Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 420
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Biochemistry ; 63(11): 1434-1444, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38780522

ABSTRACT

The active form of the murine urokinase-type plasminogen activator (muPA) is formed by a 27-residue disordered light chain connecting the amino-terminal fragment (ATF) with the serine protease domain. The two chains are tethered by a disulfide bond between C1CT in the disordered light chain and C122CT in the protease domain. Previous work showed that the presence of the disordered light chain affected the inhibition of the protease domain by antibodies. Here we show that the disordered light chain induced a 3.7-fold increase in kcat of the protease domain of muPA. In addition, hydrogen-deuterium exchange mass spectrometry (HDX-MS) and accelerated molecular dynamics (AMD) were performed to identify the interactions between the disordered light chain and the protease domain. HDX-MS revealed that the light chain is contacting the 110s, the turn between the ß10- and ß11-strand, and the ß7-strand. A reduction in deuterium uptake was also observed in the activation loop, the 140s loop and the 220s loop, which forms the S1-specificty pocket where the substrate binds. These loops are further away from where the light chain seems to be interacting with the protease domain. Our results suggest that the light chain most likely increases the activity of muPA by allosterically favoring conformations in which the specificity pocket is formed. We propose a model by which the allostery would be transmitted through the ß-strands of the ß-barrels to the loops on the other side of the protease domain.


Subject(s)
Urokinase-Type Plasminogen Activator , Animals , Mice , Urokinase-Type Plasminogen Activator/metabolism , Urokinase-Type Plasminogen Activator/chemistry , Allosteric Regulation , Molecular Dynamics Simulation , Hydrogen Deuterium Exchange-Mass Spectrometry , Kinetics
2.
Proteins ; 92(1): 76-95, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37646459

ABSTRACT

Cell invasion is an important process in cancer progression and recurrence. Invasion and implantation of cancer cells from their original place to other tissues, by disabling vital organs, challenges the treatment of cancer patients. Given the importance of the matter, many molecular treatments have been developed to inhibit cancer cell invasion. Because of their low production cost and ease of production, peptides are valuable therapeutic molecules for inhibiting cancer cell invasion. In recent years, advances in the field of computational biology have facilitated the design of anti-cancer peptides. In our investigation, using computational biology approaches such as evolutionary analysis, residue scanning, protein-peptide interaction analysis, molecular dynamics, and free energy analysis, our team designed a peptide library with about 100 000 candidates based on A6 (acetyl-KPSSPPEE-amino) sequence which is an anti-invasion peptide. During computational studies, two of the designed peptides that give the highest scores and showed the greatest sequence similarity to A6 were entered into the experimental analysis workflow for further analysis. In experimental analysis steps, the anti-metastatic potency and other therapeutic effects of designed peptides were evaluated using MTT assay, RT-qPCR, zymography analysis, and invasion assay. Our study disclosed that the IK1 (acetyl-RPSFPPEE-amino) peptide, like A6, has great potency to inhibit the invasion of cancer cells.


Subject(s)
Receptors, Urokinase Plasminogen Activator , Urokinase-Type Plasminogen Activator , Humans , Urokinase-Type Plasminogen Activator/chemistry , Urokinase-Type Plasminogen Activator/pharmacology , Urokinase-Type Plasminogen Activator/therapeutic use , Peptides/pharmacology , Neoplasm Invasiveness
3.
Phytochem Anal ; 35(1): 28-39, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37571866

ABSTRACT

INTRODUCTION: Numerous species of the Euphorbiaceae family, including Euphorbia maculata, Euphorbia humifusa, and Acalypha australis, have been used to manage bleeding disorders. However, few investigations have demonstrated their hemostatic potential, and their procoagulant compounds remain elusive. OBJECTIVE: This study aimed to determine the most active procoagulant extracts from the three species' crude extract (CE) and fractions in order to screen out the active compounds and to analyze their possible mechanisms of action. METHODS: An integrative approach, comprising prothrombin time and activated partial thromboplastin time evaluations and urokinase-type plasminogen activator (uPA) inhibitory assessment, followed by bio-affinity ultrafiltration paired with UPLC/QTOF-MS targeting uPA and docking simulations, was used. RESULTS: The extracts with highest procoagulant activity were the CE for both E. maculata (EMCE) and E. humifusa (EHCE) and the n-butanol fraction (NB) for A. australis (AANB). The most promising ligands, namely, isoquercetin, orientin, rutin, and brevifolin carboxylic acid, were selected from these lead extracts. All of these compounds exhibited pronounced specific binding values to the uPA target and showed tight intercalation with the crucial side chains forming the uPA active pocket, which may explain their mode of action. The activity validation substantiated their hemostatic effectivity in inhibiting uPA as they had better inhibition constant (Ki) values than the reference drug tranexamic acid. CONCLUSION: Collectively, the integrative strategy applied to these three species allowed the elucidation of the mechanisms underlying their therapeutic effects on bleeding disorders, resulting in the fast detection of four potential hemostatic compounds and their mode of action.


