Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 219
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 164(1-2): 269-278, 2016 Jan 14.
Article in English | MEDLINE | ID: mdl-26724865

ABSTRACT

Types 1 and P pili are prototypical bacterial cell-surface appendages playing essential roles in mediating adhesion of bacteria to the urinary tract. These pili, assembled by the chaperone-usher pathway, are polymers of pilus subunits assembling into two parts: a thin, short tip fibrillum at the top, mounted on a long pilus rod. The rod adopts a helical quaternary structure and is thought to play essential roles: its formation may drive pilus extrusion by preventing backsliding of the nascent growing pilus within the secretion pore; the rod also has striking spring-like properties, being able to uncoil and recoil depending on the intensity of shear forces generated by urine flow. Here, we present an atomic model of the P pilus generated from a 3.8 Å resolution cryo-electron microscopy reconstruction. This structure provides the molecular basis for the rod's remarkable mechanical properties and illuminates its role in pilus secretion.


Subject(s)
Escherichia coli Proteins/chemistry , Fimbriae, Bacterial/chemistry , Uropathogenic Escherichia coli/metabolism , Cryoelectron Microscopy , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Fimbriae, Bacterial/metabolism , Models, Molecular , Molecular Chaperones/metabolism , Uropathogenic Escherichia coli/cytology
2.
PLoS Pathog ; 20(1): e1011926, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38190378

ABSTRACT

Uropathogenic Escherichia coli (UPEC) is the primary causative agent of urinary tract infections (UTIs) in humans. Moreover, as one of the most common bacterial pathogens, UPEC imposes a substantial burden on healthcare systems worldwide. Epithelial cells and macrophages are two major components of the innate immune system, which play critical roles in defending the bladder against UPEC invasion. Yet, the routes of communication between these cells during UTI pathogenesis are still not fully understood. In the present study, we investigated the role of membrane-bound nanovesicles (exosomes) in the communication between bladder epithelial cells and macrophages during UPEC infection, using an array of techniques such as flow cytometry, miRNA profiling, RNA sequencing, and western blotting. Moreover, our in vitro findings were validated in a mouse model of UPEC-induced cystitis. We found that UPEC infection induced the bladder epithelial MB49 cell line to secrete large numbers of exosomes (MB49-U-Exo), which were efficiently absorbed by macrophages both in vivo and in vitro. Assimilation of MB49-U-Exo induced macrophages to produce proinflammatory cytokines, including tumor necrosis factor (TNF)α. Exposure of macrophages to MB49-U-Exo reduced their phagocytic activity (by downregulating the expression of phagocytosis-related genes) and increased their rate of apoptosis. Mechanistically, we showed that MB49-U-Exo were enriched in miR-18a-5p, which induced TNFα expression in macrophages by targeting PTEN and activating the MAPK/JNK signaling pathway. Moreover, administration of the exosome secretion inhibitor GW4869 or a TNFα-neutralizing antibody alleviated UPEC-mediated tissue damage in mice with UPEC-induced cystitis by reducing the bacterial burden of the bladder and dampening the associated inflammatory response. Collectively, these findings suggest that MB49-U-Exo regulate macrophage function in a way that exacerbates UPEC-mediated tissue impairment. Thus, targeting exosomal -release or TNFα signaling during UPEC infection may represent promising non-antibiotic strategies for treating UTIs.


Subject(s)
Cystitis , Escherichia coli Infections , Exosomes , Urinary Tract Infections , Uropathogenic Escherichia coli , Humans , Animals , Mice , Urinary Bladder/microbiology , Uropathogenic Escherichia coli/metabolism , Exosomes/metabolism , Tumor Necrosis Factor-alpha/metabolism , Urinary Tract Infections/microbiology , Macrophages/metabolism , Escherichia coli Infections/microbiology , Epithelial Cells/metabolism
3.
J Biol Chem ; 300(1): 105554, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38072063

ABSTRACT

Uropathogenic Escherichia coli (UPEC) secrete multiple siderophore types to scavenge extracellular iron(III) ions during clinical urinary tract infections, despite the metabolic costs of biosynthesis. Here, we find the siderophore enterobactin (Ent) and its related products to be prominent components of the iron-responsive extracellular metabolome of a model UPEC strain. Using defined Ent biosynthesis and import mutants, we identify lower molecular weight dimeric exometabolites as products of incomplete siderophore catabolism, rather than prematurely released biosynthetic intermediates. In E. coli, iron acquisition from iron(III)-Ent complexes requires intracellular esterases that hydrolyze the siderophore. Although UPEC are equipped to consume the products of completely hydrolyzed Ent, we find that Ent and its derivatives may be incompletely hydrolyzed to yield products with retained siderophore activity. These results are consistent with catabolic inefficiency as means to obtain more than one iron ion per siderophore molecule. This is compatible with an evolved UPEC strategy to maximize the nutritional returns from metabolic investments in siderophore biosynthesis.


