjected to sublethal total body irradiation and investigate its mechanism of action. In mice, we demonstrate a lack of adverse effects, an easy route of delivery (subcutaneous) and efficacy in promoting hematopoietic progenitor cell proliferation by FSL-1. NHP given radiation, followed a day later with a single subcutaneous administration of FSL-1, displayed no adversity but showed elevated hematopoietic cells. Our analyses revealed that FSL-1 promoted red blood cell development and induced soluble effectors following radiation exposure. Cytologic analysis of bone marrow aspirates revealed a striking enhancement of mononuclear progenitor cells in FSL-1-treated NHP. Combining the efficacy of FSL-1 in promoting hematopoietic cell recovery with the lack of adverse effects induced by a single administration supports the application of FSL-1 as a viable countermeasure against H-ARS.


Subject(s)
Acute Radiation Syndrome , Toll-Like Receptor 2 , Humans , Mice , Animals , Toll-Like Receptor 6 , Ligands , Acute Radiation Syndrome/drug therapy , Primates , Fibroblasts
4.
PLoS Pathog ; 18(10): e1010499, 2022 10.
Article in English | MEDLINE | ID: mdl-36240261

ABSTRACT

Severe dengue virus (DENV) infection is characterized by exacerbated inflammatory responses that lead to endothelial dysfunction and plasma leakage. We have recently demonstrated that Toll-like receptor 2 (TLR2) on blood monocytes senses DENV infection leading to endothelial activation. Here, we report that non-infectious immature DENV particles, which are released in large numbers by DENV-infected cells, drive endothelial activation via the TLR2 axis. We show that fully immature DENV particles induce a rapid, within 6 hours post-infection, inflammatory response in PBMCs. Furthermore, pharmacological blocking of TLR2/TLR6/CD14 and/or NF-kB prior to exposure of PBMCs to immature DENV reduces the initial production of inter alia TNF-α and IL-1ß by monocytes and prevents endothelial activation. However, prolonged TLR2 block induces TNF-α production and leads to exacerbated endothelial activation, indicating that TLR2-mediated responses play an important role not only in the initiation but also the resolution of inflammation. Altogether, these data indicate that the maturation status of the virus has the potential to influence the kinetics and extent of inflammatory responses during DENV infection.


Subject(s)
Dengue Virus , Dengue , Humans , Toll-Like Receptor 2 , Leukocytes, Mononuclear , Toll-Like Receptor 6 , Tumor Necrosis Factor-alpha , NF-kappa B , Inflammation , Virion
5.
Gastric Cancer ; 27(2): 324-342, 2024 03.
Article in English | MEDLINE | ID: mdl-38310631

ABSTRACT

Helicobacter pylori (H. pylori, Hp) has been designated a class I carcinogen and is closely associated with severe gastric diseases. During colonization in the gastric mucosa, H. pylori develops immune escape by inducing host immune tolerance. The gastric epithelium acts as the first line of defense against H. pylori, with Toll-like receptors (TLRs) in gastric epithelial cells being sensitive to H. pylori components and subsequently activating the innate immune system. However, the mechanism of immune tolerance induced by H. pylori through the TLR signalling pathway has not been fully elucidated. In this research, we detected the expression of TLRs and inflammatory cytokines in GES-1 cells upon sustained exposure to H. pylori or H. pylori lysate from 1 to 30 generations and in Mongolian gerbils infected with H. pylori for 5 to 90 weeks. We found that the levels of TLR6 and inflammatory cytokines first increased and then dropped during the course of H. pylori treatment in vitro and in vivo. The restoration of TLR6 potentiated the expression of IL-1ß and IL-8 in GES-1 cells, which recruited neutrophils and reduced the colonization of H. pylori in the gastric mucosa of gerbils. Mechanistically, we found that persistent infection with H. pylori reduces the sensitivity of TLR6 to bacterial components and regulates the expression of inflammatory cytokines in GES-1 cells through TLR6/JNK signaling. The TLR6 agonist obviously alleviated inflammation in vitro and in vivo. Promising results suggest that TLR6 may be a potential candidate immunotherapy drug for H. pylori infection.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Stomach Neoplasms , Animals , Humans , Toll-Like Receptor 6/metabolism , Gerbillinae , Stomach Neoplasms/metabolism , Cytokines/metabolism , Helicobacter Infections/complications , Gastric Mucosa/metabolism
6.
J Immunol ; 209(7): 1359-1369, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36165200