Subject(s)
Acalypha , Euphorbia , Euphorbiaceae , Hemostatics , Urokinase-Type Plasminogen Activator/chemistry , Urokinase-Type Plasminogen Activator/metabolism , Euphorbiaceae/chemistry , Ultrafiltration , Chromatography, Liquid , Liquid Chromatography-Mass Spectrometry , Tandem Mass Spectrometry
4.
Small ; 19(4): e2205260, 2023 01.
Article in English | MEDLINE | ID: mdl-36424174

ABSTRACT

Thrombotic diseases have a high rate of mortality and disability, and pose a serious threat to global public health. Currently, most thrombolytic drugs especially protein drugs have a short blood-circulation time, resulting in low thrombolytic efficiency. Therefore, a platelet membrane (Pm) cloaked nanotube (NT-RGD/Pm) biomimetic delivery system with enhanced thrombolytic efficiency is designed. Nanotubes (NT) with an excellent clot-penetration properties are used to load a protein thrombolytic drug urokinase (Uk). Platelet-targeting arginine glycine-aspartic peptide (RGD) is grafted onto the surface of the nanotubes (NT-RGD) prior to cloaking. Multiple particle tracking (MPT) technique and confocal laser scanning microscope (CLSM) analysis are applied and the results show that the nanotubes possess a strong penetration and diffusion capacity in thrombus clots. After the Pm cloaking on NT-RGD/Uk, it shows a thrombus microenvironmental responsive release property and the half-life of Uk is six times longer than that of free Uk. Most importantly, NT-RGD-Uk/Pm exhibits a 60% thrombolytic efficiency in the FeCl3 -induced thrombosis mouse model, and it is able to significantly reduce the bleeding side effects of Uk. This Pm-cloaked nanotube system is an effective and promising platform for the controlled and targeted delivery of drugs for the thrombus treatment.


Subject(s)
Thrombosis , Mice , Animals , Thrombosis/drug therapy , Fibrinolysis , Fibrinolytic Agents/pharmacology , Fibrinolytic Agents/therapeutic use , Urokinase-Type Plasminogen Activator/chemistry , Urokinase-Type Plasminogen Activator/pharmacology , Urokinase-Type Plasminogen Activator/therapeutic use , Thrombolytic Therapy , Oligopeptides/therapeutic use
5.
Bioorg Med Chem ; 95: 117499, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37879145

ABSTRACT

The inhibition of human urokinase-type plasminogen activator (huPA), a serine protease that plays an important role in pericellular proteolysis, is a promising strategy to decrease the invasive and metastatic activity of tumour cells. However, the generation of selective small molecule huPA inhibitors has proven to be challenging due to the high structural similarity of huPA to other paralogue serine proteases. Efforts to generate more specific therapies have led to the development of cyclic peptide-based inhibitors with much higher selectivity against huPA. While this latter property is desired, the sparing of the orthologue murine poses difficulties for the testing of the inhibitor in preclinical mouse model. In this work, we have applied a Darwinian evolution-based approach to identify phage-encoded bicyclic peptide inhibitors of huPA with better cross-reactivity towards murine uPA (muPA). The best selected bicyclic peptide (UK132) inhibited huPA and muPA with Ki values of 0.33 and 12.58 µM, respectively. The inhibition appears to be specific for uPA, as UK132 only weakly inhibits a panel of structurally similar serine proteases. Removal or substitution of the second loop with one not evolved in vitro led to monocyclic and bicyclic peptide analogues with lower potency than UK132. Moreover, swapping of 1,3,5-tris-(bromomethyl)-benzene with different small molecules not used in the phage selection, resulted in an 80-fold reduction of potency, revealing the important structural role of the branched cyclization linker. Further substitution of an arginine in UK132 to a lysine resulted in a bicyclic peptide UK140 with enhanced inhibitory potency against both huPA (Ki = 0.20 µM) and murine orthologue (Ki = 2.79 µM). By combining good specificity, nanomolar affinity and a low molecular mass, the bicyclic peptide inhibitor developed in this work may provide a novel human and murine cross-reactive lead for the development of a potent and selective anti-metastatic therapy.


Subject(s)
Peptides , Urokinase-Type Plasminogen Activator , Mice , Humans , Animals , Urokinase-Type Plasminogen Activator/chemistry , Peptides/pharmacology , Peptides/chemistry , Serine Proteases , Peptides, Cyclic/pharmacology , Peptides, Cyclic/chemistry
6.
Biophys J ; 121(20): 3940-3949, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36039386

ABSTRACT

Nafamostat mesylate (NM) is a synthetic compound that inhibits various serine proteases produced during the coagulation cascade and inflammation. Previous studies showed that NM was a highly safe drug for the treatment of different cancers, but the precise functions and mechanisms of NM are not clear. In this study, we determined a series of crystal structures of NM and its hydrolysates in complex with a serine protease (urokinase-type plasminogen activator [uPA]). These structures reveal that NM was cleaved by uPA and that a hydrolyzed product (4-guanidinobenzoic acid [GBA]) remained covalently linked to Ser195 of uPA, and the other hydrolyzed product (6-amidino-2-naphthol [6A2N]) released from uPA. Strikingly, in the inactive uPA (uPA-S195A):NM structure, the 6A2N side of intact NM binds to the specific pocket of uPA. Molecular dynamics simulations and end-point binding free-energy calculations show that the conf1 of NM (6A2N as P1 group) in the uPA-S195A:NM complex may be more stable than conf2 of NM (GBA as P1 group). Moreover, in the structure of uPA:NM complex, the imidazole group of His57 flips further away from Ser195 and disrupts the stable canonical catalytic triad conformation. These results not only reveal the inhibitory mechanism of NM as an efficient serine protease inhibitor but also might provide the structural basis for the further development of serine protease inhibitors.


Subject(s)
Serine Proteinase Inhibitors , Urokinase-Type Plasminogen Activator , Urokinase-Type Plasminogen Activator/chemistry , Urokinase-Type Plasminogen Activator/metabolism , Serine Proteinase Inhibitors/pharmacology , Serine Proteinase Inhibitors/chemistry , Serine Proteinase Inhibitors/metabolism , Serine Proteases , Imidazoles
7.
Prep Biochem Biotechnol ; 51(2): 191-200, 2021.
Article in English | MEDLINE | ID: mdl-32845203

ABSTRACT

Fibrinolytic enzymes have been considered promising for treatment and protection of healthy circulation due its ability to dissolve the fibrin in blood clots. Extractive fermentation is a not explored and efficient downstream process which segregates the desired product simultaneously in a fermentation process fast and economically. Extraction of fibrinolytic enzymes by Bacillus stearothermophilus DPUA 1729 employing conventional aqueous two-phase systems (ATPS) and extractive fermentation with ATPS was evaluated. The results of both systems were compared using a factorial design with PEG molar mass, PEG and salt concentrations as independent variables and extraction parameters as a response. In all conditions evaluated it was observed a similar partitioning of fibrinolytic enzymes through the phases, both in conventional ATPS and extractive fermentation. Salt concentration and interaction among PEG and salt concentration influenced in the partition coefficient. The fibrinolytic activity was determined by hydrolysis of fibrin in plate using the extract of one condition from extractive fermentation. The zone degradation presented a diameter of 7.03 ± 0.94 mm. In conclusion, there was no significant difference among the results obtained using conventional ATPS and extractive fermentation, however, the second one presents more advantages and can integrate production and extraction in one single step, reducing the costs.


Subject(s)
Fermentation , Geobacillus stearothermophilus/metabolism , Peptide Hydrolases/metabolism , Thrombosis/enzymology , Animals , Fibrinolysis , Hydrolysis , Microbial Sensitivity Tests , Polyethylene Glycols , Rats , Rats, Wistar , Software , Soy Foods , Sulfates , Thrombosis/drug therapy , Tissue Plasminogen Activator/chemistry , Urokinase-Type Plasminogen Activator/chemistry , Water
8.
J Biol Chem ; 294(18): 7403-7418, 2019 05 03.
Article in English | MEDLINE | ID: mdl-30894413

ABSTRACT

The urokinase receptor (uPAR) is a founding member of a small protein family with multiple Ly6/uPAR (LU) domains. The motif defining these LU domains contains five plesiotypic disulfide bonds stabilizing its prototypical three-fingered fold having three protruding loops. Notwithstanding the detailed knowledge on structure-function relationships in uPAR, one puzzling enigma remains unexplored. Why does the first LU domain in uPAR (DI) lack one of its consensus disulfide bonds, when the absence of this particular disulfide bond impairs the correct folding of other single LU domain-containing proteins? Here, using a variety of contemporary biophysical methods, we found that reintroducing the two missing half-cystines in uPAR DI caused the spontaneous formation of the corresponding consensus 7-8 LU domain disulfide bond. Importantly, constraints due to this cross-link impaired (i) the binding of uPAR to its primary ligand urokinase and (ii) the flexible interdomain assembly of the three LU domains in uPAR. We conclude that the evolutionary deletion of this particular disulfide bond in uPAR DI may have enabled the assembly of a high-affinity urokinase-binding cavity involving all three LU domains in uPAR. Of note, an analogous neofunctionalization occurred in snake venom α-neurotoxins upon loss of another pair of the plesiotypic LU domain half-cystines. In summary, elimination of the 7-8 consensus disulfide bond in the first LU domain of uPAR did have significant functional and structural consequences.


Subject(s)
Biological Evolution , Sequence Deletion , Sulfides/metabolism , Urokinase-Type Plasminogen Activator/metabolism , Amino Acid Sequence , Binding Sites , Biophysical Phenomena , Chymotrypsin/metabolism , Glycosylation , Kinetics , Ligands , Protein Folding , Proteolysis , Sequence Homology, Amino Acid , Structure-Activity Relationship , Urokinase-Type Plasminogen Activator/chemistry
9.
Phys Chem Chem Phys ; 22(6): 3570-3583, 2020 Feb 14.
Article in English | MEDLINE | ID: mdl-31995079

ABSTRACT

Despite being recognized as a therapeutic target in the processes of cancer cell proliferation and metastasis for over 50 years, the interaction of the urokinase plasminogen activator uPA with its receptor uPAR still needs an improved understanding. High resolution crystallographic data (PDB ) of the uPA-uPAR binding geometry was used to perform quantum biochemistry computations within the density functional theory (DFT) framework. A divide to conquer methodology considering a mixed homogeneous/inhomogeneous dielectric model and explicitly taking water molecules into account was employed to obtain a large set of uPA-uPAR residue-residue interaction energies. In order of importance, not only were Phe25 > Tyr24 > Trp30 > Ile28 shown to be the most relevant uPA residues binding it to uPAR, but the residues Lys98 > His87 > Gln40 > Asn22 > Lys23 > Val20 also had significant interaction energies, which helps to explain published experimental mutational data. Furthermore, the results obtained with the uPA-uPAR in/homogeneous dielectric function show that a high dielectric constant value ε = 40 is adequate to take into account the electrostatic environment at the interface between the proteins, while using a smaller value of ε (<10) leads to an overestimation of the uPA-uPAR binding energy. Hot spots of the uPA-uPAR binding domain were identified and a quantum biochemistry description of the uPAR blockers uPA21-30 and cyclo21,29uPA21-29[(S21C;H29C)] was performed, demonstrating that cyclization improves the stability of mimetic peptides without compromising their binding energies to uPAR.


Subject(s)
Receptors, Urokinase Plasminogen Activator/chemistry , Urokinase-Type Plasminogen Activator/chemistry , Amino Acid Sequence , Amino Acids/chemistry , Density Functional Theory , Peptides, Cyclic/chemistry , Protein Binding , Protein Conformation , Static Electricity , Structure-Activity Relationship , Thermodynamics
10.
Biosci Biotechnol Biochem ; 84(6): 1153-1159, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32019421

ABSTRACT

Peptidic inhibitors of proteases are attracting increasing interest not only as drug candidates but also for studying the function and regulation mechanisms of these enzymes. Previously, we screened out a cyclic peptide inhibitor of human uPA [Formula: see text] and found that Ala substitution of P2 residue turns upain-1 to a substrate. To further investigate the effect of P2 residue on the peptide behavior transformation, we constructed upain-1-W3F, which has Phe replacement in the P2 position. We determined KD and Ki of upain-1-W3F and found that upain-1-W3F might still exist as an inhibitor. Furthermore, the high-resolution crystal structure of upain-1-W3F·uPA reveals that upain-1-W3F indeed stays as an intact inhibitor bind to uPA. We thus propose that the P2 residue plays a nonnegligible role in the conversion of upain-1 to a substrate. These results also proposed a strategy to optimize the pharmacological properties of peptide-based drug candidates by hydrophobicity and steric hindrance.Abbreviations : uPA: urokinase-type plasminogen activator; SPD: serine protease domain; S1 pocket: specific substrate-binding pocket.


Subject(s)
Peptides, Cyclic/chemistry , Saccharomycetales/genetics , Saccharomycetales/metabolism , Serine Proteinase Inhibitors/chemistry , Urokinase-Type Plasminogen Activator/chemistry , Catalytic Domain , Crystallography, X-Ray , Humans , Hydrogen Bonding , Hydrolysis , Protein Binding , Protein Structure, Secondary
11.
Int J Mol Sci ; 21(19)2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33019770

ABSTRACT

Ly-6/uPAR or three-finger proteins (TFPs) contain a disulfide-stabilized ß-structural core and three protruding loops (fingers). In mammals, TFPs have been found in epithelium and the nervous, endocrine, reproductive, and immune systems. Here, using heteronuclear NMR, we determined the three-dimensional (3D) structure and backbone dynamics of the epithelial secreted protein SLURP-1 and soluble domains of GPI-anchored TFPs from the brain (Lynx2, Lypd6, Lypd6b) acting on nicotinic acetylcholine receptors (nAChRs). Results were compared with the data about human TFPs Lynx1 and SLURP-2 and snake α-neurotoxins WTX and NTII. Two different topologies of the ß-structure were revealed: one large antiparallel ß-sheet in Lypd6 and Lypd6b, and two ß-sheets in other proteins. α-Helical segments were found in the loops I/III of Lynx2, Lypd6, and Lypd6b. Differences in the surface distribution of charged and hydrophobic groups indicated significant differences in a mode of TFPs/nAChR interactions. TFPs showed significant conformational plasticity: the loops were highly mobile at picosecond-nanosecond timescale, while the ß-structural regions demonstrated microsecond-millisecond motions. SLURP-1 had the largest plasticity and characterized by the unordered loops II/III and cis-trans isomerization of the Tyr39-Pro40 bond. In conclusion, plasticity could be an important feature of TFPs adapting their structures for optimal interaction with the different conformational states of nAChRs.


Subject(s)
Adaptor Proteins, Signal Transducing/chemistry , Antigens, Ly/chemistry , GPI-Linked Proteins/chemistry , Neuropeptides/chemistry , Receptors, Nicotinic/chemistry , Urokinase-Type Plasminogen Activator/chemistry , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Amino Acid Sequence , Antigens, Ly/genetics , Antigens, Ly/metabolism , Binding Sites , Cloning, Molecular , Elapid Venoms/chemistry , Elapid Venoms/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Neuropeptides/genetics , Neuropeptides/metabolism , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Receptors, Nicotinic/genetics , Receptors, Nicotinic/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Urokinase-Type Plasminogen Activator/genetics , Urokinase-Type Plasminogen Activator/metabolism
12.
Angew Chem Int Ed Engl ; 59(24): 9398-9402, 2020 06 08.
Article in English | MEDLINE | ID: mdl-32176815

ABSTRACT

Secondary structures tend to be recognizable because they have repeating structural motifs, but mimicry of these does not have to follow such well-defined patterns. Bioinformatics studies to match side-chain orientations of a novel hydantoin triazole chemotype (1) to protein-protein interfaces revealed it tends to align well across parallel and antiparallel sheets, like rungs on a ladder. One set of these overlays was observed for the protein-protein interaction uPA⋅uPAR. Consequently, chemotype 1 was made with appropriate side-chains to mimic uPA at this interface. Biophysical assays indicate these compounds did in fact bind uPAR, and elicit cellular responses that affected invasion, migration, and wound healing.


Subject(s)
Biomimetic Materials/chemistry , Proteins/chemistry , Biomimetic Materials/pharmacology , Protein Structure, Secondary , Triazoles/chemistry , Urokinase-Type Plasminogen Activator/chemistry , Urokinase-Type Plasminogen Activator/metabolism
13.
BMC Evol Biol ; 19(1): 27, 2019 01 17.
Article in English | MEDLINE | ID: mdl-30654737

ABSTRACT

BACKGROUND: The plasminogen (PLG) activation system is composed by a series of serine proteases, inhibitors and several binding proteins, which together control the temporal and spatial generation of the active serine protease plasmin. As this proteolytic system plays a central role in human physiology and pathophysiology it has been extensively studied in mammals. The serine proteases of this system are believed to originate from an ancestral gene by gene duplications followed by domain gains and deletions. However, the identification of ancestral forms in primitive chordates supporting these theories remains elusive. In addition, evolutionary studies of the non-proteolytic members of this system are scarce. RESULTS: Our phylogenetic analyses place lamprey PLG at the root of the vertebrate PLG-group, while lamprey PLG-related growth factors represent the ancestral forms of the jawed-vertebrate orthologues. Furthermore, we find that the earliest putative orthologue of the PLG activator group is the hyaluronan binding protein 2 (HABP2) gene found in lampreys. The prime plasminogen activators (tissue- and urokinase-type plasminogen activator, tPA and uPA) first occur in cartilaginous fish and phylogenetic analyses confirm that all orthologues identified compose monophyletic groups to their mammalian counterparts. Cartilaginous fishes exhibit the most ancient vitronectin of all vertebrates, while plasminogen activator inhibitor 1 (PAI-1) appears for the first time in cartilaginous fishes and is conserved in the rest of jawed vertebrate clades. PAI-2 appears for the first time in the common ancestor of reptiles and mammals, and represents the latest appearing plasminogen activator inhibitor. Finally, we noted that the urokinase-type plasminogen activator receptor (uPAR)-and three-LU domain containing genes in general-occurred later in evolution and was first detectable after coelacanths. CONCLUSIONS: This study identifies several primitive orthologues of the mammalian plasminogen activation system. These ancestral forms provide clues to the origin and diversification of this enzyme system. Further, the discovery of several members-hitherto unknown in mammals-provide new perspectives on the evolution of this important enzyme system.


Subject(s)
Chordata/genetics , Genetic Variation , Phylogeny , Plasminogen/genetics , Amino Acid Sequence , Animals , Databases, Protein , Humans , Likelihood Functions , Plasminogen Activator Inhibitor 1/chemistry , Protein Domains , Sequence Analysis, RNA , Transcriptome/genetics , Urokinase-Type Plasminogen Activator/chemistry , Vitronectin/chemistry
14.
Chembiochem ; 20(1): 46-50, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30225958

ABSTRACT

Urokinase-type plasminogen activator (uPA) and tissue-type plasminogen activator (tPA) are two serine proteases that contribute to initiating fibrinolysis by activating plasminogen. uPA is also an important tumour-associated protease due to its role in extracellular matrix remodelling. Overexpression of uPA has been identified in several different cancers and uPA inhibition has been reported as a promising therapeutic strategy. Although several peptide-based uPA inhibitors have been developed, the extent to which uPA tolerates different tetrapeptide sequences that span the P1-P4 positions remains to be thoroughly explored. In this study, we screened a sequence-defined peptide aldehyde library against uPA and tPA. Preferred sequences from the library screen yielded potent inhibitors for uPA, led by Ac-GTAR-H (Ki =18 nm), but not for tPA. Additionally, synthetic peptide substrates corresponding to preferred inhibitor sequences were cleaved with high catalytic efficiency by uPA but not by tPA. These findings provide new insights into the binding specificity of uPA and tPA and the relative activity of tetrapeptide inhibitors and substrates against these enzymes.


Subject(s)
Aldehydes/chemistry , Enzyme Inhibitors/chemistry , Peptides/chemistry , Tissue Plasminogen Activator/chemistry , Urokinase-Type Plasminogen Activator/chemistry , Aldehydes/chemical synthesis , Catalytic Domain , Enzyme Inhibitors/chemical synthesis , Humans , Peptide Library , Peptides/chemical synthesis , Substrate Specificity , Tissue Plasminogen Activator/antagonists & inhibitors , Urokinase-Type Plasminogen Activator/antagonists & inhibitors
15.
Chemistry ; 25(53): 12380-12393, 2019 Sep 20.
Article in English | MEDLINE | ID: mdl-31298443

ABSTRACT

Target-guided synthesis (TGS) has emerged as a promising strategy in drug discovery. Although reported examples of TGS generally involve two-component reactions, there is a strong case for developing target-guided versions of three-component reactions (3CRs) because of their potential to deliver highly diversified druglike molecules. To this end, the Groebke-Blackburn-Bienaymé reaction was selected as a model 3CR. We recently reported a series of druglike urokinase inhibitors, and these serve as reference compounds in the present study. Due to the limited number of literature reports on target-guided 3CRs, multiple experimental parameters were optimized here. Most challenging was the formation of imine intermediates under near-physiological conditions. This aspect was addressed by exploring chemical imine stabilization strategies. Notably, imines are also crucial intermediates of other 3CRs. Such systematic studies are strongly required for further development of the TGS domain but are largely absent in the literature. Hence, this work is intended as a reference for future multicomponent-based TGS studies.


Subject(s)
Drug Discovery , Urokinase-Type Plasminogen Activator/chemistry , Imidazoles/chemistry , Molecular Structure , Pyridines/chemistry
16.
J Labelled Comp Radiopharm ; 62(8): 483-494, 2019 06 30.
Article in English | MEDLINE | ID: mdl-30970388

ABSTRACT

The treatment of cancer remains a major challenge, especially after tumour cell dissemination and metastases formation. Expression of the urokinase-type plasminogen activation system including urokinase (uPA) and its receptor (uPAR) has been associated with the complex process of cell migration, a tumour's invasive potential as well as a reduced overall and disease-free survival of patients with solid cancers and haematological disorders. A cyclic peptide cyclo[21,29][d-Cys21 ,Cys29 ]-uPA21-30 was designed from the growth factor-like domain (GFD) of urokinase whose binding to uPAR was found to inhibit tumour growth and spread of human ovarian cancer cells in mice. With the aim of visualising uPAR expression using PET imaging to attempt an estimate on the tumour's aggressiveness, the cyclic peptide was modified with an either C- or N-terminally attached variable spacer and chelator. The free ligands were evaluated for their binding affinities to the isolated human uPAR and labelled with 68 Ga and 177 Lu to assess their lipophilicities and stabilities in human serum. Although retaining the full binding potential displayed by cyclo[21,29][d-Cys21 ,Cys29 ]-uPA21-30 to its target was found to be a challenging task upon both C- and N-terminal modification, chelator-bearing ligands were identified that can serve as promising starting points in the development of uPAR-addressing PET tracers.


Subject(s)
Peptides, Cyclic/chemistry , Peptides, Cyclic/metabolism , Positron-Emission Tomography/methods , Receptors, Urokinase Plasminogen Activator/metabolism , Urokinase-Type Plasminogen Activator/chemistry , Binding, Competitive , Humans , Isotope Labeling , Radioactive Tracers
17.
J Biol Chem ; 292(15): 6381-6388, 2017 04 14.
Article in English | MEDLINE | ID: mdl-28246168

ABSTRACT

HABP2 (hyaluronan-binding protein 2) is a Ca2+-dependent serine protease with putative roles in blood coagulation and fibrinolysis. A G221E substitution, known as the Marburg I polymorphism, reportedly affects HABP2 function and has been associated with increased risk for cardiovascular disease. However, the importance of Gly-221 for HABP2 activity is unclear. Here, we used G221E, G221A, and G221S mutants to assess the role of Gly-221 in HABP2 catalysis. The G221E variant failed to activate the single-chain urokinase-type plasminogen activator, and the G221A and G221S variants displayed moderately reduced single-chain urokinase-type plasminogen activator activation. Activity toward the peptide substrate S-2288 was markedly decreased in all HABP2 variants, with G221E being the most defective and G221A being the least defective. In the absence of Ca2+, S-2288 cleavage by wild-type HABP2 was Na+-dependent, with Km decreasing from 3.0 to 0.6 mm upon titration from 0 to 0.3 m Na+ In the presence of 5 mm Ca2+, Km was further reduced to 0.05 mm, but without an appreciable contribution of Na+ At physiological concentrations of Na+ and Ca2+, the three HABP2 variants, and particularly G221E, displayed a major Km increase for S-2288. Chemical footprinting revealed that Ile-16 is significantly less protected from chemical modification in G221E than in wild-type HABP2, suggesting impaired insertion of the N terminus into the G221E protease domain, with a concomitant impact on catalytic activity. Homology modeling suggested that the Glu-221 side chain could sterically hinder insertion of the N terminus into the HABP2 protease domain, helping to explain the detrimental effects of Glu-221 substitution on HABP2 activity.


Subject(s)
Serine Endopeptidases/chemistry , Amino Acid Substitution , Calcium/chemistry , Catalysis , Glycine/chemistry , Glycine/genetics , Mutation, Missense , Protein Domains , Serine Endopeptidases/genetics , Urokinase-Type Plasminogen Activator/chemistry , Urokinase-Type Plasminogen Activator/genetics
18.
Cell Commun Signal ; 16(1): 62, 2018 09 21.
Article in English | MEDLINE | ID: mdl-30241478

ABSTRACT

BACKGROUND: TEM8 is a cell membrane protein predominantly expressed in tumor endothelium, which serves as a receptor for the protective antigen (PA) of anthrax toxin. However, the physiological ligands for TEM8 remain unknown. RESULTS: Here we identified uPA as an interacting partner of TEM8. Binding of uPA stimulated the phosphorylation of TEM8 and augmented phosphorylation of EGFR and ERK1/2. Finally, TEM8-Fc, a recombinant fusion protein comprising the extracellular domain of human TEM8 linked to the Fc portion of human IgG1, efficiently abrogated the interaction between uPA and TEM8, blocked uPA-induced migration of HepG2 cells in vitro and inhibited the growth and metastasis of human MCF-7 xenografts in vivo. uPA, TEM8 and EGFR overexpression and ERK1/2 phosphorylation were found co-located on frozen cancer tissue sections. CONCLUSIONS: Taken together, our data provide evidence that TEM8 is a novel receptor for uPA, which may play a significant role in the regulation of tumor growth and metastasis.


Subject(s)
ErbB Receptors/metabolism , Neoplasm Proteins/metabolism , Receptors, Cell Surface/metabolism , Urokinase-Type Plasminogen Activator/metabolism , Amino Acid Sequence , Animals , Cell Line , Cell Proliferation , Humans , Kinetics , Microfilament Proteins , Neoplasm Metastasis , Phosphorylation , Protein Domains , Receptors, Urokinase Plasminogen Activator/chemistry , Receptors, Urokinase Plasminogen Activator/metabolism , Urokinase-Type Plasminogen Activator/chemistry
19.
Bioorg Med Chem Lett ; 28(20): 3372-3375, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30201291

ABSTRACT

We report here the design and synthesis of a novel series of benzylamines that are potent and selective inhibitors of uPA with promising oral availability in rat. Further evaluation of one representative (ZK824859) of the new structural class showed that this compound lowered clinical scores when dosed in either acute or chronic mouse EAE models, suggesting that uPA inhibitors of this type could be useful for the treatment of multiple sclerosis.


Subject(s)
Benzylamines/therapeutic use , Multiple Sclerosis/drug therapy , Serine Proteinase Inhibitors/therapeutic use , Urokinase-Type Plasminogen Activator/antagonists & inhibitors , Animals , Benzylamines/chemical synthesis , Benzylamines/chemistry , Benzylamines/pharmacokinetics , Binding Sites , Female , Humans , Mice , Models, Molecular , Molecular Structure , Rats , Serine Proteinase Inhibitors/chemical synthesis , Serine Proteinase Inhibitors/chemistry , Serine Proteinase Inhibitors/pharmacokinetics , Structure-Activity Relationship , Urokinase-Type Plasminogen Activator/chemistry
20.
Phys Chem Chem Phys ; 20(35): 22818-22830, 2018 Sep 12.
Article in English | MEDLINE | ID: mdl-30151512

ABSTRACT

Urokinase plasminogen activator (uPA) is a biomarker and therapeutic target for several cancer types whose inhibition has been shown to slow tumor growth and metastasis. In this work, crystallographic data of uPA complexed with distinct ligands (PDB id: 1SQA, 1SQO, and 1FV9) were used to perform quantum biochemistry calculations based on the framework of density functional theory (DFT) and within the molecular fractionation with conjugated caps (MFCC) scheme. Our calculations revealed a total energy interaction of -107.30, -99.5, and -35.30 kcal mol-1 for two naphthamidine-based compounds (Ul1 and UI2) and 2-amino-5-hydroxybenzimidazole (172), respectively, which are in good agreement with known inhibitory experiments. Residues Asp189, Ser190, Cys191-Cys220, Gln192, Trp 215, Gly216, and Gly219 were identified as the main interacting amino acid residues with interaction energy contributions lower than -4.0 kcal mol-1 for uPA/UI1 and UPA/UI2 complexes. In the case of compound 172, our calculations have shown that the most important interactions occur with residues Asp189, Cys191-Cys220, and Ser190. Our results highlight the relevance of the protonation state of ligands and residues and that the naphthamidine scaffold of UI1 and UI2 is the main determinant of their potency, followed by their aminopyrimidine substitution. Altogether, the results of this work contribute to the understanding of the uPA binding mechanisms of the inhibitory compounds Ul1 and 172, stimulating the use of quantum biochemistry theoretical approaches for the development of new uPA inhibitors as new medicines for cancer treatment.


Subject(s)
Benzimidazoles/chemistry , Naphthalenes/chemistry , Urokinase-Type Plasminogen Activator/antagonists & inhibitors , Urokinase-Type Plasminogen Activator/chemistry , Humans , Models, Molecular , Protein Binding , Quantum Theory
SELECTION OF CITATIONS
SEARCH DETAIL