Subject(s)
Siderophores , Uropathogenic Escherichia coli , Enterobactin/metabolism , Ferric Compounds/metabolism , Iron/metabolism , Siderophores/metabolism , Uropathogenic Escherichia coli/metabolism
4.
J Bacteriol ; 206(6): e0016224, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38814092

ABSTRACT

Reducing growth and limiting metabolism are strategies that allow bacteria to survive exposure to environmental stress and antibiotics. During infection, uropathogenic Escherichia coli (UPEC) may enter a quiescent state that enables them to reemerge after the completion of successful antibiotic treatment. Many clinical isolates, including the well-characterized UPEC strain CFT073, also enter a metabolite-dependent, quiescent state in vitro that is reversible with cues, including peptidoglycan-derived peptides and amino acids. Here, we show that quiescent UPEC is antibiotic tolerant and demonstrate that metabolic flux in the tricarboxylic acid (TCA) cycle regulates the UPEC quiescent state via succinyl-CoA. We also demonstrate that the transcriptional regulator complex integration host factor and the FtsZ-interacting protein ZapE, which is important for E. coli division during stress, are essential for UPEC to enter the quiescent state. Notably, in addition to engaging FtsZ and late-stage cell division proteins, ZapE also interacts directly with TCA cycle enzymes in bacterial two-hybrid assays. We report direct interactions between the succinate dehydrogenase complex subunit SdhC, the late-stage cell division protein FtsN, and ZapE. These interactions may enable communication between oxidative metabolism and the cell division machinery in UPEC. Moreover, these interactions are conserved in an E. coli K-12 strain. This work suggests that there is coordination among the two fundamental and essential pathways that regulate overall growth, quiescence, and antibiotic susceptibility. IMPORTANCE: Uropathogenic Escherichia coli (UPEC) are the leading cause of urinary tract infections (UTIs). Upon invasion into bladder epithelial cells, UPEC establish quiescent intracellular reservoirs that may lead to antibiotic tolerance and recurrent UTIs. Here, we demonstrate using an in vitro system that quiescent UPEC cells are tolerant to ampicillin and have decreased metabolism characterized by succinyl-CoA limitation. We identify the global regulator integration host factor complex and the cell division protein ZapE as critical modifiers of quiescence and antibiotic tolerance. Finally, we show that ZapE interacts with components of both the cell division machinery and the tricarboxylic acid cycle, and this interaction is conserved in non-pathogenic E. coli, establishing a novel link between cell division and metabolism.


Subject(s)
Anti-Bacterial Agents , Citric Acid Cycle , Escherichia coli Proteins , Gene Expression Regulation, Bacterial , Uropathogenic Escherichia coli , Uropathogenic Escherichia coli/metabolism , Uropathogenic Escherichia coli/genetics , Uropathogenic Escherichia coli/drug effects , Uropathogenic Escherichia coli/growth & development , Anti-Bacterial Agents/pharmacology , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Citric Acid Cycle/drug effects , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Drug Resistance, Bacterial , Escherichia coli Infections/microbiology
5.
Am J Physiol Cell Physiol ; 326(5): C1451-C1461, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38525539

ABSTRACT

Acute pyelonephritis (APN) is most frequently caused by uropathogenic Escherichia coli (UPEC), which ascends from the bladder to the kidneys during a urinary tract infection. Patients with APN have been reported to have reduced renal concentration capacity under challenged conditions, polyuria, and increased aquaporin-2 (AQP2) excretion in the urine. We have recently shown increased AQP2 accumulation in the plasma membrane in cell cultures exposed to E. coli lysates and in the apical plasma membrane of inner medullary collecting ducts in a 5-day APN mouse model. This study aimed to investigate if AQP2 expression in host cells increases UPEC infection efficiency and to identify specific bacterial components that mediate AQP2 plasma membrane insertion. As the transepithelial water permeability in the collecting duct is codetermined by AQP3 and AQP4, we also investigated whether AQP3 and AQP4 localization is altered in the APN mouse model. We show that AQP2 expression does not increase UPEC infection efficiency and that AQP2 was targeted to the plasma membrane in AQP2-expressing cells in response to the two pathogen-associated molecular patterns (PAMPs), lipopolysaccharide and peptidoglycan. In contrast to AQP2, the subcellular localizations of AQP1, AQP3, and AQP4 were unaffected both in lysate-incubated cell cultures and in the APN mouse model. Our finding demonstrated that cellular exposure to lipopolysaccharide and peptidoglycan can trigger the insertion of AQP2 in the plasma membrane revealing a new regulatory pathway for AQP2 plasma membrane translocation, which may potentially be exploited in intervention strategies.NEW & NOTEWORTHY Acute pyelonephritis (APN) is associated with reduced renal concentration capacity and increased aquaporin-2 (AQP2) excretion. Uropathogenic Escherichia coli (UPEC) mediates changes in the subcellular localization of AQP2 and we show that in vitro, these changes could be elicited by two pathogen-associated molecular patterns (PAMPs), namely, lipopolysaccharide and peptidoglycan. UPEC infection was unaltered by AQP2 expression and the other renal AQPs (AQP1, AQP3, and AQP4) were unaltered in APN.