ABSTRACT

Donor-specific HLA Abs contribute to Ab-mediated rejection (AMR) by binding to HLA molecules on endothelial cells (ECs) and triggering intracellular signaling, leading to EC activation and leukocyte recruitment. The molecular mechanisms involving donor-specific HLA Ab-mediated EC activation and leukocyte recruitment remain incompletely understood. In this study, we determined whether TLRs act as coreceptors for HLA class I (HLA I) in ECs. We found that human aortic ECs express TLR3, TLR4, TLR6, and TLR10, but only TLR4 was detected on the EC surface. Consequently, we performed coimmunoprecipitation experiments to examine complex formation between HLA I and TLR4. Stimulation of human ECs with HLA Ab increased the amount of complex formation between HLA I and TLR4. Reciprocal coimmunoprecipitation with a TLR4 Ab confirmed that the crosslinking of HLA I increased complex formation between TLR4 and HLA I. Knockdown of TLR4 or MyD88 with small interfering RNAs inhibited HLA I Ab-stimulated P-selectin expression, von Willebrand factor release, and monocyte recruitment on ECs. Our results show that TLR4 is a novel coreceptor for HLA I to stimulate monocyte recruitment on activated ECs. Taken together with our previous published results, we propose that HLA I molecules form two separate signaling complexes at the EC surface, that is, with TLR4 to upregulate P-selectin surface expression and capture of monocytes to human ECs and integrin ß4 to induce mTOR-dependent firm monocyte adhesion via ICAM-1 clustering on ECs, two processes implicated in Ab-mediated rejection.


Subject(s)
Endothelial Cells , Intercellular Adhesion Molecule-1 , Cells, Cultured , Endothelium, Vascular/metabolism , HLA Antigens/metabolism , Humans , Integrin beta4/metabolism , Intercellular Adhesion Molecule-1/metabolism , Monocytes , Myeloid Differentiation Factor 88/metabolism , P-Selectin/metabolism , TOR Serine-Threonine Kinases/metabolism , Toll-Like Receptor 3/metabolism , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 6/metabolism , von Willebrand Factor/metabolism
7.
Dev Biol ; 484: 30-39, 2022 04.
Article in English | MEDLINE | ID: mdl-35134382

ABSTRACT

Neuronal target recognition is performed by numerous cell-surface transmembrane proteins. Correct folding of these proteins occurs in the endoplasmic reticulum (ER) lumen of the neuronal cells before being transported to the plasma membrane of axons or dendrites. Disturbance in this protein folding process in the ER leads to dysfunction of neuronal cell surface molecules, resulting in abnormal neuronal targeting. In this study, we report that the ER-resident protein Meigo in Drosophila, governs the dendrite targeting of olfactory projection neurons (PNs) along the mediolateral axis of the antennal lobe by regulating Toll-6 localization. Loss of Meigo causes Toll-6 mislocalization in the PNs and mediolateral dendrite targeting defects, which are suppressed by Toll-6 overexpression. Furthermore, we found that the ER-chaperone protein, Gp93, also regulates the mediolateral targeting of PN dendrites by localization of the Toll-6 protein. Gp93 overexpression in the PN homozygous for the meigo mutation, partially rescued the dendrite targeting defect, while meigo knockdown decreased Gp93 expression levels in cultured cells. These results indicate that the ER-proteins Meigo and Gp93 regulate dendrite targeting by attenuating the amount and localization of cell surface receptors, including Toll-6, implying the unexpected but active involvement of ER proteins in neural wiring.


Subject(s)
Drosophila Proteins/metabolism , Molecular Chaperones/metabolism , Toll-Like Receptor 6/metabolism , Animals , Dendrites/metabolism , Drosophila/metabolism , Endoplasmic Reticulum/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Olfactory Pathways/metabolism
8.
J Am Chem Soc ; 145(43): 23422-23426, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37871232

ABSTRACT

An systematic phenotypic screen of the mouse gut microbiome for metabolites with an immunomodulatory effect identified Muribaculum intestinale as one of only two members with an oversized effect on T-cell populations. Here we report the identification and characterization of a lipid, MiCL-1, as the responsible metabolite. MiCL-1 is an 18:1-16:0 cardiolipin, whose close relatives are found on concave lipid surfaces of both mammals and bacteria. MiCL-1 was synthesized to confirm the structural analysis and functionally characterized in cell-based assays. It has a highly restrictive structure-activity profile, as its chain-switched analog fails to induce responses in any of our assays. MiCL-1 robustly induces the production of pro-inflammatory cytokines like TNF-α, IL-6, and IL-23, but has no detectable effect on the anti-inflammatory cytokine IL-10. As is the case with other recently discovered immunomodulatory lipids, MiCL-1 requires functional TLR2 and TLR1 but not TLR6 in cell-based assays.


Subject(s)
Cardiolipins , Cytokines , Animals , Mice , Toll-Like Receptor 6/metabolism , Bacteroidetes , Mammals/metabolism
9.
Hepatology ; 76(5): 1345-1359, 2022 11.
Article in English | MEDLINE | ID: mdl-35253915

ABSTRACT

BACKGROUND AND AIMS: Netrin-1 displays protumoral properties, though the pathological contexts and processes involved in its induction remain understudied. The liver is a major model of inflammation-associated cancer development, leading to HCC. APPROACH AND RESULTS: A panel of cell biology and biochemistry approaches (reverse transcription quantitative polymerase chain reaction, reporter assays, run-on, polysome fractionation, cross linking immunoprecipitation, filter binding assay, subcellular fractionation, western blotting, immunoprecipitation, stable isotope labeling by amino acids in cell culture) on in vitro-grown primary hepatocytes, human liver cell lines, mouse samples and clinical samples was used. We identify netrin-1 as a hepatic inflammation-inducible factor and decipher its mode of activation through an exhaustive eliminative approach. We show that netrin-1 up-regulation relies on a hitherto unknown mode of induction, namely its exclusive translational activation. This process includes the transfer of NTN1 (netrin-1) mRNA to the endoplasmic reticulum and the direct interaction between the Staufen-1 protein and this transcript as well as netrin-1 mobilization from its cell-bound form. Finally, we explore the impact of a phase 2 clinical trial-tested humanized anti-netrin-1 antibody (NP137) in two distinct, toll-like receptor (TLR) 2/TLR3/TLR6-dependent, hepatic inflammatory mouse settings. We observe a clear anti-inflammatory activity indicating the proinflammatory impact of netrin-1 on several chemokines and Ly6C+ macrophages. CONCLUSIONS: These results identify netrin-1 as an inflammation-inducible factor in the liver through an atypical mechanism as well as its contribution to hepatic inflammation.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Mice , Humans , Animals , Toll-Like Receptor 2 , Nerve Growth Factors/metabolism , Toll-Like Receptor 3 , Toll-Like Receptor 6 , Tumor Suppressor Proteins/metabolism , Inflammation/metabolism , Anti-Inflammatory Agents , RNA, Messenger , Amino Acids , Netrin Receptors
10.
Cytokine ; 169: 156278, 2023 09.
Article in English | MEDLINE | ID: mdl-37356261

ABSTRACT

BACKGROUND: The innate immune response plays an important role during malaria. Toll-like receptors (TLR) are capable of recognizing pathogen molecules. We aimed to evaluate five polymorphisms in TLR-4, TLR-6, and TLR-9 genes and their association with cytokine levels and clinical parameters in malaria from the Brazil-French Guiana border. METHODS: A case-control study was conducted in Amapá, Brazil. P. vivax patients and individuals not infected were evaluated. Genotyping of five SNPs was carried out by qPCR. Circulating cytokines were measured by CBA. The MSP-119 IgG antibodies were performed by ELISA. RESULTS: An association between TLR4 A299G with parasitemia was observed. There was an increase for IFN-ɤ, TNF-ɑ, IL-6, and IL-10 in the TLR-4 A299G and T3911, TLR-6 S249P, and TLR-9 1486C/T, SNPs for the studied malarial groups. There were significant findings for the TLR-4 variants A299G and T3911, TLR-9 1237C/T, and 1486C/T. For the reactivity of MSP-119 antibodies levels, no significant results were found in malaria, and control groups. CONCLUSIONS: The profile of the immune response observed by polymorphisms in TLRs genes does not seem to be standard for all types of malaria infection around the world. This can depend on the human population and the species of Plasmodium.


Subject(s)
Malaria, Vivax , Malaria , Humans , Malaria, Vivax/genetics , Toll-Like Receptor 9 , Toll-Like Receptor 4/genetics , Toll-Like Receptor 6/genetics , Case-Control Studies , Brazil , French Guiana , Merozoite Surface Protein 1/genetics , Genotype , Genetic Predisposition to Disease , Toll-Like Receptors/genetics , Polymorphism, Single Nucleotide/genetics , Plasmodium vivax/genetics
11.
Immunity ; 41(5): 762-75, 2014 Nov 20.
Article in English | MEDLINE | ID: mdl-25456159

ABSTRACT

Skin is constantly exposed to bacteria and antigens, and cutaneous innate immune sensing orchestrates adaptive immune responses. In its absence, skin pathogens can expand, entering deeper tissues and leading to life-threatening infectious diseases. To characterize skin-driven immunity better, we applied living bacteria, defined lipopeptides, and antigens cutaneously. We found suppression of immune responses due to cutaneous infection with Gram-positive S. aureus, which was based on bacterial lipopeptides. Skin exposure to Toll-like receptor (TLR)2-6-binding lipopeptides, but not TLR2-1-binding lipopeptides, potently suppressed immune responses through induction of Gr1(+)CD11b(+) myeloid-derived suppressor cells (MDSCs). Investigating human atopic dermatitis, in which Gram-positive bacteria accumulate, we detected high MDSC amounts in blood and skin. TLR2 activation in skin resident cells triggered interleukin-6 (IL-6), which induced suppressive MDSCs, which are then recruited to the skin suppressing T cell-mediated recall responses such as dermatitis. Thus, cutaneous bacteria can negatively regulate skin-driven immune responses by inducing MDSCs via TLR2-6 activation.


Subject(s)
Myeloid Cells/immunology , Skin/immunology , Staphylococcal Skin Infections/immunology , Toll-Like Receptor 2/immunology , Adaptive Immunity/immunology , Animals , Antigens/immunology , CD11b Antigen/biosynthesis , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Dermatitis, Atopic/immunology , Dermatitis, Atopic/microbiology , Humans , Interleukin-6/biosynthesis , Lipopeptides/immunology , Lymphocyte Activation/immunology , Mice , Mice, Inbred BALB C , Mice, Knockout , Myeloid Differentiation Factor 88/biosynthesis , Skin/microbiology , Staphylococcus aureus/immunology , Toll-Like Receptor 1/immunology , Toll-Like Receptor 2/genetics , Toll-Like Receptor 4/immunology , Toll-Like Receptor 6/immunology
12.
Inflamm Res ; 72(5): 915-928, 2023 May.
Article in English | MEDLINE | ID: mdl-36964784

ABSTRACT

OBJECTIVE AND DESIGN: BacSp222 bacteriocin is a bactericidal and proinflammatory peptide stimulating immune cells to produce selected cytokines and NO in NF-ĸB dependent manner. This study aims to identify the receptor which mediates this activity. METHODS: We applied fluorescently labeled BacSp222 and a confocal microscopy imaging to analyze the direct interaction of the bacteriocin with the cells. Reporter HEK-Blue cells overexpressing human toll-like receptors (TLR2, TLR4, TLR5 or TLR2/TLR1 and TLR2/TLR6 heterodimers) were stimulated with BacSp222, and then the activity of NF-ĸB-dependent secreted embryonic alkaline phosphatase (SEAP) was measured. In turn, formylated peptide receptor (FPR) or TLR2 antagonists were used to verify bacteriocin-stimulated TNF production by murine monocyte-macrophage cell lines. RESULTS: BacSp222 undergoes internalization into cells without disturbing the cell membrane. FPR antagonists do not affect TNF produced by BacSp222-stimulated murine macrophage-like cells. In contrast, BacSp222 stimulates NF-ĸB activation in HEK-Blue overexpressing TLR2 or TLR2/TLR6 heterodimer, but not TLR2/TLR1, TLR4 or TLR5 receptors. Moreover, TLR2-specific antagonists inhibit NF-ĸB signaling in BacSp222-stimulated HEK-Blue TLR2/TLR6 cells and reduce TNF release by BacSp222-treated RAW 264.7 and P388.D1. CONCLUSIONS: BacSp222 is a novel ligand for TLR2/TLR6 heterodimer. By binding TLR complex the bacteriocin undergoes internalization, inducing proinflammatory signaling that employs MyD88 and NF-ĸB pathways.


Subject(s)
Bacteriocins , Toll-Like Receptor 6 , Humans , Animals , Mice , Ligands , Toll-Like Receptor 6/metabolism , NF-kappa B/metabolism , Toll-Like Receptor 1 , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 5 , Toll-Like Receptor 4 , Bacteriocins/pharmacology
13.
Mol Biol Rep ; 50(11): 8877-8888, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37688680

ABSTRACT

BACKGROUND: Bipolar disorder (BD) is a complex neuropsychiatric disease that has been strongly linked to immune dysregulation. In particular, an abnormal inflammatory response mediated by toll-like receptor 2 - 1/6 (TLR2-1/6) was described in BD. Nevertheless, genetic factors' contribution is still unknown. Thus, we suggested that functional polymorphisms of TLR2, 1 and 6 could be involved in BD predisposition. METHODS AND RESULTS: TLR2, 1 and 6 polymorphisms were genotyped by PCR-RFLP in 292 controls and 131 patients from a Tunisian population. Polymorphisms and haplotype associations were explored in BD and binary logistic regression analysis was performed for more powerful associations. In dominant model, we found a significantly higher genotype and minor allele frequencies in healthy females compared to patients for TLR2-196-174Ins/Del (p = 0.04; OR = 0.3, p = 0.04; OR = 0.3, respectively) and for TLR6-S249P only with minor allele (p = 0.03; OR = 0.2). In contrast, TLR2-R677W CT + TT and T allele frequencies were significantly higher in BD (padjusted<10- 4; ORadjusted =46.6, p < 10- 4; OR = 6.3, respectively), specifically in females (CT + TT: 100%). Similarly, TLR1-R80T showed significantly increased GC + CC and C allele frequencies in patients compared to controls (padjusted=0.04; ORadjusted=4, p = 0.009; OR = 4.3, respectively). Moreover, haplotype investigation demonstrated that InsGTCGT (p < 10- 4, OR = 275) and delGCCGT (p = 0.03, OR = 18.5) were significantly overrepresented in BD patients compared to controls. CONCLUSIONS: We suggest that TLR2-196-174Ins/Del and TLR6-S249P could be protective factors of females against BD. However, TLR2-R677W and TLR1-R80T could be strongly associated with higher risk of BD. Interestingly, TLR2-R677W could be a genetic marker for BD in females. However, further studies with larger groups are needed to confirm these findings.


Subject(s)
Bipolar Disorder , Toll-Like Receptor 2 , Female , Humans , Toll-Like Receptor 2/genetics , Toll-Like Receptor 6/genetics , Toll-Like Receptor 1/genetics , Genetic Predisposition to Disease , Bipolar Disorder/genetics , Genotype , Polymorphism, Single Nucleotide/genetics , Case-Control Studies
14.
J Invertebr Pathol ; 201: 108010, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37865158

ABSTRACT

Toll-like receptors (TLRs), an ancient and well-conserved group of pattern recognition receptors (PRRs), recognize conserved pathogen-associated molecular patterns. TLRs consist of three domains: the extracellular N-terminal domain, containing one or more leucine-rich repeats (LRRs), responsible for the recognizing and binding of antigens; the type-I transmembrane domain; and the intracellular domain known as the Toll/Interleukin-1 receptor (TIR) domain required for the downstream signaling pathway. We identified six new full-length complementary DNA (cDNA) sequences, Ean-TLR1/2/3/4/5/6. The deduced amino acid sequences indicate that Ean-TLRs consist of one signal peptide, one LRR N-terminal domain (Ean-TLR4/5), varying numbers of LRRs, one (Ean-TLR1/2/3/4/5) or two (Ean-TLR6) LRR C-terminal domains, one type-I transmembrane domain, and a TIR domain. In addition, a TIR domain alignment revealed that three conserved motifs, designated as Box 1, Box 2, and Box 3, contain essential amino acid residues for downstream signaling activity. Phylogenetic analysis of earthworm TLRs generated two separate evolutionary branches representing single (sccTLR) and multiple (mccTLR) cysteine cluster TLRs. Ean-TLR1/2/3/4 (sccTLR type) and Ean-TLR6 (mccTLR type) were clustered with corresponding types of previously reported earthworm TLRs as well as TLRs from Clitellata and Polychaete. As PRRs, earthworm TLRs should be capable of sensing a diverse range of pathogens. Except for Ean-TLR3, which was not responsive to any bacteria, earthworm TLR expression was significantly induced by Gram-positive but not Gram-negative bacteria. Moreover, it is likely that earthworms can differentiate between different species of Gram-positive bacteria via their TLR responses. The ligand specificity of earthworm TLRs suggests that their pathogenic ligand recognition is likely to be as specific and diverse as the mammalian TLR pathogen-sensing system.


Subject(s)
Oligochaeta , Animals , Phylogeny , Toll-Like Receptor 1/genetics , Ligands , Toll-Like Receptor 6/genetics , Toll-Like Receptors/genetics , Toll-Like Receptors/metabolism , Receptors, Pattern Recognition/genetics , Bacteria/metabolism , Immunity, Innate/genetics , Mammals/metabolism
15.
Int J Mol Sci ; 24(15)2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37569837

ABSTRACT

While a certain level of inflammation is critical for humans to survive infection and injury, a prolonged inflammatory response can have fatal consequences. Pattern recognition Toll-like receptors (TLRs) are key players in the initiation of an inflammatory process. TLR2 is one of the most studied pattern recognition receptors (PRRs) and is known to form heterodimers with either TLR1, TLR4, TLR6, and TLR10, allowing it to recognize a wide range of pathogens. Although a large number of studies have been conducted over the past decades, there are still many unanswered questions regarding TLR2 mechanisms in health and disease. In this review, we provide an up-to-date overview of TLR2, including its homo- and heterodimers. Furthermore, we will discuss the pro- and anti-inflammatory properties of TLR2 and recent findings in prominent TLR2-associated infectious and neurodegenerative diseases.


Subject(s)
Toll-Like Receptor 1 , Toll-Like Receptor 2 , Humans , Toll-Like Receptor 2/metabolism , Dimerization , Toll-Like Receptor 1/metabolism , Toll-Like Receptors , Anti-Inflammatory Agents , Toll-Like Receptor 6/metabolism , Toll-Like Receptor 10
16.
J Infect Dis ; 225(7): 1296-1300, 2022 04 01.
Article in English | MEDLINE | ID: mdl-33011801

ABSTRACT

Clostridioides difficile infection (CDI) represents a significant burden on the health care system, one that is exacerbated by the emergence of binary toxin (CDT)-producing hypervirulent C. difficile strains. Previous work from our laboratory has shown that Toll-like receptor 2 (TLR2) recognizes CDT to induce inflammation. Here we explore the interactions of CDT with TLR2 and the impact on host immunity during CDI. We found that the TLR2/6 heterodimer, not TLR2/1, is responsible for CDT recognition, and that gene pathways including nuclear factor-κB and MAPK downstream of TLR2/6 are upregulated in mice with intact TLR2/6 signaling during CDI.


Subject(s)
Clostridioides difficile , Clostridium Infections , Animals , Antibodies, Bacterial , Mice , NF-kappa B , Toll-Like Receptor 2/genetics , Toll-Like Receptor 6
17.
Immunol Cell Biol ; 100(3): 174-185, 2022 03.
Article in English | MEDLINE | ID: mdl-35124861

ABSTRACT

The group A Streptococcus (GAS) pilus is a long, flexible, hair-like structure anchored to the cell surface that facilitates the adherence of GAS to host cells, thus playing a critical role in initiating infections. Because of its important role in GAS virulence, the pilus has become an attractive target for vaccine development. While current research mainly focuses on pilus function and its potential as a vaccine component, there is a lack of knowledge on how the host immune system recognizes and responds to this abundant surface structure. Here we show that both assembled GAS pili and individual pilus proteins induce a potent release of the proinflammatory cytokines tumor necrosis factor and interleukin-8. We further show that the surface-exposed backbone pilin and ancillary pilin 1 subunits are Toll-like receptor 2 (TLR2) agonists. Using reporter cell lines coexpressing human TLR2 in combination with either TLR1 or TLR6, we determined that activation was mediated by the TLR2/TLR6 heterodimer. Finally, we used solid-phase and flow cytometry binding assays to illustrate a direct interaction between the pilus subunits and TLR2. These results provide further support for the suitability of the pilus as a vaccine component and opens potential avenues for using GAS pili as an adjuvant or immune-modulation agent.


Subject(s)
Fimbriae Proteins , Streptococcus pyogenes , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Fimbriae Proteins/metabolism , Humans , Immunity, Innate , Streptococcus pyogenes/metabolism , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 6/metabolism
18.
Nat Immunol ; 11(2): 155-61, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20037584

ABSTRACT

In atherosclerosis and Alzheimer's disease, deposition of the altered self components oxidized low-density lipoprotein (LDL) and amyloid-beta triggers a protracted sterile inflammatory response. Although chronic stimulation of the innate immune system is believed to underlie the pathology of these diseases, the molecular mechanisms of activation remain unclear. Here we show that oxidized LDL and amyloid-beta trigger inflammatory signaling through a heterodimer of Toll-like receptors 4 and 6. Assembly of this newly identified heterodimer is regulated by signals from the scavenger receptor CD36, a common receptor for these disparate ligands. Our results identify CD36-TLR4-TLR6 activation as a common molecular mechanism by which atherogenic lipids and amyloid-beta stimulate sterile inflammation and suggest a new model of TLR heterodimerization triggered by coreceptor signaling events.


Subject(s)
CD36 Antigens/immunology , Inflammation/immunology , Signal Transduction/immunology , Toll-Like Receptor 4/immunology , Toll-Like Receptor 6/immunology , Amyloid beta-Peptides/immunology , Animals , Atherosclerosis/immunology , Atherosclerosis/metabolism , Blotting, Western , CD36 Antigens/metabolism , Cell Line , Chemokines/biosynthesis , Chemokines/immunology , Gene Expression , Humans , Immunoprecipitation , Inflammation/metabolism , Lipoproteins, LDL/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/immunology , Microglia/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 6/metabolism
19.
Cytokine ; 152: 155791, 2022 04.
Article in English | MEDLINE | ID: mdl-35158257

ABSTRACT

Epidemiological data from the world health organization (WHO) show that Globally an estimated 10 million (range, 8.9-11.0 million) people around the world were infected with TB in 2019. M.tuberculosis (M.tb) is the major cause of tuberculosis. Infection with M.tb has varied host immune responses because of the host genetic factor and its response to the infection. Genetic polymorphism in TLRs imparts susceptibility or resistance to the host against several diseases. In the present study, a systematic review and meta-analysis were performed to describe the relationship among various TLRs and SNPs involved in M.tb infection and their association with susceptibility to pulmonary tuberculosis in various populations of the world. PubMed and Scihub databases from 2008 to 2019 were searched and 58 articles were shortlisted for the present study to explore the association between TLRs gene polymorphisms and susceptibility to tuberculosis infection. The combined analysis showed that the polymorphisms TLR1 (rs5743618), TLR1 (rs4833095), TLR2 (-196 to -174) del, TLR2 (rs3804099), TLR4 (rs4986790), TLR4 (rs4986791), TLR4 (rs7873784), TLR6 (rs5743810), TLR8 (rs3764880), TLR9 (rs5743836), TLR9 (rs352139) were significantly associated with TB disease in certain ethnic population. In our meta-analysis study, we have also found variations between studies in some polymorphism, for example. The TLR1 (rs 5743618), TLR2 (rs5743708), TLR4 Asp299Gly, TLR4 Thr399Ile, TLR4 (rs7873784), TLR6 (rs5743810), TLR9 (rs5743836) was associated with the protection against TB. Meta-analysis was performed between polymorphisms and pulmonary tuberculosis to define increase or decrease in susceptibility to tuberculosis in various populations, which indicated that a relationship exists between SNPs/host genetic factors and susceptibility or resistance in patients suffering from pulmonary tuberculosis our finding concludes that this gene polymorphism may be associated with susceptibility to TB. The present study adds value to the various researches and studies going on various populations of the world in better understanding the role of TLR polymorphism in TB.


Subject(s)
Latent Tuberculosis , Mycobacterium tuberculosis , Tuberculosis, Pulmonary , Tuberculosis , Genetic Predisposition to Disease , Humans , Polymorphism, Single Nucleotide/genetics , Toll-Like Receptor 1/genetics , Toll-Like Receptor 2/genetics , Toll-Like Receptor 4/genetics , Toll-Like Receptor 6/genetics , Toll-Like Receptor 9 , Toll-Like Receptors/genetics , Tuberculosis/genetics , Tuberculosis, Pulmonary/genetics
20.
Microb Pathog ; 162: 105208, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34563610

ABSTRACT

BACKGROUND: Our investigation attempted to understand the role of innate immunity related genes played in tuberculosis. The relationship between single-nucleotide polymorphisms (SNPs) of three innate immunity-related genes (TLR6, MyD88, and TIRAP) and tuberculosis (TB) risk in two Chinese populations were explored. METHODS: Totally 1185 Chinese Han, consisting of 580 active TB cases and 605 healthy controls (HCs), and 1216 Chinese Tibetan individuals including 613 TB patients and 603 HCs were enrolled to conduct two case-control studies. TagSNPs of the three genes were selected based on the HapMap database and genotyped by the SNPscan™ Kit. Haploview software 4.2 was applied to perform linkage disequilibrium (LD) analysis and online software SHEsis was used to discover significant haplotype block. RegulomeDB and HaploReg were applied to predict potential functional SNPs of the three genes. RESULTS: The results showed that minor alleles of rs5743808 and rs5743827 of TLR6 were related with increased TB risk (p = 0.001, OR 95%CI = 1.51 (1.18-1.95) and p = 0.002, OR 95%CI = 1.42 (1.14-1.77)), and significant association was also observed between rs5743827 and TB risk in male subgroup (p = 0.003, OR 95%CI = 1.67 (1.91-2.35)) in the Tibetan population. For the Tibetan population, frequency of haplotype ACGT of rs1039559-rs3775073-rs5743808-rs5743827 of TLR6 was significantly higher in the TB group (p = 0.0008), while haplotype ATAC was significantly higher in the control group (p = 0.0002). The above associations remained after permutation and Bonferroni correction. No significant association was found in the Han population. Probable functions of tagSNPs of TLR6 and some other linked variants were discovered after bioinformatic analysis. CONCLUSIONS: This study suggested that variants of TLR6 might be associated with TB risk in the Tibetan population, while not in the Han population. The difference between Chinese Han and Tibetan people will provide better understanding of tuberculosis.


Subject(s)
Toll-Like Receptor 6 , Tuberculosis , Asian People/genetics , Case-Control Studies , China/epidemiology , Genetic Predisposition to Disease , Haplotypes , Humans , Male , Polymorphism, Single Nucleotide , Tibet , Tuberculosis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL