Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Arch Virol ; 169(4): 86, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38558201

ABSTRACT

Blueberries (Vaccinium sp.) are a major crop grown in the Pacific Northwest region. Currently, there are at least 17 known viruses that infect blueberry plants, and some of them cause a wide range of symptoms and economic losses. A new virus, vaccinium-associated virus C (VaVC) (family Totiviridae, genus Totivirus) was identified in an imported blueberry accession from the USDA-ARS National Clonal Germplasm Repository in Corvallis, Oregon. The complete genomic sequence of VaVC was determined, but the biological significance of VaVC is unknown and requires further study. Additional Vaccinium sp. accessions should be screened to investigate the incidence of this new virus.


Subject(s)
Blueberry Plants , Totiviridae , Totivirus , Vaccinium , Vaccinium/genetics , Totiviridae/genetics , Totivirus/genetics , Genome, Viral
2.
Arch Virol ; 169(6): 123, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753216

ABSTRACT

Chinese bayberry is a fruit that is appreciated for its taste. A novel totivirus associated with rolling, disfiguring, chlorotic and vein-clearing symptoms on the leaf apices of Chinese bayberry was identified by transcriptome sequencing and reverse transcription PCR (RT-PCR). The complete genome of the virus was determined to be 4959 nucleotides long, and it contains two open reading frames (ORFs). Its genomic organization is similar to that of previously reported totiviruses. ORF1 encodes a putative coat protein (CP) of 765 aa, and ORF2 encodes an RNA-dependent RNA polymerase (RdRp) of 815 aa. These two putative proteins share 55.1% and 62.6%, amino acid sequence identity, respectively, with the corresponding proteins of Panax notoginseng virus A, respectively. According to the demarcation criteria for totivirus species established by the International Committee on Taxonomy of Viruses (ICTV), the new virus should be considered a member of a new species in the genus totivirus, family Orthototiviridae, which we have tentatively named ''Myrica rubra-associated totivirus'' (MRaTV).


Subject(s)
Genome, Viral , Myrica , Open Reading Frames , Phylogeny , Plant Diseases , Plant Leaves , Totivirus , Whole Genome Sequencing , Genome, Viral/genetics , Plant Diseases/virology , Plant Leaves/virology , Myrica/virology , Myrica/genetics , Totivirus/genetics , Totivirus/isolation & purification , Totivirus/classification , Viral Proteins/genetics , RNA-Dependent RNA Polymerase/genetics , RNA, Viral/genetics
3.
Arch Virol ; 169(3): 58, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38424260

ABSTRACT

In this study, we determined the complete genome sequence of a novel totivirus, tentatively named "Mangifera indica totivirus 1" (MiTV1), identified in 'Apple' mango in China. The double-stranded RNA genome of MiTV1 is 4800 base pairs (bp) in length and contains two open reading frames (ORFs) encoding a putative coat protein (CP) and an RNA-dependent RNA polymerase (RdRp). Phylogenetic analysis based on RdRp and CP amino acid sequences showed that MiTV1 is closely related to members of the genus Totivirus in the family Totiviridae. To our knowledge, this is the first report of a totivirus found in Mangifera indica.


Subject(s)
Mangifera , Totivirus , Totivirus/genetics , Mangifera/genetics , Phylogeny , Amino Acid Sequence , RNA, Double-Stranded , RNA-Dependent RNA Polymerase/genetics , Open Reading Frames , Genome, Viral , RNA, Viral/genetics
4.
PLoS Genet ; 17(2): e1009341, 2021 02.
Article in English | MEDLINE | ID: mdl-33539346

ABSTRACT

Killer toxins are extracellular antifungal proteins that are produced by a wide variety of fungi, including Saccharomyces yeasts. Although many Saccharomyces killer toxins have been previously identified, their evolutionary origins remain uncertain given that many of these genes have been mobilized by double-stranded RNA (dsRNA) viruses. A survey of yeasts from the Saccharomyces genus has identified a novel killer toxin with a unique spectrum of activity produced by Saccharomyces paradoxus. The expression of this killer toxin is associated with the presence of a dsRNA totivirus and a satellite dsRNA. Genetic sequencing of the satellite dsRNA confirmed that it encodes a killer toxin with homology to the canonical ionophoric K1 toxin from Saccharomyces cerevisiae and has been named K1-like (K1L). Genomic homologs of K1L were identified in six non-Saccharomyces yeast species of the Saccharomycotina subphylum, predominantly in subtelomeric regions of the genome. When ectopically expressed in S. cerevisiae from cloned cDNAs, both K1L and its homologs can inhibit the growth of competing yeast species, confirming the discovery of a family of biologically active K1-like killer toxins. The sporadic distribution of these genes supports their acquisition by horizontal gene transfer followed by diversification. The phylogenetic relationship between K1L and its genomic homologs suggests a common ancestry and gene flow via dsRNAs and DNAs across taxonomic divisions. This appears to enable the acquisition of a diverse arsenal of killer toxins by different yeast species for potential use in niche competition.


Subject(s)
Ascomycota/genetics , Genetic Variation , Killer Factors, Yeast/genetics , Saccharomycetales/genetics , Ascomycota/classification , Ascomycota/virology , Evolution, Molecular , Gene Flow , Gene Transfer, Horizontal , Phylogeny , RNA, Double-Stranded/genetics , RNA, Viral/genetics , Saccharomyces/classification , Saccharomyces/genetics , Saccharomyces/virology , Saccharomyces cerevisiae/genetics , Saccharomycetales/classification , Saccharomycetales/virology , Species Specificity , Totivirus/genetics
5.
Arch Virol ; 168(10): 247, 2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37676322

ABSTRACT

In previous work, RNA-seq was applied to identify the causal agent of yellow leaf disease (YLD) in areca palm (Areca catechu L.), resulting in the identification of areca palm velarivirus 1 (APV1) associated with YLD. Additionally, RNA-seq revealed a totivirus-like virus in areca palm. This work revealed that the totivirus-like virus is prevalent in asymptomatic areca palms. Therefore, it was tentatively named "areca palm latent totivirus 1" (APLTV1). The complete genome sequence of APLTV1 was determined and found to be 4754 base pairs (bp) in length, containing two ORFs whose encoded proteins share 55% and 69% amino acid (aa) sequence identity with the capsid protein (CP) and RNA-dependent RNA polymerase (RdRp), respectively, of Bursera graveolens-associated totivirus 1 (BgAT1). Phylogenetic analysis based on alignment of the CP and RdRp sequences revealed that APLTV1 clustered with other members of the genus Totivirus, suggesting that APLTV1 represents a novel species of the genus Totivirus, family Totiviridae.


Subject(s)
Catechin , Totiviridae , Totivirus , Areca , Phylogeny , Capsid Proteins/genetics , RNA-Dependent RNA Polymerase
6.
Arch Virol ; 168(4): 102, 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36877420

ABSTRACT

The complete genomic sequence of a previously uncharacterized virus provisionally named "Bursera graveolens associated totivirus 1" (BgTV-1) was obtained from Bursera graveolens (Kunth) Triana & Planch., a tree known as "palo santo" in Ecuador. The BgTV-1 genome is a monopartite double-stranded RNA (dsRNA) that is 4794 nucleotides (nt) long (GenBank accession number ON988291). Phylogenetic analysis of the capsid protein (CP) and RNA-dependent RNA polymerase (RdRp) placed BgTV-1 in a clade with other plant-associated totiviruses. Amino acid (aa) sequence comparisons of putative BgTV-1 proteins showed the highest sequence similarity to those of taro-associated totivirus L (QFS21890.1-QFS21891.1) and Panax notoginseng virus A (YP_009225664.1- YP_009225665.1), with 51.4% and 49.8% identity, respectively, in the CP and 56.4% and 55.2% identity, respectively, in the RdRp. BgTV-1 was not detected in total RNA from either of the two endophytic fungi cultured from BgTV-1-positive B. graveolens leaves, suggesting that BgTV-1 may be a plant-infecting totivirus. Based on its distinct host and the low aa sequence similarity between the CP of BgTV-1 and its counterparts from the closest relatives, the virus described in this study should be assigned as a new member of the genus Totivirus.


Subject(s)
Bursera , Totivirus , Ecuador , Phylogeny , Capsid Proteins/genetics , RNA, Double-Stranded , RNA-Dependent RNA Polymerase/genetics
7.
Virus Genes ; 59(1): 167-172, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36394716

ABSTRACT

The totiviridae family contains viruses with double-stranded RNA genomes of 4.6-7.0 kpb, which encode a capsid protein (CP) and RNA-dependent RNA polymerase (RdRp), and they are approximately 40 nm in diameter with icosahedral symmetry. Totiviruses were first isolated from mosquitoes collected in Shaanxi Province (China). Here, we report a new Aedes aegypti Totivirus (AaTV) identified in mosquitoes from the Amazon rainforest. Mosquitoes (Diptera: Culicidae) were collected from a forest reserve belonging to the Amazon forest in the city of Macapá, Amapá state, Northern Brazil. A viral sequence with a 5748 nucleotide length that was nearly identical to Aedes aegypti Totivirus (AaTV), here named Aedes aegypti Totivirus BR59AP, was detected. A detailed molecular analysis was performed and shows that AaTV-BR59AP is highly related to the AaTV strain from the Caribbean region. We emphasize the importance of the characterization of new viruses in mosquitoes to deepen our understanding of viral diversity in insects and their potential role in disease.


Subject(s)
Aedes , Totiviridae , Totivirus , Viruses , Animals , Totivirus/genetics , Brazil , Totiviridae/genetics
8.
Appl Environ Microbiol ; 88(4): e0221321, 2022 02 22.
Article in English | MEDLINE | ID: mdl-34910561

ABSTRACT

Killer yeasts and their toxins have many potential applications in environmental, medical, and industrial biotechnology. The killer phenotype in Saccharomyces cerevisiae relies on the cytoplasmic persistence of two dsRNA viruses, L-A and M. M encodes the toxin, and L-A provides proteins for expression, replication, and capsids for both viruses. Yeast screening and characterization of this trait are usually performed phenotypically based on their toxin production and immunity. In this study, we describe a simple and specific reverse transcription (RT) multiplex PCR assay for direct diagnosis of the dsRNA totivirus genomes associated with the killer trait in the S. cerevisiae yeast. This method obviates RNA purification steps and primer addition to the RT reaction. Using a mixture of specific primers at the PCR step, this multiplex RT-PCR protocol provided an accurate diagnosis of both L-A and M totivirus in all its known variants, L-A-1/M1, L-A-2/M2, L-A-28/M28, and L-A-lus/Mlus, found in infected killer yeasts. Using this method, the expected L-A-2/M2 totivirus associations in natural wine yeasts cells were identified but, importantly, asymptomatic L-A-2/M2 infected cells were found in addition to unexpected L-A-lus/M2 totiviral associations. IMPORTANCE The killer phenomenon in S. cerevisiae yeast cells provides the opportunity to study host-virus interactions in a eukaryotic model. Therefore, the development of simple methods for their detection significantly facilitates their study. The simplified multiplex RT-PCR protocol described here provides a useful and accurate tool for the genotypic characterization of yeast totiviruses in killer yeast cells. The killer trait depended on two dsRNA totiviruses, L-A and M. Each M dsRNA depends on a specific helper L-A virus. Thus, direct genotyping by the described method also provided valuable insights into L-A/M viral associations and their coadaptational events in nature.


Subject(s)
Saccharomyces cerevisiae/virology , Totivirus , Killer Factors, Yeast/genetics , Multiplex Polymerase Chain Reaction , RNA, Double-Stranded/metabolism , RNA, Viral/genetics , Reverse Transcription , Totivirus/genetics , Totivirus/isolation & purification , Wine/microbiology
9.
Arch Virol ; 168(1): 7, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36542124

ABSTRACT

A number of viruses have recently been discovered in all major fungal phyla using high-throughput sequencing. However, basal fungi remain among the least-explored organisms with respect to the presence of mycoviruses. In this study, we characterized two mycoviruses coinfecting the basal fungus Conidiobolus adiaeretus, which we have named "Conidiobolus adiaeretus totivirus 1" (CaTV1) and "Conidiobolus adiaeretus totivirus 2" (CaTV2). Due to their similar sizes, the genomic RNAs of these two viruses comigrated as a single band in 1.5% agarose gel electrophoresis but could be distinguished and characterized by next-generation sequencing and RT-PCR. Like those of other totiviruses, the genomes of both CaTV1 and CaTV2 have two discontinuous open reading frames: ORF1 and ORF2, encoding a putative capsid protein and a putative RNA-dependent RNA polymerase (RdRp), respectively. The RdRps of CaTV1 and CaTV2 have 62.73% and 63.76% amino acid sequence identity, respectively, to Wuhan insect virus 26 and have 62.15% amino acid sequence identity to each other. A maximum-likelihood phylogenetic tree based on RdRp amino acid sequences showed that both CaTV1 and CaTV2 clustered in a clade with members of the genus Totivirus. Therefore, we propose that CaTV1 and CaTV2 are two new members of the genus Totivirus in the family Totiviridae.


Subject(s)
Conidiobolus , Fungal Viruses , Totivirus , Totivirus/genetics , Phylogeny , Conidiobolus/genetics , RNA-Dependent RNA Polymerase/genetics , Open Reading Frames , Genome, Viral , RNA, Viral/genetics , RNA, Double-Stranded , Fungal Viruses/genetics
10.
Arch Virol ; 167(12): 2833-2838, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36271949

ABSTRACT

Mycoviruses are widely distributed across the kingdom Fungi, including ascomycetous yeast strains of the class Saccharomycetes. Geotrichum candidum is an important fungal pathogen belonging to Saccharomycetes and has a diverse host range. Here, we report the characterization of four new classical totiviruses from two distinct Geotrichum candidum strains from Pakistan. The four identified viruses were tentatively named "Geotrichum candidum totivirus 1, 2, 3a, and 3b" (GcTV1-3b). The complete dsRNA genomes of the identified totiviruses are 4621, 4592, 4576, and 4576 bp in length, respectively. All totivirus genomes have two open reading frames, encoding a capsid protein (CP) and an RNA-dependent RNA polymerase (RdRP), respectively. The downstream RdRP domain is assumed to be expressed as a CP-RdRP fusion product via -1 frameshifting mediated by a heptameric slippery site. Sequence comparisons and phylogenetic analysis showed that each of the discovered viruses belongs to a new species of the genus Totivirus in the family Totiviridae, with GcTV1 and GcTV3 (a and b strains) clustering in one subgroup and GcTV2 in another subgroup.


Subject(s)
Ascomycota , Totiviridae , Totivirus , Totivirus/genetics , Phylogeny , Totiviridae/genetics , RNA-Dependent RNA Polymerase/genetics , Open Reading Frames , RNA, Double-Stranded , Capsid Proteins/genetics , Ascomycota/genetics , RNA, Viral/genetics , Genome, Viral
11.
Arch Virol ; 166(6): 1801-1804, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33866414

ABSTRACT

Mycoviruses are widely distributed in fungi, but only a few mycoviruses have been reported in basal fungi to date. Here, we characterized a novel totivirus isolated from the basal fungus Conidiobolus heterosporus, and we designated this virus as "Conidiobolus heterosporus totivirus 1" (ChTV1). The complete genome of ChTV1 contains two discontinuous open reading frames (ORFs), ORF1 and ORF2, encoding a putative coat protein (CP) and a putative RNA-dependent RNA polymerase (RdRP), respectively. Phylogenetic analysis based on RdRP sequences showed that ChTV1 clustered with members of the genus Totivirus. The RdRP of ChTV1 has 51% sequence identity to that of Trichoderma koningiopsis totivirus 1 (TkTV1), which is the highest among mycoviruses. However, TkTV1 formed a distinct cluster with Wuhan insect virus 27, with 63% RdRP sequence identity, although Wuhan insect virus 27 has not been described, and its host represents a different kingdom. Therefore, we propose that ChTV1 is a new member of the genus Totivirus, family Totiviridae.


Subject(s)
Conidiobolus/virology , Phylogeny , RNA, Viral/genetics , Totivirus/genetics , Genome, Viral , Totivirus/isolation & purification
12.
Arch Virol ; 166(8): 2347-2351, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33866415

ABSTRACT

A novel dsRNA virus was identified by high-throughput sequencing from tea oil trees in China. Its complete genome of 4714 bp contains two open reading frames (ORFs). ORF1 encodes a putative coat protein (CP) of 702 amino acids (aa), and ORF2 codes for an RNA-dependent RNA polymerase (RdRp) of 855 aa. The virus shares the highest aa sequence identity of 45.21% in RdRp with taro-associated totivirus L (MN_119621), a member of the genus Totivirus in the family Totiviridae. Phylogenetic analysis of the aa sequences of the RdRp places the new virus in a group with other totiviruses, suggesting that this virus, which is provisionally named "tea-oil camellia-associated totivirus 1", should be considered a member of the genus Totivirus.