Subject(s)
Aquaporin 2 , Aquaporin 3 , Pyelonephritis , Uropathogenic Escherichia coli , Pyelonephritis/metabolism , Pyelonephritis/microbiology , Pyelonephritis/pathology , Animals , Aquaporin 2/metabolism , Mice , Uropathogenic Escherichia coli/metabolism , Aquaporin 3/metabolism , Aquaporin 3/genetics , Acute Disease , Escherichia coli Infections/metabolism , Escherichia coli Infections/microbiology , Escherichia coli Infections/pathology , Lipopolysaccharides/toxicity , Lipopolysaccharides/pharmacology , Cell Membrane/metabolism , Humans , Aquaporin 4/metabolism , Aquaporin 4/genetics , Peptidoglycan/metabolism , Kidney/metabolism , Kidney/pathology , Mice, Inbred C57BL , Disease Models, Animal
6.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Article in English | MEDLINE | ID: mdl-34011607

ABSTRACT

Escherichia coli express adhesion pili that mediate attachment to host cell surfaces and are exposed to body fluids in the urinary and gastrointestinal tracts. Pilin subunits are organized into helical polymers, with a tip adhesin for specific host binding. Pili can elastically unwind when exposed to fluid flow forces, reducing the adhesin load, thereby facilitating sustained attachment. Here we investigate biophysical and structural differences of pili commonly expressed on bacteria that inhabit the urinary and intestinal tracts. Optical tweezers measurements reveal that class 1a pili of uropathogenic E. coli (UPEC), as well as class 1b of enterotoxigenic E. coli (ETEC), undergo an additional conformational change beyond pilus unwinding, providing significantly more elasticity to their structure than ETEC class 5 pili. Examining structural and steered molecular dynamics simulation data, we find that this difference in class 1 pili subunit behavior originates from an α-helical motif that can unfold when exposed to force. A disulfide bond cross-linking ß-strands in class 1 pili stabilizes subunits, allowing them to tolerate higher forces than class 5 pili that lack this covalent bond. We suggest that these extra contributions to pilus resiliency are relevant for the UPEC niche, since resident bacteria are exposed to stronger, more transient drag forces compared to those experienced by ETEC bacteria in the mucosa of the intestinal tract. Interestingly, class 1b ETEC pili include the same structural features seen in UPEC pili, while requiring lower unwinding forces that are more similar to those of class 5 ETEC pili.


Subject(s)
Adhesins, Escherichia coli/chemistry , Enterotoxigenic Escherichia coli/ultrastructure , Fimbriae Proteins/chemistry , Fimbriae, Bacterial/ultrastructure , Uropathogenic Escherichia coli/ultrastructure , Adhesins, Escherichia coli/genetics , Adhesins, Escherichia coli/metabolism , Bacterial Adhesion , Binding Sites , Biomechanical Phenomena , Cysteine/chemistry , Cysteine/metabolism , Disulfides/chemistry , Disulfides/metabolism , Enterotoxigenic Escherichia coli/genetics , Enterotoxigenic Escherichia coli/metabolism , Fimbriae Proteins/genetics , Fimbriae Proteins/metabolism , Fimbriae, Bacterial/genetics , Fimbriae, Bacterial/metabolism , Gene Expression , Kinetics , Molecular Dynamics Simulation , Optical Tweezers , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Structure, Tertiary , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , Thermodynamics , Uropathogenic Escherichia coli/genetics , Uropathogenic Escherichia coli/metabolism
7.
J Bacteriol ; 205(11): e0026823, 2023 11 21.
Article in English | MEDLINE | ID: mdl-37902379

ABSTRACT

IMPORTANCE: The bacteria that cause urinary tract infections often become resistant to antibiotic treatment, and genes expressed during an infection could suggest non-antibiotic targets. During growth in urine, glnA (specifying glutamine synthetase) expression is high, but our results show that urea induces glnA expression independent of the regulation that responds to nitrogen limitation. Although our results suggest that glnA is an unlikely target for therapy because of variation in urinary components between individuals, our analysis of glnA expression in urine-like environments has revealed previously undescribed layers of regulation. In other words, regulatory mechanisms that are discovered in a laboratory environment do not necessarily operate in the same way in nature.


Subject(s)
Glutamate-Ammonia Ligase , Uropathogenic Escherichia coli , Humans , Glutamate-Ammonia Ligase/genetics , Glutamate-Ammonia Ligase/metabolism , Uropathogenic Escherichia coli/genetics , Uropathogenic Escherichia coli/metabolism , Urea , Glutamine
8.
J Bacteriol ; 205(10): e0006423, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37791752

ABSTRACT

To eradicate bacterial pathogens, neutrophils are recruited to the sites of infection, where they engulf and kill microbes through the production of reactive oxygen and chlorine species (ROS/RCS). The most prominent RCS is the antimicrobial oxidant hypochlorous acid (HOCl), which rapidly reacts with various amino acid side chains, including those containing sulfur and primary/tertiary amines, causing significant macromolecular damage. Pathogens like uropathogenic Escherichia coli (UPEC), the primary causative agent of urinary tract infections, have developed sophisticated defense systems to protect themselves from HOCl. We recently identified the RcrR regulon as a novel HOCl defense strategy in UPEC. Expression of the rcrARB operon is controlled by the HOCl-sensing transcriptional repressor RcrR, which is oxidatively inactivated by HOCl resulting in the expression of its target genes, including rcrB. The rcrB gene encodes a hypothetical membrane protein, deletion of which substantially increases UPEC's susceptibility to HOCl. However, the mechanism behind protection by RcrB is unclear. In this study, we investigated whether (i) its mode of action requires additional help, (ii) rcrARB expression is induced by physiologically relevant oxidants other than HOCl, and (iii) expression of this defense system is limited to specific media and/or cultivation conditions. We provide evidence that RcrB expression is sufficient to protect E. coli from HOCl. Furthermore, RcrB expression is induced by and protects from several RCS but not from ROS. RcrB plays a protective role for RCS-stressed planktonic cells under various growth and cultivation conditions but appears to be irrelevant for UPEC's biofilm formation. IMPORTANCE Bacterial infections pose an increasing threat to human health, exacerbating the demand for alternative treatments. Uropathogenic Escherichia coli (UPEC), the most common etiological agent of urinary tract infections (UTIs), are confronted by neutrophilic attacks in the bladder, and must therefore be equipped with powerful defense systems to fend off the toxic effects of reactive chlorine species. How UPEC deal with the negative consequences of the oxidative burst in the neutrophil phagosome remains unclear. Our study sheds light on the requirements for the expression and protective effects of RcrB, which we recently identified as UPEC's most potent defense system toward hypochlorous acid (HOCl) stress and phagocytosis. Thus, this novel HOCl stress defense system could potentially serve as an attractive drug target to increase the body's own capacity to fight UTIs.


Subject(s)
Escherichia coli Infections , Escherichia coli Proteins , Urinary Tract Infections , Uropathogenic Escherichia coli , Humans , Hypochlorous Acid/pharmacology , Uropathogenic Escherichia coli/metabolism , Chlorine , Urinary Tract Infections/microbiology , Oxidants/pharmacology , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Infections/microbiology
9.
PLoS Pathog ; 17(10): e1010005, 2021 10.
Article in English | MEDLINE | ID: mdl-34653218

ABSTRACT

Uropathogenic Escherichia coli (UPEC) deploy an array of virulence factors to successfully establish urinary tract infections. Hemolysin is a pore-forming toxin, and its expression correlates with the severity of UPEC infection. Two-component signaling systems (TCSs) are a major mechanism by which bacteria sense environmental cues and respond by initiating adaptive responses. Here, we began this study by characterizing a novel TCS (C3564/C3565, herein renamed orhK/orhR for oxidative resistance and hemolysis kinase/regulator) that is encoded on a UPEC pathogenicity island, using bioinformatic and biochemical approaches. A prevalence analysis indicates that orhK/orhR is highly associated with the UPEC pathotype, and it rarely occurs in other E. coli pathotypes tested. We then demonstrated that OrhK/OrhR directly activates the expression of a putative methionine sulfoxide reductase system (C3566/C3567) and hemolysin (HlyA) in response to host-derived hydrogen peroxide (H2O2) exposure. OrhK/OrhR increases UPEC resistance to H2O2 in vitro and survival in macrophages in cell culture via C3566/C3567. Additionally, OrhK/OrhR mediates hemolysin-induced renal epithelial cell and macrophage death via a pyroptosis pathway. Reducing intracellular H2O2 production by a chemical inhibitor impaired OrhK/OrhR-mediated activation of c3566-c3567 and hlyA. We also uncovered that UPEC links the two key virulence traits by cotranscribing the c3566-c3567 and hlyCABD operons. Taken together, our data suggest a paradigm in which a signal transduction system coordinates both bacterial pathogen defensive and offensive traits in the presence of host-derived signals; and this exquisite mechanism likely contributes to hemolysin-induced severe pathological outcomes.


Subject(s)
Escherichia coli Infections/pathology , Hemolysin Proteins/metabolism , Urinary Tract Infections/pathology , Uropathogenic Escherichia coli/pathogenicity , Virulence/physiology , Cell Line , Escherichia coli Infections/metabolism , Humans , Oxidative Stress/physiology , Pyroptosis/physiology , Signal Transduction/physiology , Urinary Tract Infections/metabolism , Uropathogenic Escherichia coli/metabolism
10.
PLoS Pathog ; 17(3): e1009481, 2021 03.
Article in English | MEDLINE | ID: mdl-33788895

ABSTRACT

TcpC is a virulence factor of uropathogenic E. coli (UPEC). It was found that TIR domain of TcpC impedes TLR signaling by direct association with MyD88. It has been a long-standing question whether bacterial pathogens have evolved a mechanism to manipulate MyD88 degradation by ubiquitin-proteasome pathway. Here, we show that TcpC is a MyD88-targeted E3 ubiquitin ligase. Kidney macrophages from mice with pyelonephritis induced by TcpC-secreting UPEC showed significantly decreased MyD88 protein levels. Recombinant TcpC (rTcpC) dose-dependently inhibited protein but not mRNA levels of MyD88 in macrophages. Moreover, rTcpC significantly promoted MyD88 ubiquitination and accumulation in proteasomes in macrophages. Cys12 and Trp106 in TcpC are crucial amino acids in maintaining its E3 activity. Therefore, TcpC blocks TLR signaling pathway by degradation of MyD88 through ubiquitin-proteasome system. Our findings provide not only a novel biochemical mechanism underlying TcpC-medicated immune evasion, but also the first example that bacterial pathogens inhibit MyD88-mediated signaling pathway by virulence factors that function as E3 ubiquitin ligase.


Subject(s)
Escherichia coli Proteins/metabolism , Myeloid Differentiation Factor 88/metabolism , Signal Transduction/physiology , Uropathogenic Escherichia coli/pathogenicity , Virulence Factors/metabolism , Animals , Cell Line , Female , Humans , Immune Evasion/physiology , Macrophages , Mice , Mice, Inbred C57BL , Pyelonephritis/immunology , Pyelonephritis/microbiology , Toll-Like Receptors/metabolism , Ubiquitin-Protein Ligases/metabolism , Uropathogenic Escherichia coli/immunology , Uropathogenic Escherichia coli/metabolism , Virulence/physiology
11.
Arch Microbiol ; 205(12): 383, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37973630

ABSTRACT

Uropathogens have adaptation strategies to survive in the host urinary tract by efficiently utilizing and tolerating the urinary metabolites. Many uropathogens harbour the enzyme urease for the breakdown of urea and the enzymatic breakdown of urea increases the pH and facilitate the struvite crystallization. In this study, the differential urease activity of uropathogenic Escherichia coli and Pseudomonas aeruginosa strains was investigated under different nutritional conditions. The experiments included measurement of growth, pH, urease activity, NH4-N generation and urease gene (ureC) expression among the bacterial strains under different conditions. Further, the implications of urea breakdown on the struvite crystallization in vitro and biofilm formation were also assessed. The study included urease positive isolates and for comparison urease negative isolates were included. Compared to the urease negative strains the urease positive strains formed higher biofilms and motility. The urease positive P. aeruginosa showed significantly higher (p < 0.01) pH and urease activity (A557-A630) compared to E. coli under experimental conditions. Further, supplementation of glucose to the growth media significantly increased the urease activity in P. aeruginosa and in contrast, it was significantly lower in E. coli. The expression profile of urease gene (ureC) was significantly higher (p < 0.001) in P. aeruginosa compared to E. coli and was consistent with the biochemical results of the urease activity under the nutritional conditions. The differential urease activity under two nutritional conditions influenced the biogenic struvite crystallization. It correlated with the urease activity showing higher crystallization rate in P. aeruginosa compared to E. coli. The results highlight the differential urease activity in two common uropathogens under different nutritional conditions that may have significant role on the regulation of virulence, pathogenicity and in the kidney stone disease.


Subject(s)
Pseudomonas aeruginosa , Uropathogenic Escherichia coli , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Urease/genetics , Urease/metabolism , Uropathogenic Escherichia coli/genetics , Uropathogenic Escherichia coli/metabolism , Struvite , Urea
12.
Nucleic Acids Res ; 49(13): 7375-7388, 2021 07 21.
Article in English | MEDLINE | ID: mdl-34181709

ABSTRACT

DNA methylation is a common epigenetic mark that influences transcriptional regulation, and therefore cellular phenotype, across all domains of life. In particular, both orphan methyltransferases and those from phasevariable restriction modification systems (RMSs) have been co-opted to regulate virulence epigenetically in many bacteria. We now show that three distinct non-phasevariable Type I RMSs in Escherichia coli have no measurable impact on gene expression, in vivo virulence, or any of 1190 in vitro growth phenotypes. We demonstrated this using both Type I RMS knockout mutants as well as heterologous installation of Type I RMSs into two E. coli strains. These data provide three clear and currently rare examples of restriction modification systems that have no impact on their host organism's gene regulation. This leads to the possibility that other such nonregulatory methylation systems may exist, broadening our view of the potential role that RMSs may play in bacterial evolution.


Subject(s)
DNA Methylation , DNA Restriction-Modification Enzymes , Escherichia coli/genetics , Animals , Escherichia coli/growth & development , Escherichia coli/metabolism , Escherichia coli Infections/microbiology , Gene Expression Regulation, Bacterial , Mice , Urinary Tract Infections/microbiology , Uropathogenic Escherichia coli/genetics , Uropathogenic Escherichia coli/growth & development , Uropathogenic Escherichia coli/metabolism , Uropathogenic Escherichia coli/pathogenicity
13.
Zhonghua Yu Fang Yi Xue Za Zhi ; 57(8): 1238-1245, 2023 Aug 06.
Article in Zh | MEDLINE | ID: mdl-37574318

ABSTRACT

To investigate the effect and the mechanism of ppk1 gene deletion on the drug susceptibility of uropathogenic Escherichia coli producing extended-spectrum beta-lactamases (ESBLs-UPEC). The study was an experimental study. From March to April 2021, a strain of ESBLs-UPEC (genotype was TEM combined with CTX-M-14) named as UE210113, was isolated from urine sample of the patient with urinary tract infection in the Laboratory Department of Guangzhou Eighth People's Hospital, meanwhile its ppk1 gene knock-out strain Δpk1 and complemented strain Δpk1-C were constructed by suicide plasmid homologous recombination technique, which was used to study the effect of ppk1 gene on ESBLs-UPEC drug sensitivity and its mechanism. The drug susceptibility of UE210113, Δpk1, and Δpk1-C were measured by Vitek2 Compact System and broth microdilution method. The quantitative expression of ESBLs, outer membrane protein and multidrug efflux systems encoding genes of UE210113, Δpk1 and Δpk1-C were performed by using qRT-PCR analysis. By using two independent sample Mann-Whitney U test, the drug susceptibility results showed that, compared with UE210113 strain, the sensitivities of Δpk1 to ceftazidime, cefepime, tobramycin, minocycline and cotrimoxazole were enhanced (Z=-2.121,P<0.05;Z=-2.236,P<0.05;Z=-2.236,P<0.05;Z=-2.121,P<0.05), and the drug susceptibility of Δpk1-C restored to the same as which of UE210113 (Z=0,P>0.05). The expression levels of ESBLs-enconding genes blaTEM and blaCTX-M-14 in Δpk1 were significantly down-regulated compared with UE210113, but the expression was not restored in Δpk1-C. The expression of outer membrane protein gene omp F in Δpk1 was significantly up-regulated, while the expression of omp A and omp C were down-regulated. The results showed that the expression of multidrug efflux systems encoding genes tol C, mdt A and mdtG were down-regulated in Δpk1 compared with UE210113. The expression of all of the outer membrane protein genes and the multidrug efflux systems genes were restored in Δpk1-C. In conclusion,the lost of ppk1 gene can affect the expression of the outer membrane protein and multidrug efflux systems encoding genes of ESBLs-UPEC, which increase the sensitivity of ESBLs-UPEC to various drugs.


Subject(s)
Escherichia coli Infections , Urinary Tract Infections , Uropathogenic Escherichia coli , Humans , beta-Lactamases/genetics , beta-Lactamases/metabolism , Uropathogenic Escherichia coli/genetics , Uropathogenic Escherichia coli/metabolism , Plasmids , Membrane Proteins/genetics , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology
14.
J Bacteriol ; 204(4): e0003122, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35357162

ABSTRACT

The canonical function of a bacterial sigma (σ) factor is to determine the gene specificity of the RNA polymerase (RNAP). In several diverse bacterial species, the σ54 factor uniquely confers distinct functional and regulatory properties on the RNAP. A hallmark feature of the σ54-RNAP is the obligatory requirement for an activator ATPase to allow transcription initiation. Different activator ATPases couple diverse environmental cues to the σ54-RNAP to mediate adaptive changes in gene expression. Hence, the genes that rely upon σ54 for their transcription have a wide range of different functions suggesting that the repertoire of functions performed by genes, directly or indirectly affected by σ54, is not yet exhaustive. By comparing the growth patterns of prototypical enteropathogenic, uropathogenic, and nonpathogenic Escherichia coli strains devoid of σ54, we uncovered that the absence of σ54 results in two differently sized colonies that appear at different times specifically in the uropathogenic E. coli (UPEC) strain. Notably, UPEC bacteria devoid of individual activator ATPases of the σ54-RNAP do not phenocopy the σ54 mutant strain. Thus, it seems that σ54's role as a determinant of uniform colony appearance in UPEC bacteria represents a putative non-canonical function of σ54 in regulating genetic information flow. IMPORTANCE RNA synthesis is the first step of gene expression. The multisubunit RNA polymerase (RNAP) is the central enzyme responsible for RNA synthesis in bacteria. The dissociable sigma (σ) factor subunit directs the RNAP to different sets of genes to allow their expression in response to various cellular needs. Of the seven σ factors in Escherichia coli and related bacteria, σ54 exists in a class of its own. This study has uncovered that σ54 is a determinant of the uniform growth of uropathogenic E. coli on solid media. This finding suggests a role for this σ54 in gene regulation that extends beyond its known function as an RNAP gene specificity factor.


Subject(s)
Escherichia coli Proteins , Uropathogenic Escherichia coli , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Bacterial Proteins/metabolism , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , RNA , Sigma Factor/genetics , Sigma Factor/metabolism , Transcription, Genetic , Uropathogenic Escherichia coli/genetics , Uropathogenic Escherichia coli/metabolism
15.
Am J Physiol Renal Physiol ; 322(1): F1-F13, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34779263

ABSTRACT

Urinary tract infections (UTIs) cause bladder hyperactivity and pelvic pain, but the underlying causes of these symptoms remain unknown. We investigated whether afferent sensitization contributes to the bladder overactivity and pain observed in mice suffering from experimentally induced bacterial cystitis. Inoculation of mouse bladders with the uropathogenic Escherichia coli strain UTI89 caused pelvic allodynia, increased voiding frequency, and prompted an acute inflammatory process marked by leukocytic infiltration and edema of the mucosa. Compared with controls, isolated bladder sensory neurons from UTI-treated mice exhibited a depolarized resting membrane potential, lower action potential threshold and rheobase, and increased firing in response to suprathreshold stimulation. To determine whether bacterial virulence factors can contribute to the sensitization of bladder afferents, neurons isolated from naïve mice were incubated with supernatants collected from bacterial cultures with or depleted of lipopolysaccharide (LPS). Supernatants containing LPS prompted the sensitization of bladder sensory neurons with both tetrodotoxin (TTX)-resistant and TTX-sensitive action potentials. However, bladder sensory neurons with TTX-sensitive action potentials were not affected by bacterial supernatants depleted of LPS. Unexpectedly, ultrapure LPS increased the excitability only of bladder sensory neurons with TTX-resistant action potentials, but the supplementation of supernatants depleted of LPS with ultrapure LPS resulted in the sensitization of both population of bladder sensory neurons. In summary, the results of our study indicate that multiple virulence factors released from UTI89 act on bladder sensory neurons to prompt their sensitization. These sensitized bladder sensory neurons mediate, at least in part, the bladder hyperactivity and pelvic pain seen in mice inoculated with UTI89.NEW & NOTEWORTHY Urinary tract infection (UTI) produced by uropathogenic Escherichia coli (UPEC) promotes sensitization of bladder afferent sensory neurons with tetrodotoxin-resistant and tetrodotoxin-sensitive action potentials. Lipopolysaccharide and other virulence factors produced by UPEC contribute to the sensitization of bladder afferents in UTI. In conclusion, sensitized afferents contribute to the voiding symptoms and pelvic pain present in mice bladder inoculated with UPEC.


Subject(s)
Cystitis, Interstitial/microbiology , Escherichia coli Infections/microbiology , Neurons, Afferent/metabolism , Urinary Bladder/microbiology , Urinary Tract Infections/microbiology , Uropathogenic Escherichia coli/pathogenicity , Virulence Factors/metabolism , Action Potentials , Animals , Cystitis, Interstitial/physiopathology , Disease Models, Animal , Escherichia coli Infections/physiopathology , Female , Mice, Inbred C57BL , Urinary Bladder/innervation , Urinary Tract Infections/physiopathology , Urodynamics , Uropathogenic Escherichia coli/metabolism , Virulence
16.
Mol Microbiol ; 116(4): 1216-1231, 2021 10.
Article in English | MEDLINE | ID: mdl-34494331

ABSTRACT

Uropathogenic Escherichia coli (UPEC) is the primary causative agent of urinary tract infections (UTIs). Successful urinary tract colonization requires appropriate expression of virulence factors in response to host environmental cues, such as limited oxygen and iron availability. Hemolysin is a pore-forming toxin, and its expression correlates with the severity of UPEC infection. Previously, we showed that hemolysin expression is enhanced under anaerobic conditions; however, the genetic basis and regulatory mechanisms involved remain undefined. Here, a transposon-based forward screen identified bis-molybdopterin guanine dinucleotide cofactor (bis-MGD) biosynthesis as an important factor for a full transcription of hemolysin under anaerobiosis but not under aerobiosis. bis-MGD positively influences hemolysin transcription via c3566-c3568, an operon immediately upstream of and cotranscribed with hlyCABD. Furthermore, suppressor mutation analysis identified the nitrogen regulator NtrC as a direct repressor of c3566-c3568-hlyCABD expression, and intact bis-MGD biosynthesis downregulated ntrC expression, thus at least partially explaining the positive role of bis-MGD in modulating hemolysin expression. Finally, bis-MGD is involved in hemolysin-mediated uroepithelial cell death and contributes to the competitive fitness of UPEC in a murine model of UTI. Collectively, our data establish that bis-MGD biosynthesis plays a crucial role in UPEC fitness in vivo, thus providing a potential target for combatting UTIs.


Subject(s)
Escherichia coli Infections/microbiology , Guanine Nucleotides/metabolism , Hemolysin Proteins/genetics , Hemolysin Proteins/metabolism , Pterins/metabolism , Uropathogenic Escherichia coli/genetics , Uropathogenic Escherichia coli/metabolism , Anaerobiosis , Animals , Cell Death , Cell Line , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Expression Regulation, Bacterial , Humans , Mice , Mice, Inbred CBA , Mutagenesis, Insertional , Operon , PII Nitrogen Regulatory Proteins/metabolism , Transcription Factors/metabolism , Transcriptome , Virulence , Virulence Factors/genetics , Virulence Factors/metabolism
17.
Microbiology (Reading) ; 168(3)2022 03.
Article in English | MEDLINE | ID: mdl-35316170

ABSTRACT

Uropathogenic Escherichia coli (UPEC) cause millions of urinary tract infections each year in the United States. Type 1 pili are important for adherence of UPEC to uroepithelial cells in the human and murine urinary tracts where osmolality and pH vary. Previous work has shown that an acidic pH adversely affects the expression of type 1 pili. To determine if acid tolerance gene products may be regulating E. coli fim gene expression, a bank of K-12 strain acid tolerance gene mutants were screened using fimA-lux, fimB-lux, and fimE-lux fusions on single copy number plasmids. We have determined that a mutation in gadE increased transcription of all three fim genes, suggesting that GadE may be acting as a repressor in a low pH environment. Complementation of the gadE mutation restored fim gene transcription to wild-type levels. Moreover, mutations in gadX, gadW, crp, and cya also affected transcription of the three fim genes. To verify the role GadE plays in type 1 pilus expression, the NU149 gadE UPEC strain was tested. The gadE mutant had higher fimE gene transcript levels, a higher frequency of Phase-OFF positioning of fimS, and hemagglutination titres that were lower in strain NU149 gadE cultured in low pH medium as compared to the wild-type bacteria. The data demonstrate that UPEC fim genes are regulated directly or indirectly by the GadE protein and this could have some future bearing on the ability to prevent urinary tract infections by acidifying the urine and shutting off fim gene expression.


Subject(s)
Escherichia coli Infections , Escherichia coli Proteins , Uropathogenic Escherichia coli , Animals , DNA-Binding Proteins/genetics , Escherichia coli Infections/microbiology , Escherichia coli Proteins/metabolism , Gene Expression Regulation, Bacterial , Humans , Integrases/chemistry , Integrases/genetics , Integrases/metabolism , Mice , Transcription, Genetic , Uropathogenic Escherichia coli/genetics , Uropathogenic Escherichia coli/metabolism
18.
PLoS Pathog ; 16(2): e1008382, 2020 02.
Article in English | MEDLINE | ID: mdl-32106241

ABSTRACT

The energy required for a bacterium to grow and colonize the host is generated by metabolic and respiratory functions of the cell. Proton motive force, produced by these processes, drives cellular mechanisms including redox balance, membrane potential, motility, acid resistance, and the import and export of substrates. Previously, disruption of succinate dehydrogenase (sdhB) and fumarate reductase (frdA) within the oxidative and reductive tricarboxylic acid (TCA) pathways in uropathogenic E. coli (UPEC) CFT073 indicated that the oxidative, but not the reductive TCA pathway, is required for fitness in the urinary tract. Those findings led to the hypothesis that fumA and fumC encoding fumarase enzymes of the oxidative TCA cycle would be required for UPEC colonization, while fumB of the reductive TCA pathway would be dispensable. However, only UPEC strains lacking fumC had a fitness defect during experimental urinary tract infection (UTI). To further characterize the role of respiration in UPEC during UTI, additional mutants disrupting both the oxidative and reductive TCA pathways were constructed. We found that knock-out of frdA in the sdhB mutant strain background ameliorated the fitness defect observed in the bladder and kidneys for the sdhB mutant strain and results in a fitness advantage in the bladder during experimental UTI. The fitness defect was restored in the sdhBfrdA double mutant by complementation with frdABCD. Taken together, we demonstrate that it is not the oxidative or reductive pathway that is important for UPEC fitness per se, but rather only the oxidative TCA enzyme FumC. This fumarase lacks an iron-sulfur cluster and is required for UPEC fitness during UTI, most likely acting as a counter measure against exogenous stressors, especially in the iron-limited bladder niche.


Subject(s)
Fumarate Hydratase/metabolism , Iron/metabolism , Uropathogenic Escherichia coli/metabolism , Animals , Citric Acid Cycle/physiology , Escherichia coli Infections/metabolism , Escherichia coli Proteins/metabolism , Female , Gene Expression Regulation, Bacterial/physiology , Mice , Mice, Inbred CBA , Oxidation-Reduction , Oxidative Stress , Urinary Tract Infections/microbiology , Uropathogenic Escherichia coli/physiology
19.
Int Microbiol ; 25(3): 481-494, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35106679

ABSTRACT

Urinary tract infections (UTIs) are a major concern in public health. The prevalent uropathogenic bacterium in healthcare settings is Escherichia coli. The increasing rate of antibiotic-resistant strains demands studies to understand E. coli pathogenesis to drive the development of new therapeutic approaches. This study compared the gene expression profile of selected target genes in the prototype uropathogenic E. coli (UPEC) strain CFT073 grown in Luria Bertani (LB), artificial urine (AU), and during adhesion to host bladder cells by semi-quantitative real-time PCR (RT-PCR) assays. AU effectively supported the growth of strain CFT073 as well as other E. coli strains with different lifestyles, thereby confirming the appropriateness of this medium for in vitro models. Unexpectedly, gene expression of strain CFT073 in LB and AU was quite similar; conversely, during the adhesion assay, adhesins and porins were upregulated, while key global regulators were downregulated with respect to lab media. Interestingly, fimH and papGII genes were significantly expressed in all tested conditions. Taken together, these results provide for the first time insights of the metabolic and pathogenic profile of strain CFT073 during the essential phase of host cell adhesion.


Subject(s)
Escherichia coli Infections , Escherichia coli Proteins , Uropathogenic Escherichia coli , Cell Adhesion , Escherichia coli Infections/microbiology , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Humans , Uropathogenic Escherichia coli/genetics , Uropathogenic Escherichia coli/metabolism , Virulence/genetics
20.
Nucleic Acids Res ; 48(17): 9571-9588, 2020 09 25.
Article in English | MEDLINE | ID: mdl-32813023

ABSTRACT

Iron is essential for all bacteria. In most bacteria, intracellular iron homeostasis is tightly regulated by the ferric uptake regulator Fur. However, how Fur activates the iron-uptake system during iron deficiency is not fully elucidated. In this study, we found that YdiV, the flagella gene inhibitor, is involved in iron homeostasis in Escherichia coli. Iron deficiency triggers overexpression of YdiV. High levels of YdiV then transforms Fur into a novel form which does not bind DNA in a peptidyl-prolyl cis-trans isomerase SlyD dependent manner. Thus, the cooperation of YdiV, SlyD and Fur activates the gene expression of iron-uptake systems under conditions of iron deficiency. Bacterial invasion assays also demonstrated that both ydiV and slyD are necessary for the survival and growth of uropathogenic E. coli in bladder epithelial cells. This reveals a mechanism where YdiV not only represses flagella expression to make E. coli invisible to the host immune system, but it also promotes iron acquisition to help E. coli overcome host nutritional immunity.


Subject(s)
Bacterial Proteins/metabolism , Carrier Proteins/metabolism , Escherichia coli Proteins/metabolism , Iron/metabolism , Peptidylprolyl Isomerase/metabolism , Repressor Proteins/metabolism , Uropathogenic Escherichia coli/pathogenicity , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Carrier Proteins/genetics , Cell Line , DNA, Bacterial/metabolism , Epithelial Cells/microbiology , Escherichia coli Proteins/genetics , Gene Expression Regulation, Bacterial , Homeostasis , Humans , Peptidylprolyl Isomerase/genetics , Protein Conformation , Repressor Proteins/chemistry , Repressor Proteins/genetics , Urinary Bladder/microbiology , Uropathogenic Escherichia coli/genetics , Uropathogenic Escherichia coli/growth & development , Uropathogenic Escherichia coli/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL