ABSTRACT
An imbalance between suppressor and effector immune responses may preclude cure in chronic parasitic diseases. In the case of Trypanosoma cruzi infection, specialized regulatory Foxp3+ T (Treg) cells suppress protective type-1 effector responses. Herein, we investigated the kinetics and underlying mechanisms behind the regulation of protective parasite-specific CD8+ T cell immunity during acute T. cruzi infection. Using the DEREG mouse model, we found that Treg cells play a role during the initial stages after T. cruzi infection, restraining the magnitude of CD8+ T cell responses and parasite control. Early Treg cell depletion increased the frequencies of polyfunctional short-lived, effector T cell subsets, without affecting memory precursor cell formation or the expression of activation, exhaustion and functional markers. In addition, Treg cell depletion during early infection minimally affected the antigen-presenting cell response but it boosted CD4+ T cell responses before the development of anti-parasite effector CD8+ T cell immunity. Crucially, the absence of CD39 expression on Treg cells significantly bolstered effector parasite-specific CD8+ T cell responses, preventing increased parasite replication in T. cruzi infected mice adoptively transferred with Treg cells. Our work underscores the crucial role of Treg cells in regulating protective anti-parasite immunity and provides evidence that CD39 expression by Treg cells represents a key immunomodulatory mechanism in this infection model.
Subject(s)
Antigens, CD , Apyrase , CD8-Positive T-Lymphocytes , Chagas Disease , T-Lymphocytes, Regulatory , Trypanosoma cruzi , Animals , Chagas Disease/immunology , T-Lymphocytes, Regulatory/immunology , CD8-Positive T-Lymphocytes/immunology , Mice , Trypanosoma cruzi/immunology , Antigens, CD/immunology , Antigens, CD/metabolism , Apyrase/immunology , Apyrase/metabolism , Mice, Inbred C57BL , Disease Models, AnimalABSTRACT
SUMMARYAs Chagas disease remains prevalent in the Americas, it is important that healthcare professionals and researchers are aware of the screening, diagnosis, monitoring, and treatment recommendations for the populations of patients they care for and study. Management of Trypanosoma cruzi infection in immunocompromised hosts is challenging, particularly because, regardless of antitrypanosomal treatment status, immunocompromised patients with Chagas disease are at risk for T. cruzi reactivation, which can be lethal. Evidence-based practices to prevent and manage T. cruzi reactivation vary depending on the type of immunocompromise. Here, we review available data describing Chagas disease epidemiology, testing, and management practices for various populations of immunocompromised individuals, including people with HIV and patients undergoing solid organ and hematopoietic stem cell transplantation.
Subject(s)
Chagas Disease , Immunocompromised Host , Humans , Chagas Disease/diagnosis , Chagas Disease/epidemiology , Chagas Disease/immunology , Chagas Disease/therapy , Trypanosoma cruzi/immunologyABSTRACT
Here we identified B cells as a major source of rapid, innate-like production of interleukin 17 (IL-17) in vivo in response to infection with Trypanosoma cruzi. IL-17(+) B cells had a plasmablast phenotype, outnumbered cells of the TH17 subset of helper T cells and were required for an optimal response to this pathogen. With both mouse and human primary B cells, we found that exposure to parasite-derived trans-sialidase in vitro was sufficient to trigger modification of the cell-surface mucin CD45, which led to signaling dependent on the kinase Btk and production of IL-17A or IL-17F via a transcriptional program independent of the transcription factors RORγt and Ahr. Our combined data suggest that the generation of IL-17(+) B cells may be a previously unappreciated feature of innate immune responses required for pathogen control or IL-17-mediated autoimmunity.
Subject(s)
B-Lymphocytes/immunology , Chagas Disease/immunology , Glycoproteins/metabolism , Interleukin-17/immunology , Neuraminidase/metabolism , Trypanosoma cruzi/enzymology , Trypanosoma cruzi/immunology , Animals , B-Lymphocytes/parasitology , Cell Proliferation , Cells, Cultured , Chagas Disease/genetics , Glycoproteins/genetics , Humans , Lymphocyte Activation , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Neuraminidase/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Receptors, Aryl Hydrocarbon/metabolism , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/parasitology , Th17 Cells/immunology , Th17 Cells/parasitology , Transcriptional Activation/immunologyABSTRACT
PURPOSE OF REVIEW: To highlight recent advances in our understanding of Trypanosoma cruzi infection in immunocompromised individuals, a condition that is increasingly recognized as populations shift and use of immunosuppressive medications becomes more commonplace. RECENT FINDINGS: Chagas disease screening programs should include people at risk for both Chagas disease and immunocompromise, e.g. people who have resided for ≥6âmonths in endemic Latin America who have an immunocompromising condition such as HIV or who are planned to start an immunosuppressive medication regimen. The goal of identifying such individuals is to allow management strategies that will reduce their risk of T. cruzi reactivation disease. For people with HIV- T. cruzi coinfection, strict adherence to antiretroviral therapy is important and antitrypanosomal treatment is urgent in the setting of symptomatic reactivation. People at risk for T. cruzi reactivation due to immunosuppression caused by advanced hematologic conditions or postsolid organ transplantation should be monitored via T. cruzi qPCR and treated with preemptive antitrypanosomal therapy if rising parasite load on serial specimens indicates reactivation. Reduction of the immunosuppressive regimen, if possible, is important. SUMMARY: Chronic Chagas disease can lead to severe disease in immunocompromised individuals, particularly those with advanced HIV (CD4 + < 200 cells/mm 3 ) or peri-transplantation.
Subject(s)
Chagas Disease , HIV Infections , Immunocompromised Host , Humans , Chagas Disease/drug therapy , Chagas Disease/immunology , HIV Infections/complications , HIV Infections/drug therapy , HIV Infections/immunology , Trypanosoma cruzi/immunology , Immunosuppressive Agents/therapeutic use , Immunosuppressive Agents/adverse effects , Trypanocidal Agents/therapeutic use , Coinfection/parasitologyABSTRACT
Chagas disease (CD) is caused by the hemoflagellate protozoan Trypanosoma cruzi. The control of the infection depends of the innate and acquired immune response of host. Moreover, CD plays a significant role in the immune response, and, in this context, microalgae can be an interesting alternative due to its immunomodulatory and trypanocidal effects. This study aimed to evaluate, in vitro, immunomodulatory potentials of the aqueous extracts of Chlorella vulgaris and Tetradesmus obliquus. Both microalgae extracts (ME) were obtained by sonication, and the selectivity index (SI) was determined by assays of inhibitory concentration (IC50) in T. cruzi trypomastigotes cells; as well as the cytotoxic concentrations (CC50) in human peripheral mononuclear cells (PBMC). The immune response was evaluated in T. cruzi-infected PBMC using the IC50 value. ME led to inhibition of T. cruzi trypomastigotes after 24 h of treatment, in which the IC50 values were 112.1 µg/ml to C. vulgaris and 15.8 µg ml-1 to T. obliquus. On the other hand, C. vulgaris did not affect the viability of PBMCs in concentrations up to 1000 µg ml-1, while T. obliquus was non-toxic to PBMCs in concentrations up to 253.44 µg ml-1. In addition, T. obliquus displayed a higher SI against T. cruzi (SI = 16.8), when compared with C. vulgaris (SI = 8.9). C. vulgaris decreased the levels of IFN, indicating a reduction of the inflammatory process; while T. obliquus displayed an interesting immunomodulatory effect, since discretely increased the levels of TNF and stimulated the production of the anti-inflammatory cytokine IL-10. This study confirms that ME are effective against T. cruzi trypomastigotes, and may able to control the parasitemia and preventing the progress of CD while regulating the inflammatory process.
Subject(s)
Chagas Disease , Leukocytes, Mononuclear , Microalgae , Trypanosoma cruzi , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/immunology , Humans , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Chagas Disease/immunology , Chagas Disease/drug therapy , Chagas Disease/parasitology , Microalgae/chemistry , Plant Extracts/pharmacology , Cytokines/metabolismABSTRACT
BACKGROUND: A vaccine against Trypanosoma cruzi, the agent of Chagas disease, would be an excellent additional tool for disease control. A recombinant vaccine based on Tc24 and TSA1 parasite antigens was found to be safe and immunogenic in naïve macaques. METHODS: We used RNA-sequencing and performed a transcriptomic analysis of PBMC responses to vaccination of naïve macaques after each vaccine dose, to shed light on the immunogenicity of this vaccine and guide the optimization of doses and formulation. We identified differentially expressed genes and pathways and characterized immunoglobulin and T cell receptor repertoires. RESULTS: RNA-sequencing analysis indicated a clear transcriptomic response of PBMCs after three vaccine doses, with the up-regulation of several immune cell activation pathways and a broad non-polarized immune profile. Analysis of the IgG repertoire showed that it had a rapid turnover with novel IgGs produced following each vaccine dose, while the TCR repertoire presented several persisting clones that were expanded after each vaccine dose. CONCLUSIONS: These data suggest that three vaccine doses may be needed for optimum immunogenicity and support the further evaluation of the protective efficacy of this vaccine.
Subject(s)
Chagas Disease , Macaca mulatta , Protozoan Vaccines , Receptors, Antigen, T-Cell , Animals , Chagas Disease/immunology , Chagas Disease/prevention & control , Receptors, Antigen, T-Cell/immunology , Protozoan Vaccines/immunology , Trypanosoma cruzi/immunology , Immunoglobulins/immunologyABSTRACT
Chagas disease, caused by the protozoa Trypanosoma cruzi, continues to be a serious public health problem in Latin America, worsened by the limitations in its detection. Given the importance of developing new diagnostic methods for this disease, the present review aimed to verify the number of publications dedicated to research on peptides that demonstrate their usefulness in serodiagnosis. To this end, a bibliographic survey was conducted on the PubMed platform using the keyword "peptide" or "epitope" combined with "Chagas disease" or "Trypanosoma cruzi"; "diagno*" or "serodiagnosis" or "immunodiagnosis", without period restriction. An increasing number of publications on studies employing peptides in ELISA and rapid tests assays was verified, which confirms the expansion of research in this field. It is possible to observe that many of the peptides tested so far originate from proteins widely used in the diagnosis of Chagas, and many of them are part of commercial tests developed. In this sense, as expected, promising results were obtained for several peptides when tested in ELISA, as many of them exhibited sensitivity and specificity values above 90%. Furthermore, some peptides have been tested in several studies, confirming their diagnostic potential. Despite the promising results observed, it is possible to emphasize the need for extensive testing of peptides, using different serological panels, in order to confirm their potential. The importance of producing an effective assay capable of detecting the clinical stages of the disease, as well as new immunogenic antigens that enable new serological diagnostic tools for Chagas disease, is evident.
Subject(s)
Chagas Disease , Enzyme-Linked Immunosorbent Assay , Peptides , Trypanosoma cruzi , Chagas Disease/diagnosis , Chagas Disease/immunology , Chagas Disease/blood , Humans , Trypanosoma cruzi/immunology , Peptides/immunology , Peptides/chemistry , Enzyme-Linked Immunosorbent Assay/methods , Immunologic Tests/methods , Antigens, Protozoan/immunology , Antigens, Protozoan/blood , Serologic Tests/methodsABSTRACT
BACKGROUND: The brain and the immune systems represent the two primary adaptive systems within the body. Both are involved in a dynamic process of communication, vital for the preservation of mammalian homeostasis. This interplay involves two major pathways: the hypothalamic-pituitary-adrenal axis and the sympathetic nervous system. SUMMARY: The establishment of infection can affect immunoneuroendocrine interactions, with functional consequences for immune organs, particularly the thymus. Interestingly, the physiology of this primary organ is not only under the control of the central nervous system (CNS) but also exhibits autocrine/paracrine regulatory circuitries mediated by hormones and neuropeptides that can be altered in situations of infectious stress or chronic inflammation. In particular, Chagas disease, caused by the protozoan parasite Trypanosoma cruzi (T. cruzi), impacts upon immunoneuroendocrine circuits disrupting thymus physiology. Here, we discuss the most relevant findings reported in relation to brain-thymic connections during T. cruzi infection, as well as their possible implications for the immunopathology of human Chagas disease. KEY MESSAGES: During T. cruzi infection, the CNS influences thymus physiology through an intricate network involving hormones, neuropeptides, and pro-inflammatory cytokines. Despite some uncertainties in the mechanisms and the fact that the link between these abnormalities and chronic Chagasic cardiomyopathy is still unknown, it is evident that the precise control exerted by the brain over the thymus is markedly disrupted throughout the course of T. cruzi infection.
Subject(s)
Brain , Chagas Disease , Thymus Gland , Humans , Chagas Disease/immunology , Chagas Disease/physiopathology , Animals , Brain/immunology , Thymus Gland/immunology , Thymus Gland/physiology , Trypanosoma cruzi/physiology , Trypanosoma cruzi/immunology , Hypothalamo-Hypophyseal System/immunology , Hypothalamo-Hypophyseal System/metabolism , Hypothalamo-Hypophyseal System/physiopathology , Neuroimmunomodulation/physiology , Neuroimmunomodulation/immunology , Pituitary-Adrenal System/immunology , Pituitary-Adrenal System/physiopathology , Pituitary-Adrenal System/metabolismABSTRACT
BACKGROUND: Chagas disease (ChD) is endemic in many parts of the world and can be transmitted through organ transplantation or reactivated by immunosuppression. Organs from infected donors are occasionally used for transplantation, and the best way of managing the recipients remains a subject of debate. METHODS: We present a single-center cohort study describing a 10-year experience of kidney transplantation in patients at risk of donor-derived ChD and or reactivation. Patients received prophylactic treatment with Benznidazole and were monitored for transmission or reactivation. Monitoring included assessing direct parasitemia, serology, and polymerase chain reaction (PCR). RESULTS: Fifty-seven kidney transplant recipients (KTRs) were enrolled in the study. Forty-four patients (77.2%) were at risk of primary ChD infection, nine patients (15.8%) were at risk of disease reactivation, and four patients (7.0%) were at risk of both. All patients received Benznidazole prophylaxis, starting on the first day after transplantation. Parasitemia was assessed in 51 patients (89.5%), serology also in 51 patients (89.5%), and PCR in 40 patients (70.2%). None of the patients exhibited clinically or laboratory-detectable signs of disease. A single patient experienced a significant side effect, a cutaneous rash with intense pruritus. At 1-year post-transplantation, the patient and graft survival rates were 96.5% and 93%, respectively. CONCLUSION: In this study, no donor-derived or reactivation of Trypanosoma cruzi infection occurred in KTRs receiving Benznidazole prophylaxis.
Subject(s)
Chagas Disease , Kidney Transplantation , Nitroimidazoles , Trypanocidal Agents , Trypanosoma cruzi , Humans , Nitroimidazoles/therapeutic use , Kidney Transplantation/adverse effects , Male , Female , Middle Aged , Adult , Trypanosoma cruzi/immunology , Trypanocidal Agents/therapeutic use , Parasitemia , Aged , Transplant Recipients/statistics & numerical data , Treatment Outcome , Cohort Studies , Tissue DonorsABSTRACT
Initial studies using bioinformatics analysis revealed DNA sequence similarities between Trypanosoma cruzi GenBank® M21331, coding for Antigen 36 (Ag 36), and tripartite motif (TRIM) genes. TRIM40 showed 9.7% identity to GenBank M21331, and four additional TRIM genes had identities greater than 5.0%. TRIM37 showed a continuous stretch of identity of 12 nucleotides, that is, at least 25% longer than any of the other TRIMs. When we extended our analysis on the relationships of GenBank M21331 to further innate immune genes, using the Needleman-Wunsch (NW) algorithm for alignment, identities to human IFN-α, IFN-ß, and IFN-γ genes of 13.6%, 12.6%, and 17.9%, respectively, were found. To determine the minimum number of genes coding for proteins closely related to Ag 36, a BLAST-p search was conducted with it versus the T. cruzi genome. The BLAST-p search revealed that T. cruzi GenBank M21331 had 14 gene sequences homologous to microtubule-associated protein (MAP) genes with 100% amino acid sequence identity. To verify the similarities in non-human genes, a study comparing TRIM21 region sequences among mammalian species to the comparable human TRIM21 region showed that related sequences were also present in 11 mammalian species. The MAP genes homologous to Ag 36 form a family of at least 14 genes which mimic human immune genes in the IFN and TRIM families. This mimicry is of gene sequences and not their protein products or epitopes. These results appear to be the first description of molecular mimicry of immune genes in humans by a protozoan parasite.
Subject(s)
Trypanosoma cruzi , Trypanosoma cruzi/genetics , Trypanosoma cruzi/immunology , Humans , Animals , Protozoan Proteins/genetics , Interferons/genetics , Computational Biology , Molecular Sequence Data , Sequence Homology, Amino Acid , Tripartite Motif Proteins/geneticsABSTRACT
Parasites have been associated with possible anticancer activity, including Trypanosoma cruzi, which has been linked to inhibiting the growth of solid tumors. To better understand this antitumor effect, we investigated the association of anti-T. cruzi antibodies with B cells of the acute lymphoblastic leukemia (ALL) SUPB15 cell line. The antibodies were generated in rabbits. IgGs were purified by affinity chromatography. Two procedures (flow cytometry (CF) and Western blot(WB)) were employed to recognize anti-T. cruzi antibodies on SUPB15 cells. We also used CF to determine whether the anti-T. cruzi antibodies could suppress SUPB15 cells. The anti-T. cruzi antibodies recognized 35.5% of the surface antigens of SUPB15. The complement-dependent cytotoxicity (CDC) results demonstrate the cross-suppression of anti-T. cruzi antibodies on up to 8.4% of SUPB15 cells. For the WB analysis, a band at 100 kDa with high intensity was sequenced using mass spectrometry, identifying the protein as nucleolin. This protein may play a role in the antitumor effect on T. cruzi. The anti-T. cruzi antibodies represent promising polyclonal antibodies that have the effect of tumor-suppressive cross-linking on cancer cells, which should be further investigated.
Subject(s)
Antibodies, Protozoan , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Trypanosoma cruzi , Trypanosoma cruzi/immunology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology , Humans , Cell Line, Tumor , Animals , Rabbits , Antibodies, Protozoan/immunology , RNA-Binding Proteins/immunology , RNA-Binding Proteins/metabolism , Nucleolin , Phosphoproteins/immunology , Phosphoproteins/metabolismABSTRACT
We developed a protein to rapidly and accurately diagnose Chagas disease, a life-threatening illness identified by the WHO as a critical worldwide public health risk. Limitations in present day serological tests are complicating the current health situation and contributing to most infected persons being unaware of their condition and therefore untreated. To improve diagnostic testing, we developed an immunological mimic of the etiological agent, Trypanosoma cruzi, by combining ten pathogen-specific epitopes within the beta-barrel protein structure of Thermal Green Protein. The resulting multi-epitope protein, DxCruziV3, displayed high specificity and sensitivity as the antibody capture reagent in an ELISA platform with an analytical sensitivity that exceeds WHO recommendations. Within an immunochromatographic platform, DxCruziV3 showed excellent performance for the point of application diagnosis in a region endemic for multiple diseases, the municipality of Barcelos in the state of Amazonas, Brazil. In total, 167 individuals were rapidly tested using whole blood from a finger stick. As recommended by the Brazilian Ministry of Health, venous blood samples were laboratory tested by conventional assays for comparison. Test results suggest utilizing DxCruziV3 in different assay platforms can confidently diagnose chronic infections by T. cruzi. Rapid and more accurate results will benefit everyone but will have the most noticeable impact in resource-limited rural areas where the disease is endemic.
Subject(s)
Chagas Disease , Enzyme-Linked Immunosorbent Assay , Epitopes , Serologic Tests , Trypanosoma cruzi , Chagas Disease/diagnosis , Chagas Disease/blood , Chagas Disease/immunology , Humans , Enzyme-Linked Immunosorbent Assay/methods , Trypanosoma cruzi/immunology , Serologic Tests/methods , Epitopes/immunology , Chronic Disease , Male , Sensitivity and Specificity , Female , Adult , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Middle Aged , Antigens, Protozoan/immunology , Antigens, Protozoan/blood , Brazil/epidemiologyABSTRACT
Myocytes express low levels of MHC class I (MHC I), perhaps influencing the ability of CD8+ T cells to efficiently detect and destroy pathogens that invade muscle. Trypanosoma cruzi infects many cell types but preferentially persists in muscle, and we asked if this tissue-dependent persistence was linked to MHC expression. Inducible enhancement of skeletal muscle MHC I in mice during the first 20 d of T. cruzi infection resulted in enhanced CD8-dependent reduction of parasite load. However, continued overexpression of MHC I beyond 30 d ultimately led to a collapse of systemic parasite control associated with immune exhaustion, which was reversible in part by blocking PD-1:PD-L1 interactions. These studies demonstrate a surprisingly strong and systemically dominant effect of skeletal muscle MHC expression on maintaining T cell function and pathogen control and argue that the normally low MHC I expression in skeletal muscle is host protective by allowing for pathogen control while preventing immune exhaustion.
Subject(s)
CD8-Positive T-Lymphocytes/immunology , Chagas Disease/immunology , Gene Expression Regulation/immunology , Histocompatibility Antigens Class I/immunology , Muscle Fibers, Skeletal/immunology , Trypanosoma cruzi/immunology , Animals , B7-H1 Antigen/genetics , B7-H1 Antigen/immunology , CD8-Positive T-Lymphocytes/pathology , Chagas Disease/genetics , Chagas Disease/pathology , Histocompatibility Antigens Class I/genetics , Mice , Mice, Transgenic , Muscle Fibers, Skeletal/pathology , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/immunologyABSTRACT
T cell-mediated immune response plays a crucial role in controlling Trypanosoma cruzi infection and parasite burden, but it is also involved in the clinical onset and progression of chronic Chagas' disease. Therefore, the study of T cells is central to the understanding of the immune response against the parasite and its implications for the infected organism. The complexity of the parasite-host interactions hampers the identification and characterization of T cell-activating epitopes. We approached this issue by combining in silico and in vitro methods to interrogate patients' T cells specificity. Fifty T. cruzi peptides predicted to bind a broad range of class I and II HLA molecules were selected for in vitro screening against PBMC samples from a cohort of chronic Chagas' disease patients, using IFN-γ secretion as a readout. Seven of these peptides were shown to activate this type of T cell response, and four out of these contain class I and II epitopes that, to our knowledge, are first described in this study. The remaining three contain sequences that had been previously demonstrated to induce CD8+ T cell response in Chagas' disease patients, or bind HLA-A*02:01, but are, in this study, demonstrated to engage CD4+ T cells. We also assessed the degree of differentiation of activated T cells and looked into the HLA variants that might restrict the recognition of these peptides in the context of human T. cruzi infection.
Subject(s)
Antigens, Protozoan/immunology , CD4-Positive T-Lymphocytes/immunology , Chagas Cardiomyopathy/immunology , Epitopes, T-Lymphocyte/immunology , Trypanosoma cruzi/immunology , Antigens, Protozoan/metabolism , Argentina , CD4-Positive T-Lymphocytes/metabolism , Cell Differentiation/immunology , Chagas Cardiomyopathy/blood , Chagas Cardiomyopathy/parasitology , Computer Simulation , Enzyme-Linked Immunospot Assay , Epitopes, T-Lymphocyte/metabolism , Female , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class II/immunology , Histocompatibility Antigens Class II/metabolism , Humans , Immunity, Cellular , Immunologic Memory , Interferon-gamma Release Tests , Lymphocyte Activation , Male , Trypanosoma cruzi/metabolismABSTRACT
BACKGROUND: Trypanosoma cruzi, the causative agent of Chagas disease, can be transmitted to the offspring of infected women, which constitutes an epidemiologically significant parasite transmission route in nonendemic areas. It is relevant to evaluate differentially expressed factors in T. cruzi-infected pregnant women as potential markers of Chagas congenital transmission. METHODS: Circulating levels of 12 cytokines and chemokines were measured by enzyme-linked immunosorbent assay or cytometric bead array in T. cruzi-infected and uninfected pregnant women in their second trimester of pregnancy and control groups of T. cruzi-infected and uninfected nonpregnant women. RESULTS: Trypanosoma cruzi-infected women showed a proinflammatory Th1-biased profile, with increased levels of tumor necrosis factor (TNF)-α, interleukin (IL)-12p70, IL-15, and monokine induced by interferon-gamma (MIG). Uninfected pregnant women presented a biased response towards Th2/Th17/Treg profiles, with increased plasma levels of IL-5, IL-6, IL-1ß, IL-17A, and IL-10. Finally, we identified that high parasitemia together with low levels of TNF-α, IL-15, and IL-17, low TNF-α/IL-10 ratio, and high IL-12p70 levels are factors associated with an increased probability of Chagas congenital transmission. CONCLUSIONS: Trypanosoma cruzi-infected pregnant women who did not transmit the infection to their babies exhibited a distinct proinflammatory cytokine profile that might serve as a potential predictive marker of congenital transmission.
Subject(s)
Chagas Disease/immunology , Chagas Disease/transmission , Chemokines/genetics , Cytokines/genetics , Trypanosoma cruzi/immunology , Adult , Antibodies, Protozoan , Antigens, Protozoan , Biomarkers , Chagas Disease/congenital , Chagas Disease/parasitology , Female , Humans , Infant, Newborn , Infectious Disease Transmission, Vertical , Interferon-gamma/blood , Interferon-gamma/genetics , Interleukin-10/genetics , Interleukin-12 , Interleukin-15 , Pregnancy , Tumor Necrosis Factor-alphaABSTRACT
Trypanosoma cruzi is the intracellular parasite of Chagas disease, a chronic condition characterized by cardiac and gastrointestinal morbidity. Protective immunity requires CD4+ T cells, and Th1 cells and gamma interferon (IFN-γ) are important players in host defense. More recently, Th17 cells and interleukin 17A (IL-17A) have been shown to exert protective functions in systemic T. cruzi infection. However, it remains unclear whether Th17 cells and IL-17A protect in the mucosa, the initial site of parasite invasion in many human cases. We found that IL-17RA knockout (KO) mice are highly susceptible to orogastric infection, indicating an important function for this cytokine in mucosal immunity to T. cruzi. To investigate the specific role of Th17 cells for mucosal immunity, we reconstituted RAG1 KO mice with T. cruzi-specific T cell receptor transgenic Th17 cells prior to orogastric T. cruzi challenges. We found that Th17 cells provided protection against gastric mucosal T. cruzi infection, indicated by significantly lower stomach parasite burdens. In vitro macrophage infection assays revealed that protection by Th17 cells is reduced with IL-17A neutralization or reversed by loss of macrophage NADPH oxidase activity. Consistently with this, mice lacking functional NADPH oxidase were not protected by Th17 cell transfer. These data are the first report that Th17 cells protect against mucosal T. cruzi infection and identify a novel protective mechanism involving the induction of NADPH oxidase activity by IL-17A. These studies provide important insights for Chagas vaccine development and, more broadly, increase our understanding of the diverse roles of Th17 cells in host defense.
Subject(s)
Chagas Disease/immunology , Gastric Mucosa/immunology , Gastric Mucosa/parasitology , Host-Parasite Interactions/immunology , Immunity, Mucosal , Th17 Cells/immunology , Trypanosoma cruzi/immunology , Animals , Chagas Disease/metabolism , Chagas Disease/parasitology , Disease Models, Animal , Interleukin-17/genetics , Interleukin-17/metabolism , Lymphocyte Activation/immunology , Macrophages/immunology , Macrophages/metabolism , Macrophages/parasitology , Mice , Mice, Knockout , NADPH Oxidases/metabolism , Th17 Cells/metabolismABSTRACT
Trypanosoma cruzi cytosolic tryparedoxin peroxidase (c-TXNPx) is a 2-Cys peroxiredoxin (Prx) with an important role in detoxifying host cell oxidative molecules during parasite infection. c-TXNPx is a virulence factor, as its overexpression enhances parasite infectivity and resistance to exogenous oxidation. As Prxs from other organisms possess immunomodulatory properties, we studied the effects of c-TXNPx in the immune response and analysed whether the presence of the peroxidatic cysteine is necessary to mediate these properties. To this end, we used a recombinant c-TXNPx and a mutant version (c-TXNPxC52S) lacking the peroxidatic cysteine. We first analysed the oligomerization profile, oxidation state and peroxidase activity of both proteins by gel filtration, Western blot and enzymatic assay, respectively. To investigate their immunological properties, we analysed the phenotype and functional activity of macrophage and dendritic cells and the T-cell response by flow cytometry after injection into mice. Our results show that c-TXNPx, but not c-TXNPxC52S, induces the recruitment of IL-12/23p40-producing innate antigen-presenting cells and promotes a strong specific Th1 immune response. Finally, we studied the cellular and humoral immune response developed in the context of parasite natural infection and found that only wild-type c-TXNPx induces proliferation and high levels of IFN-γ secretion in PBMC from chronic patients without demonstrable cardiac manifestations. In conclusion, we demonstrate that c-TXNPx possesses pro-inflammatory properties that depend on the presence of peroxidatic cysteine that is essential for peroxidase activity and quaternary structure of the protein and could contribute to rational design of immune-based strategies against Chagas disease.
Subject(s)
Chagas Disease/metabolism , Cytokines/metabolism , Inflammation Mediators/metabolism , Lymphocyte Activation , Peroxidases/metabolism , Protozoan Proteins/metabolism , Th1 Cells/metabolism , Trypanosoma cruzi/enzymology , Adaptive Immunity , Adult , Aged , Animals , Case-Control Studies , Cell Proliferation , Cells, Cultured , Chagas Disease/immunology , Chagas Disease/parasitology , Female , Host-Parasite Interactions , Humans , Immunity, Innate , Male , Mice, Inbred BALB C , Middle Aged , Mutation , Peroxidases/genetics , Peroxidases/immunology , Protein Structure, Quaternary , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Structure-Activity Relationship , Th1 Cells/immunology , Th1 Cells/parasitology , Trypanosoma cruzi/genetics , Trypanosoma cruzi/immunologyABSTRACT
BACKGROUND: Chagas disease (CD) serological screening at blood banks is usually performed by a single highly sensitive serological assay, with chemiluminescent immunoassays (CLIAs) being the method of choice. CLIAs employ recombinant, fusion peptides and/or chimeric antigens that selectively capture anti-Trypanosoma cruzi antibodies. However, despite high sensitivity, the ability of these tests to identify CD-positive cases should be evaluated against T. cruzi strains circulating in specific locales. Herein, we used a latent class analysis (LCA) approach employing an array of four chimeric antigens to assess the diagnostic performance of the Liaison XL Murex Chagas CLIA for the detection of anti-T. cruzi IgG in serum samples. STUDY DESIGN AND METHODS: The study included a panel of 5014 serum samples collected from volunteer blood donors at the Hematology and Hemotherapy Foundation of the State of Bahia, submitted to anti-T. cruzi antibody detection using Liaison Chagas CLIA and LCA as a reference test in the absence of a gold standard. RESULTS: LCA classified 4993 samples as negative, while positivity for T. cruzi antibodies was predicted in 21 samples. Compared with LCA, CLIA demonstrated sensitivity and specificity of 76.2% and 99.5%, respectively, providing an overall accuracy of 99.4%. DISCUSSION: In blood banks lacking a de facto highly sensitive screening immunoassay, the low sensitivity offered by Liaison Chagas CLIA renders it unsuitable for standalone use in serological screening procedures for CD. Moreover, blood banks are encouraged to carefully assess the ability of diagnostic methods to identify local T. cruzi strains in circulation.
Subject(s)
Blood Donors , Blood Safety , Chagas Disease/diagnosis , Trypanosoma cruzi/isolation & purification , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Antigens, Protozoan/blood , Antigens, Protozoan/immunology , Chagas Disease/blood , Chagas Disease/immunology , Humans , Luminescent Measurements , Trypanosoma cruzi/immunologyABSTRACT
Chagas and COVID-19 are diseases caused by Trypanosoma cruzi and SARS-CoV-2, respectively. These diseases present very different etiological agents despite showing similarities such as susceptibility/risk factors, pathogen-associated molecular patterns (PAMPs), recognition of glycosaminoglycans, inflammation, vascular leakage hypercoagulability, microthrombosis, and endotheliopathy; all of which suggest, in part, treatments with similar principles. Here, both diseases are compared, focusing mainly on the characteristics related to dysregulated immunothrombosis. Given the in-depth investigation of molecules and mechanisms related to microthrombosis in COVID-19, it is necessary to reconsider a prompt treatment of Chagas disease with oral anticoagulants.
Subject(s)
Anticoagulants/therapeutic use , COVID-19/pathology , Chagas Disease/pathology , Heparitin Sulfate/therapeutic use , Thrombosis/drug therapy , Thrombosis/pathology , Blood Platelets/immunology , COVID-19/immunology , Chagas Disease/immunology , Complement Activation/immunology , Endothelium/pathology , Humans , Pathogen-Associated Molecular Pattern Molecules/immunology , Platelet Activation/immunology , SARS-CoV-2/immunology , Trypanosoma cruzi/immunologyABSTRACT
Trypanosoma cruzi is a remarkably versatile parasite. It can parasitize almost any nucleated cell type and naturally infects hundreds of mammal species across much of the Americas. In humans, it is the cause of Chagas disease, a set of mainly chronic conditions predominantly affecting the heart and gastrointestinal tract, which can progress to become life threatening. Yet around two thirds of infected people are long-term asymptomatic carriers. Clinical outcomes depend on many factors, but the central determinant is the nature of the host-parasite interactions that play out over the years of chronic infection in diverse tissue environments. In this review, we aim to integrate recent developments in the understanding of the spatial and temporal dynamics of T. cruzi infections with established and emerging concepts in host immune responses in the corresponding phases and tissues.