Subject(s)
Camellia/virology , Plant Diseases/microbiology , Totivirus/classification , Whole Genome Sequencing/methods , Genome Size , Genome, Viral , Open Reading Frames , Phylogeny , Sequence Homology, Amino Acid , Totivirus/genetics , Totivirus/isolation & purification
13.
Arch Microbiol ; 202(4): 807-813, 2020 May.
Article in English | MEDLINE | ID: mdl-31844947

ABSTRACT

Totiviridae, a viral family of double-stranded RNA (dsRNA) viruses, contain a single dsRNA genome 4.6-7.0 kb in length. Totiviridae were initially only known to infect fungi and other eukaryotes as well as plants, but an increase in totiviruses has been detected in insects, mosquitoes, and bats. Here, we describe the isolation and characterization of a strain belonging to the family Totiviridae isolated from Culex tritaeniorhynchus in Kenli, China, in 2016. We isolated a totivirus from field-collected mosquitoes in China by cell culture in Aedes albopictus C6/36 cells, identified the virus by morphological observation and complete genome sequencing, and characterized it by phylogenetic analysis. Transmission electron microscopy identified icosahedral, non-enveloped virus particles with a mean diameter of 35-40 nm. The genome was 7612 bp in length, including two open reading frames (ORFs). ORF1 (5058 nt) encodes the capsid protein, while ORF2 (2216 nt) encodes the viral RNA-dependent RNA polymerase (RdRp). Nucleotide and amino acid homology analysis of isolate showed higher levels of sequence identity with isolate CTV_NJ2 (China, 2010) with 94.87% nucleic acid identity and 97.32% amino acid identity. The isolate was designated C. tritaeniorhynchus totivirus KL (CTV-KL). This is the first identification of a totivirus in a C. tritaeniorhynchus in northern China. Analysis of the virus's morphology, characteristic and genome organization will further enrich our understanding of the molecular and biological characteristics of dsRNA Totiviridae viruses.


Subject(s)
Culex/virology , Totivirus/genetics , Aedes/cytology , Aedes/virology , Animals , Capsid Proteins/genetics , Cell Line , China , Genome, Viral/genetics , Microscopy, Electron, Transmission , Open Reading Frames/genetics , Phylogeny , RNA-Dependent RNA Polymerase , Totivirus/classification , Totivirus/isolation & purification , Totivirus/ultrastructure
14.
Arch Virol ; 165(8): 1911-1914, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32488617

ABSTRACT

To our knowledge, there have been no reports of mycoviruses infecting Rhodosporidiobolus odoratus. Here, we describe the sequence of a novel mycovirus isolated from R. odoratus, which was designated "Rhodosporidiobolus odoratus RNA virus 1" (RoRV1). Sequence analysis revealed that RoRV1 has two discontinuous open reading frames (ORFs), ORF1 and ORF2, potentially encoding a hypothetical protein and an RNA-dependent RNA polymerase (RdRp), respectively. Phylogenetic analysis based on RdRp sequences clearly placed RoRV1 in the genus Totivirus, family Totiviridae. The fungus also contains two additional, smaller dsRNAs, which might represent RoRV1 satellite RNAs.


Subject(s)
Fungi/virology , RNA Viruses/genetics , Totivirus/genetics , Totivirus/isolation & purification , Capsid Proteins/genetics , Genome, Viral/genetics , Open Reading Frames/genetics , Phylogeny , RNA, Double-Stranded/genetics , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/genetics , Sequence Analysis, DNA/methods
15.
Virus Genes ; 55(3): 429-432, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30790190

ABSTRACT

Typically associated with fungal species, members of the viral family Totiviridae have recently been shown to be associated with plants, including important crop species, such as Carica papaya (papaya) and Zea mays (maize). Maize-associated totivirus (MATV) was first described in China and more recently in Ecuador, where it has been found to co-occur with other viruses known to elicit maize lethal necrosis disease (MLND). In a survey for maize-associated viruses, 35 samples were selected for Illumina HiSeq sequencing, from the Tanzanian maize producing regions of Mara, Arusha, Manyara, Kilimanjaro, Morogoro and Pwani. Libraries were prepared using an RNA-tag-seq methodology. Taxonomic classification of the resulting datasets showed that 6 of the 35 samples from the regions of Arusha, Kilimanjaro, Morogoro and Mara, contained reads that were assigned to MATV reference sequences. This was confirmed with PCR and Sanger sequencing. Read assembly of the six MATV-associated datasets yielded partial MATV genomes, two of which were selected for further characterization, using RACE. This yielded two full-length MATV genomes, one of which is divergent from other available MATV genomes.


Subject(s)
Genetic Variation , Plant Diseases/virology , Totivirus/genetics , Zea mays/virology , China , Genome, Viral/genetics , Phylogeny , Plant Diseases/genetics , Totivirus/pathogenicity , Zea mays/genetics
16.
J Gen Virol ; 99(5): 710-716, 2018 05.
Article in English | MEDLINE | ID: mdl-29580322

ABSTRACT

There is little information about commensal viruses in the white-backed planthopper, Sogatella furcifera, although it is an important agricultural insect. Here, two novel double-stranded RNA viruses related to the viruses in the family Totiviridae were identified using next-generation sequencing and tentatively named Sogatella furcifera totivirus 1 and 2 (SfTV1 and SfTV2). Their complete genomes consist of 6310 and 6303 nt, respectively, showing typical genomic features with viruses in the family Totiviridae. Identity, phylogenetic and conserved sequence analyses showed that SfTV1, SfTV2 and three other insect viruses may form a proposed novel genus of the family Totiviridae. Vertical transmission of the two viruses was highly efficient, and they were detected in all insect tissues and developmental stages, with the highest titres in the adult and in the haemolymph and reproductive organs. To our knowledge, this is the first report of viruses in the family Totiviridae found in a hemipteran insect.


Subject(s)
Hemiptera/virology , Insect Viruses/classification , Totivirus/classification , Animals , Genome, Viral , Hemolymph/virology , High-Throughput Nucleotide Sequencing , Insect Viruses/genetics , Insect Viruses/isolation & purification , Phylogeny , Symbiosis , Totivirus/genetics , Totivirus/isolation & purification , Virus Diseases/transmission
17.
PLoS Pathog ; 12(10): e1005890, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27711183

ABSTRACT

In eukaryotes, the degradation of cellular mRNAs is accomplished by Xrn1 and the cytoplasmic exosome. Because viral RNAs often lack canonical caps or poly-A tails, they can also be vulnerable to degradation by these host exonucleases. Yeast lack sophisticated mechanisms of innate and adaptive immunity, but do use RNA degradation as an antiviral defense mechanism. One model is that the RNA of yeast viruses is subject to degradation simply as a side effect of the intrinsic exonuclease activity of proteins involved in RNA metabolism. Contrary to this model, we find a highly refined, species-specific relationship between Xrn1p and the "L-A" totiviruses of different Saccharomyces yeast species. We show that the gene XRN1 has evolved rapidly under positive natural selection in Saccharomyces yeast, resulting in high levels of Xrn1p protein sequence divergence from one yeast species to the next. We also show that these sequence differences translate to differential interactions with the L-A virus, where Xrn1p from S. cerevisiae is most efficient at controlling the L-A virus that chronically infects S. cerevisiae, and Xrn1p from S. kudriavzevii is most efficient at controlling the L-A-like virus that we have discovered within S. kudriavzevii. All Xrn1p orthologs are equivalent in their interaction with another virus-like parasite, the Ty1 retrotransposon. Thus, the activity of Xrn1p against totiviruses is not simply an incidental consequence of the enzymatic activity of Xrn1p, but rather Xrn1p co-evolves with totiviruses to maintain its potent antiviral activity and limit viral propagation in Saccharomyces yeasts. Consistent with this, we demonstrated that Xrn1p physically interacts with the Gag protein encoded by the L-A virus, suggesting a host-virus interaction that is more complicated than just Xrn1p-mediated nucleolytic digestion of viral RNAs.


Subject(s)
Exoribonucleases/metabolism , Host-Parasite Interactions/physiology , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/virology , Blotting, Western , Immunoprecipitation , Polymerase Chain Reaction , RNA, Viral/genetics , Totivirus
18.
Arch Virol ; 163(10): 2929-2931, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30022239

ABSTRACT

Maize-associated totivirus Anhui (MATV-Ah) is a novel totivirus with a 5536-nt genome and two large ORFs that encode a putative coat protein (CP) and an RNA-dependent RNA polymerase (RdRP). The two ORFs share amino acid identities of 32 and 56% when compared to other plant-associated totiviruses, respectively. Based on genome sequence similarity and phylogenetic analysis, MATV-Ah is proposed to be a member of the family Totiviridae genus Totivirus.


Subject(s)
Genome, Viral , Plant Diseases/virology , Totivirus/isolation & purification , Zea mays/virology , China , Open Reading Frames , Phylogeny , Totivirus/classification , Totivirus/genetics
19.
Appl Environ Microbiol ; 83(4)2017 02 15.
Article in English | MEDLINE | ID: mdl-27940540

ABSTRACT

Saccharomyces cerevisiae killer strains secrete a protein toxin active on nonkiller strains of the same (or other) yeast species. Different killer toxins, K1, K2, K28, and Klus, have been described. Each toxin is encoded by a medium-size (1.5- to 2.3-kb) M double-stranded RNA (dsRNA) located in the cytoplasm. M dsRNAs require L-A helper virus for maintenance. L-A belongs to the Totiviridae family, and its dsRNA genome of 4.6 kb codes for the major capsid protein Gag and a minor Gag-Pol protein, which form the virions that separately encapsidate L-A or the M satellites. Different L-A variants exist in nature; on average, 24% of their nucleotides are different. Previously, we reported that L-A-lus was specifically associated with Mlus, suggesting coevolution, and proposed a role of the toxin-encoding M dsRNAs in the appearance of new L-A variants. Here we confirm this by analyzing the helper virus in K2 killer wine strains, which we named L-A-2. L-A-2 is required for M2 maintenance, and neither L-A nor L-A-lus shows helper activity for M2 in the same genetic background. This requirement is overcome when coat proteins are provided in large amounts by a vector or in ski mutants. The genome of another totivirus, L-BC, frequently accompanying L-A in the same cells shows a lower degree of variation than does L-A (about 10% of nucleotides are different). Although L-BC has no helper activity for M dsRNAs, distinct L-BC variants are associated with a particular killer strain. The so-called L-BC-lus (in Klus strains) and L-BC-2 (in K2 strains) are analyzed. IMPORTANCE: Killer strains of S. cerevisiae secrete protein toxins that kill nonkiller yeasts. The "killer phenomenon" depends on two dsRNA viruses: L-A and M. M encodes the toxin, and L-A, the helper virus, provides the capsids for both viruses. Different killer toxins exist: K1, K2, K28, and Klus, encoded on different M viruses. Our data indicate that each M dsRNA depends on a specific helper virus; these helper viruses have nucleotide sequences that may be as much as 26% different, suggesting coevolution. In wine environments, K2 and Klus strains frequently coexist. We have previously characterized the association of Mlus and L-A-lus. Here we sequence and characterize L-A-2, the helper virus of M2, establishing the helper virus requirements of M2, which had not been completely elucidated. We also report the existence of two specific L-BC totiviruses in Klus and K2 strains with about 10% of their nucleotides different, suggesting different evolutionary histories from those of L-A viruses.


Subject(s)
Antifungal Agents/metabolism , Helper Viruses/genetics , Saccharomyces cerevisiae/virology , Totivirus/genetics , Capsid/metabolism , Fusion Proteins, gag-pol/genetics , Gene Products, gag/genetics , Mitochondria/genetics , Saccharomyces cerevisiae/metabolism , Satellite Viruses/genetics
20.
Arch Virol ; 162(4): 1083-1087, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27900468

ABSTRACT

The complete genomic sequence of a variant of the recently reported maize-associated totivirus (MATV) from China was obtained from commercial maize in Ecuador. The genome of MATV-Ec (Ecuador) (4,998 bp) is considerably longer than that of MATV-Ch (China) (3,956 bp), the main difference due to a ≈ 1-kb-long capsid-protein-encoding fragment that is completely absent from the Chinese genome. Sequence alignments between MATV-Ec and MATV-Ch showed an overall identity of 82% at the nucleotide level, whereas at the amino acid level, the viruses exhibited 95% and 94% identity for the putative capsid protein and the RNA-dependent RNA polymerase (RdRp), respectively. Phylogenetic analysis of the viral RdRp domain indicated that MATV-Ec and MATV-Ch share a common ancestor with other plant-associated totiviruses, with Panax notoginseng virus A as the closest relative. MATV-Ec was detected in 46% (n = 80) of maize plants tested in this study, but not in endophytic fungi isolated from plants positive for the virus.


Subject(s)
Genome, Viral , Plant Diseases/virology , Totivirus/genetics , Totivirus/isolation & purification , Zea mays/virology , Amino Acid Sequence , Base Sequence , Molecular Sequence Data , Open Reading Frames , Phylogeny , Sequence Alignment , Totivirus/chemistry , Totivirus/classification , Viral Proteins/chemistry , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL