ABSTRACT
Many virus genomes encode proteases that facilitate infection. The molecular mechanism of plant recognition of viral proteases is largely unexplored. Using the system of Vigna unguiculata and cowpea mosaic virus (CPMV), we identified a cowpea lipid transfer protein (LTP1) which interacts with CPMV-encoded 24KPro, a cysteine protease, but not with the enzymatically inactive mutant 24KPro(C166A). Biochemical assays showed that LTP1 inhibited 24KPro proteolytic cleavage of the coat protein precursor large coat protein-small coat protein. Transient overexpression of LTP1 in cowpea reduced CPMV infection, whereas RNA interference-mediated LTP1 silencing increased CPMV accumulation in cowpea. LTP1 is mainly localized in the apoplast of uninfected plant cells, and after CPMV infection, most of the LTP1 is relocated to intracellular compartments, including chloroplast. Moreover, in stable LTP1-transgenic Nicotiana benthamiana plants, LTP1 repressed soybean mosaic virus (SMV) nuclear inclusion a protease activity, and accumulation of SMV was significantly reduced. We propose that cowpea LTP1 suppresses CPMV and SMV accumulation by directly inhibiting viral cysteine protease activity.
Subject(s)
Carrier Proteins , Comovirus , Nicotiana , Plant Diseases , Plant Proteins , Vigna , Comovirus/metabolism , Comovirus/physiology , Comovirus/genetics , Vigna/virology , Vigna/metabolism , Nicotiana/virology , Nicotiana/metabolism , Nicotiana/genetics , Carrier Proteins/metabolism , Carrier Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Diseases/virology , Cysteine Proteases/metabolism , Cysteine Proteases/genetics , Plants, Genetically Modified , Viral Proteins/metabolism , Viral Proteins/genetics , Capsid Proteins/metabolism , Capsid Proteins/genetics , Potyvirus/physiology , Potyvirus/metabolism , EndopeptidasesABSTRACT
KEY MESSAGE: Unraveling genetic markers for MYMIV resistance in urdbean, with 8 high-confidence marker-trait associations identified across diverse environments, provides crucial insights for combating MYMIV disease, informing future breeding strategies. Globally, yellow mosaic disease (YMD) causes significant yield losses, reaching up to 100% in favorable environments within major urdbean cultivating regions. The introgression of genomic regions conferring resistance into urdbean cultivars is crucial for combating YMD, including resistance against mungbean yellow mosaic India virus (MYMIV). To uncover the genetic basis of MYMIV resistance, we conducted a genome-wide association study (GWAS) using three multi-locus models in 100 diverse urdbean genotypes cultivated across six individual and two combined environments. Leveraging 4538 high-quality single nucleotide polymorphism (SNP) markers, we identified 28 unique significant marker-trait associations (MTAs) for MYMIV resistance, with 8 MTAs considered of high confidence due to detection across multiple GWAS models and/or environments. Notably, 4 out of 28 MTAs were found in proximity to previously reported genomic regions associated with MYMIV resistance in urdbean and mungbean, strengthening our findings and indicating consistent genomic regions for MYMIV resistance. Among the eight highly significant MTAs, one localized on chromosome 6 adjacent to previously identified quantitative trait loci for MYMIV resistance, while the remaining seven were novel. These MTAs contain several genes implicated in disease resistance, including four common ones consistently found across all eight MTAs: receptor-like serine-threonine kinases, E3 ubiquitin-protein ligase, pentatricopeptide repeat, and ankyrin repeats. Previous studies have linked these genes to defense against viral infections across different crops, suggesting their potential for further basic research involving cloning and utilization in breeding programs. This study represents the first GWAS investigation aimed at identifying resistance against MYMIV in urdbean germplasm.
Subject(s)
Begomovirus , Disease Resistance , Genome-Wide Association Study , Plant Diseases , Polymorphism, Single Nucleotide , Vigna , Vigna/genetics , Vigna/virology , Disease Resistance/genetics , Begomovirus/physiology , Begomovirus/genetics , Plant Diseases/virology , Plant Diseases/genetics , Polymorphism, Single Nucleotide/genetics , Quantitative Trait Loci/genetics , Genome, Plant/genetics , Genotype , Genetic MarkersABSTRACT
KEY MESSAGE: The investigation of MYMIV-infected mung bean leaf apoplast revealed viral genome presence, increased EVs secretion, and altered stress-related metabolite composition, providing comprehensive insights into plant-virus interactions. The apoplast, an extracellular space around plant cells, plays a vital role in plant-microbe interactions, influencing signaling, defense, and nutrient transport. While the involvement of apoplast and extracellular vesicles (EVs) in RNA virus infection is documented, the role of the apoplast in plant DNA viruses remains unclear. This study explores the apoplast's role in mungbean yellow mosaic India virus (MYMIV) infection. Our findings demonstrate the presence of MYMIV genomic components in apoplastic fluid, suggesting potential begomovirus cell-to-cell movement via the apoplast. Moreover, MYMIV infection induces increased EVs secretion into the apoplast. NMR-based metabolomics reveals altered metabolic profiles in both apoplast and symplast in response to MYMIV infection, highlighting key metabolites associated with stress and defense mechanisms. The data show an elevation of α- and ß-glucose in both apoplast and symplast, suggesting a shift in glucose utilization. Interestingly, this increase in glucose does not contribute to the synthesis of phenolic compounds, potentially influencing the susceptibility of mung bean to MYMIV. Fructose levels increase in the symplast, while apoplastic sucrose levels rise significantly. Symplastic aspartate levels increase, while proline exhibits elevated concentration in the apoplast and reduced concentration in the cytosol, suggesting a role in triggering a hypersensitive response. These findings underscore the critical role of the apoplast in begomovirus infection, providing insights for targeted viral disease management strategies.
Subject(s)
Begomovirus , Plant Diseases , Plant Leaves , Vigna , Begomovirus/physiology , Plant Leaves/virology , Plant Leaves/metabolism , Vigna/virology , Vigna/metabolism , Vigna/genetics , Plant Diseases/virology , Extracellular Vesicles/metabolism , Extracellular Vesicles/virology , Metabolomics/methods , Genome, ViralABSTRACT
Achromobacter xylosoxidans is one of the nitrogen-fixing bacteria associated with cowpea rhizosphere across Africa. Although its role in improving soil fertility and inducing systemic resistance in plants against pathogens has been documented, there is limited information on its complete genomic characteristics from cowpea roots. Here, we report the complete genome sequence of A. xylosoxidans strain DDA01 isolated from the topsoil of a field where cowpea plants tolerant to cucumber mosaic virus (CMV) were grown in Ibadan, Nigeria. The genome of DDA01 was sequenced via Illumina MiSeq and contained 6,930,067 nucleotides with 67.55% G + C content, 73 RNAs, 59 tRNAs, and 6421 protein-coding genes, including those associated with nitrogen fixation, phosphate solubilization, Indole3-acetic acid production, and siderophore activity. Eleven genetic clusters for secondary metabolites, including alcaligin, were identified. The potential of DDA01 as a plant growth-promoting bacteria with genetic capabilities to enhance soil fertility for resilience against CMV infection in cowpea is discussed. To our knowledge, this is the first complete genome of diazotrophic bacteria obtained from cowpea rhizosphere in sub-Saharan Africa, with potential implications for improved soil fertility, plant disease resistance, and food security.
Subject(s)
Achromobacter denitrificans , Cucumovirus , Genome, Bacterial , Rhizosphere , Soil Microbiology , Vigna , Vigna/virology , Vigna/microbiology , Cucumovirus/genetics , Achromobacter denitrificans/genetics , Phylogeny , Plant Diseases/microbiology , Plant Diseases/virology , Nitrogen Fixation , Base Composition , Plant Roots/microbiology , Plant Roots/virology , Nigeria , Nitrogen-Fixing Bacteria/geneticsABSTRACT
In this study, the complete nucleotide sequence of a Brazilian isolate of cowpea severe mosaic virus (CPSMV) is presented for the first time. To date, the CPSMV-DG isolate, from the USA, is the only one with the complete known genome. High-throughput sequencing (Illumina HiSeq) and Sanger sequencing of the total RNA extract from a cowpea plant collected in Teresina city, Brazil, revealed the genome sequence of the CPSMV-Ter1 isolate. RNA-1 and RNA-2 are, respectively, 5921 and 3465 nucleotides (nt) long without the poly(A) tail, and show 77.91% and 76.08% nt sequence identity with CPSMV-DG, considered the type isolate of the species. The open reading frames (ORFs) were determined and the cleavage sites of the polyproteins were predicted. Although the two isolates show a similar genomic organization, there was a low percentage of sequence identity between Ter1 and DG. Furthermore, pairwise comparisons of a partial RNA-1 fragment between CPSMV-Ter1 and 11 CPSMV isolates from Brazil indicated 94.6 to 94.8% nt and 98.9% to 99.4% aa sequence identities.
Subject(s)
Comovirus/genetics , Genome, Viral , Brazil , Comovirus/isolation & purification , RNA, Viral , Sequence Analysis, RNA , Vigna/virology , Whole Genome SequencingABSTRACT
BACKGROUND: Milk vetch dwarf virus (MDV) is an important ssDNA virus which causes yellowing, stunting and leaf rolling symptoms on legumes. In China, the virus causes great economic losses and has recently been found to infect tobacco. The expansion of its host range and its ability to spread rapidly has given rise to the urgent need for a sensitive, specific and rapid diagnostic assay that can assist in effective disease control. METHODS: Assays based on the polymerase chain reaction combined with lateral flow strip detection (PCR-LFS) and recombinase polymerase amplification combined with LFS (RPA-LFS) were developed targeting the coat protein (CP) gene of MDV. RESULTS: The PCR and RPA assays could detect respectively 103 copies or 101 copies of MDV by agarose gel electrophoresis. The PCR-LFS and RPA-LFS assays developed could both detect as few as 101 copies per reaction at 37 °C. Both methods could detect MDV in crude leaf extracts. CONCLUSIONS: The RPA-LFS assay developed is a rapid, sensitive and specific method for detecting MDV, which is convenient and has great potential for use in the field.
Subject(s)
Chromatography, Affinity/methods , Nanovirus/isolation & purification , Nucleic Acid Amplification Techniques/methods , Recombinases/genetics , Vigna/virology , Capsid Proteins/genetics , China , Chromatography, Affinity/instrumentation , Nanovirus/genetics , Plant Diseases/virology , Plant Leaves/virology , Sensitivity and SpecificityABSTRACT
KEY MESSAGE: Cowpea miRNAs and Argonaute genes showed differential expression patterns in response to CPSMV challenge Several biotic stresses affect cowpea production and yield. CPSMV stands out for causing severe negative impacts on cowpea. Plants have two main induced immune systems. In the basal system (PTI, PAMP-triggered immunity), plants recognize and respond to conserved molecular patterns associated with pathogens (PAMPs). The second type (ETI, Effector-triggered immunity) is induced after plant recognition of specific factors from pathogens. RNA silencing is another important defense mechanism in plants. Our research group has been using biochemical and proteomic approaches to learn which proteins and pathways are involved and could explain why some cowpea genotypes are resistant whereas others are susceptible to CPSMV. This current study was conducted to determine the role of cowpea miRNA in the interaction between a resistant cowpea genotype (BRS-Marataoã) and CPSMV. Previously identified and deposited plant microRNA sequences were used to find out all possible microRNAs in the cowpea genome. This search detected 617 mature microRNAs, which were distributed in 89 microRNA families. Next, 4 out of these 617 miRNAs and their possible target genes that encode the proteins Kat-p80, DEAD-Box, GST, and SPB9, all involved in the defense response of cowpea to CPSMV, had their expression compared between cowpea leaves uninoculated and inoculated with CPSMV. Additionally, the differential expression of genes that encode the Argonaute (AGO) proteins 1, 2, 4, 6, and 10 is reported. In summary, the studied miRNAs and AGO 2 and AGO4 associated genes showed differential expression patterns in response to CPSMV challenge, which indicate their role in cowpea defense.
Subject(s)
Comovirus/physiology , Gene Expression Regulation, Plant , MicroRNAs/genetics , Vigna/genetics , Vigna/virology , Base Sequence , Genome, Plant , MicroRNAs/metabolism , Nucleic Acid Conformation , Plant Diseases/genetics , Plant Diseases/virology , Plant Proteins/genetics , Plant Proteins/metabolism , RNA Stability/genetics , Reference StandardsABSTRACT
A new bipartite begomovirus (family Geminiviridae) was detected on cowpea (Vigna unguiculata) plants exhibiting bright golden mosaic symptoms on leaves under field conditions in Brazil. Complete consensus sequences of DNA-A and DNA-B components of an isolate of the virus (PE-088) were obtained by nanopore sequencing and confirmed by Sanger sequencing. The genome components presented the typical genomic organization of New World (NW) begomoviruses. Pairwise sequence comparisons revealed low levels of identity with other begomovirus species previously reported infecting cowpea around the world. Phylogenetic analysis using complete sequences of DNA-A components revealed that the closest relatives of PE-088 (85-87% nucleotide sequence identities) were three legume-infecting begomoviruses from Brazil: bean golden mosaic virus, macroptilium common mosaic virus and macroptilium yellow vein virus. According to the current classification criteria, PE-088 represents a new species in the genus Begomovirus, tentatively named as cowpea bright yellow mosaic virus (CoBYMV).
Subject(s)
Begomovirus/classification , Begomovirus/genetics , Genome, Viral/genetics , Plant Diseases/virology , Plant Leaves/virology , Vigna/virology , Base Sequence , Begomovirus/isolation & purification , DNA, Viral/genetics , Phylogeny , Sequence Analysis, DNAABSTRACT
The full-length genome sequences of two novel poleroviruses found infecting cowpea plants, cowpea polerovirus 1 (CPPV1) and cowpea polerovirus 2 (CPPV2), were determined using overlapping RT-PCR and RACE-PCR. Whereas the 5845-nt CPPV1 genome was most similar to chickpea chlorotic stunt virus (73% identity), the 5945-nt CPPV2 genome was most similar to phasey bean mild yellow virus (86% identity). The CPPV1 and CPPV2 genomes both have a typical polerovirus genome organization. Phylogenetic analysis of the inferred P1-P2 and P3 amino acid sequences confirmed that CPPV1 and CPPV2 are indeed poleroviruses. Four apparently unique recombination events were detected within a dataset of 12 full polerovirus genome sequences, including two events in the CPPV2 genome. Based on the current species demarcation criteria for the family Luteoviridae, we tentatively propose that CPPV1 and CPPV2 should be considered members of novel polerovirus species.
Subject(s)
Genome, Viral , Luteoviridae/genetics , Plant Diseases/virology , Vigna/virology , Burkina Faso , Luteoviridae/isolation & purification , Open Reading Frames , Phylogeny , RNA, Viral/geneticsABSTRACT
Cowpea and broad bean plants showing severe stunting and leaf rolling symptoms were observed in Hefei city, Anhui province, China, in 2014. Symptomatic plants from both species were shown to be infected with milk vetch dwarf virus (MDV) by PCR. The complete genomes of MDV isolates from cowpea and broad bean were sequenced. Each of them had eight genomic DNAs that differed between the two isolates by 10.7% in their overall nucleotide sequences. In addition, the MDV genomes from cowpea and broad bean were associated with two and three alphasatellite DNAs, respectively. This is the first report of MDV on cowpea in China and the first complete genome sequences of Chinese MDV isolates.
Subject(s)
Genome, Viral , Nanovirus/genetics , Plant Diseases/virology , Vicia faba/virology , Vigna/virology , Astragalus Plant/virology , China , DNA, Satellite/genetics , DNA, Viral/genetics , Nanovirus/isolation & purification , Nanovirus/pathogenicity , Polymerase Chain Reaction , Sequence Analysis, DNAABSTRACT
KEY MESSAGE: The seed treatment of a CPSMV-susceptible cowpea genotype with the mutagenic agent EMS generated mutagenized resistant plantlets that respond to the virus challenge by activating biochemical and physiological defense mechanisms. Cowpea is an important crop that makes major nutritional contributions particularly to the diet of the poor population worldwide. However, its production is low, because cowpea is naturally exposed to several abiotic and biotic stresses, including viral agents. Cowpea severe mosaic virus (CPSMV) drastically affects cowpea grain production. This study was conducted to compare photosynthetic and biochemical parameters of a CPSMV-susceptible cowpea (CE-31 genotype) and its derived ethyl methanesulfonate-mutagenized resistant plantlets, both challenged with CPSMV, to shed light on the mechanisms of virus resistance. CPSMV inoculation was done in the fully expanded secondary leaves, 15 days after planting. At 7 days post-inoculation, in vivo photosynthetic parameters were measured and leaves collected for biochemical analysis. CPSMV-inoculated mutagenized-resistant cowpea plantlets (MCPI) maintained higher photosynthesis index, chlorophyll, and carotenoid contents in relation to the susceptible (CE-31) CPSMV-inoculated cowpea (CPI). Visually, the MCPI leaves did not exhibit any viral symptoms neither the presence of the virus as examined by RT-PCR. In addition, MCPI showed higher SOD, GPOX, chitinase, and phenylalanine ammonia lyase activities, H2O2, phenolic contents, and cell wall lignifications, but lower CAT and APX activities in comparison to CPI. All together, these photosynthetic and biochemical changes might have contributed for the CPSMS resistance of MCPI. Contrarily, CPI plantlets showed CPSMV accumulation, severe disease symptoms, reduction in the photosynthesis-related parameters, chlorophyll, carotenoid, phenolic compound, and H2O2 contents, in addition to increased ß-1,3-glucanase, and catalase activities that might have favored viral infection.
Subject(s)
Comovirus/physiology , Disease Resistance , Mutagenesis/genetics , Photosynthesis , Plant Diseases/virology , Vigna/physiology , Vigna/virology , Carbon Dioxide/metabolism , Carotenoids/metabolism , Chlorophyll/metabolism , Ethyl Methanesulfonate , Homeostasis , Hydrogen Peroxide/metabolism , Lignin/metabolism , Oxidation-Reduction , Phenols/metabolism , Phenylalanine Ammonia-Lyase/metabolism , Plant Leaves/enzymology , Plant Leaves/virology , Plant Proteins/metabolism , SolubilityABSTRACT
Viruses are important plant pathogens that threaten diverse crops worldwide. Diseases caused by Cowpea severe mosaic virus (CPSMV) have drawn attention because of the serious damages they cause to economically important crops including cowpea. This work was undertaken to quantify and identify the responsive proteins of a susceptible cowpea genotype infected with CPSMV, in comparison with mock-inoculated controls, using label-free quantitative proteomics and databanks, aiming at providing insights on the molecular basis of this compatible interaction. Cowpea leaves were mock- or CPSMV-inoculated and 2 and 6 days later proteins were extracted and analyzed. More than 3000 proteins were identified (data available via ProteomeXchange, identifier PXD005025) and 75 and 55 of them differentially accumulated in response to CPSMV, at 2 and 6 DAI, respectively. At 2 DAI, 76% of the proteins decreased in amount and 24% increased. However, at 6 DAI, 100% of the identified proteins increased. Thus, CPSMV transiently suppresses the synthesis of proteins involved particularly in the redox homeostasis, protein synthesis, defense, stress, RNA/DNA metabolism, signaling, and other functions, allowing viral invasion and spread in cowpea tissues.
Subject(s)
Comovirus/pathogenicity , Host-Pathogen Interactions , Plant Proteins/analysis , Proteomics/methods , Vigna/virology , Gene Expression Regulation, Plant , Plant Leaves/chemistry , Vigna/chemistry , Vigna/metabolismABSTRACT
Mungbean yellow mosaic virus-[India:Vigna] (MYMV-[IN:Vig]), a blackgram isolate of MYMV, causes yellow mosaic disease in blackgram and mungbean. Two variable DNA-B components, KA22 and KA27, cause distinct symptoms in blackgram [V. mungo (L.) Hepper] with the same DNA-A component. KA22 + DNA-A-agroinoculated blackgram plants displayed yellow mosaic symptom and accumulated high levels of viral single-stranded (ss) DNA. KA27 + DNA-A-agroinoculated blackgram plants displayed severe stunting symptom and accumulated very low levels of viral ssDNA. However, in mungbean [V. radiata (L.) Wilczek], KA27 + DNA-A caused yellow mosaic symptom and a high level of viral ssDNA accumulated. Swapping of KA27 DNA-B with the nuclear shuttle protein gene (NSP) of KA22 DNA-B (KA27xKA22 NSP) caused yellow mosaic symptom in blackgram, suggesting that KA22 NSP is the determinant of yellow mosaic symptom. Interestingly, KA27xKA22 NSP-infected blackgram plants accumulated high levels of viral ssDNA, comparable to that of KA22 DNA-B infection, suggesting that the KA22 NSP is responsible for accumulation of high levels of viral ssDNA. MYMV distribution was studied in blackgram and mungbean plants by leaf tissue hybridization, which showed mesophyll spread of the virus in KA22-infected blackgram leaflets and in KA27-infected mungbean leaflets, both of which displayed yellow mosaic symptom. However, the virus did not accumulate in the mesophyll in the case of KA27-infected blackgram leaflets. Interestingly, the swapped KA27xKA22 NSP-infected blackgram leaflets showed mesophyll accumulation of the virus, suggesting that KA22 NSP determines its mesophyll spread.
Subject(s)
DNA, Single-Stranded/metabolism , Mosaic Viruses/metabolism , Plant Diseases/virology , Vigna/virology , Viral Proteins/metabolism , Gene Expression Regulation, Viral/physiology , Mosaic Viruses/geneticsABSTRACT
Yellow mosaic disease (YMD) is a major constraint for the low productivity of mungbean, mainly in South Asia. Addressing this issue requires a comprehensive approach, integrating field and challenge inoculation evaluations to identify effective solutions. In this study, an infectious clone of Begomovirus vignaradiataindiaense (MYMIV) was developed to obtain a pure culture of the virus and to confirm resistance in mungbean plants exhibiting resistance under natural field conditions. The infectivity and efficiency of three Agrobacterium tumefaciens strains (EHA105, LBA4404, and GV3101) were evaluated using the susceptible mungbean genotype PS16. Additionally, a recombinant inbred line (RIL) population comprising 175 lines derived from Pusa Baisakhi (MYMIV susceptible) and PMR-1 (MYMIV resistant) cross was developed and assessed for YMD response. Among the tested Agrobacterium tumefaciens strains, EHA105 exhibited the highest infectivity (84.7%), followed by LBA4404 (54.7%) and GV3101 (9.80%). Field resistance was evaluated using the coefficient of infection (CI) and area under disease progress curve (AUDPC), identifying seven RILs with consistent resistant reactions (CI≤9) and low AUDPC (≤190). Upon challenge inoculation, six RILs exhibited resistance, while RIL92 displayed a resistance response, with infection occurring in less than 10% of plants after 24 to 29 days post inoculation (dpi). Despite some plants remaining asymptomatic, MYMIV presence was confirmed through specific PCR amplification of the MYMIV coat protein (AV1) gene. Quantitative PCR revealed a very low relative viral load (0.1-5.1% relative fold change) in asymptomatic RILs and the MYMIV resistant parent (PMR1) compared to the susceptible parent (Pusa Baisakhi). These findings highlight the potential utility of the developed infectious clone and the identified MYMIV-resistant RILs in future mungbean breeding programs aimed at cultivating MYMIV-resistant varieties.
Subject(s)
Agrobacterium tumefaciens , Begomovirus , Disease Resistance , Plant Diseases , Vigna , Begomovirus/genetics , Begomovirus/pathogenicity , Begomovirus/physiology , Vigna/virology , Vigna/genetics , Vigna/microbiology , Plant Diseases/virology , Plant Diseases/genetics , Disease Resistance/genetics , Agrobacterium tumefaciens/genetics , GenotypeABSTRACT
Yellow Mosaic Disease (YMD) in mungbean [Vigna radiata (L.) R. Wilczek] is one of the most damaging diseases in Asia. In the northern part of India, the YMD is caused by Mungbean Yellow Mosaic India Virus (MYMIV), while in southern India this is caused by Mungbean Yellow Mosaic Virus (MYMV). The molecular mechanism of YMD resistance in mungbean remains largely unknown. In this study, RNA-seq analysis was conducted between a resistant (PMR-1) and a susceptible (Pusa Vishal) mungbean genotype under infected and control conditions to understand the regulatory network operating between mungbean-YMV. Overall, 76.8 million raw reads could be generated in different treatment combinations, while mapping rate per library to the reference genome varied from 86.78% to 93.35%. The resistance to MYMIV showed a very complicated gene network, which begins with the production of general PAMPs (pathogen-associated molecular patterns), then activation of various signaling cascades like kinases, jasmonic acid (JA) and brassinosteroid (BR), and finally the expression of specific genes (like PR-proteins, virus resistance and R-gene proteins) leading to resistance response. The function of WRKY, NAC and MYB transcription factors in imparting the resistance against MYMIV could be established. The string analysis also revealed the role of proteins involved in kinase, viral movement and phytoene synthase activity in imparting YMD resistance. A set of novel stress-related EST-SSRs are also identified from the RNA-Seq data which may be used to find the linked genes/QTLs with the YMD resistance. Also, 11 defence-related transcripts could be validated through quantitative real-time PCR analysis. The identified gene networks have led to an insight about the defence mechanism operating against MYMIV infection in mungbean which will be of immense use to manage the YMD resistance in mungbean.
Subject(s)
Begomovirus/physiology , Gene Expression Regulation, Plant , Plant Diseases/genetics , Plant Diseases/virology , Vigna/genetics , Vigna/virology , Disease Resistance , Gene Regulatory Networks , RNA-Seq , TranscriptomeABSTRACT
BACKGROUND: Pregnant women using antiretrovirals (ARVs) may have persistent vaginal viral shedding, which could be associated with sexual and perinatal HIV transmission. However, there are scant data on vaginal viral load (VVL) in pregnant women with undetectable plasma viral load (PVL). METHODS: This study was a post hoc analysis of an open-label randomized trial to evaluate the virologic response of 2 ART regimens. The participants were ART-naive women living with HIV initiating ART regimens between 20 and 36 weeks of pregnancy recruited at 19 clinical sites in 6 countries. Participants were randomized to receive 400 mg of raltegravir 2 times a day or 600 mg of efavirenz 4 times a day in addition to 150 mg of lamivudine and 300 mg of zidovudine 2 times a day. VVL and PVL tests were performed at every study visit. The primary outcome measures were HIV-1 PVL and VVL at maternal study week 4 and rates of perinatal HIV transmission. RESULTS: A total of 408 were enrolled, of whom 323 had VVL samples 4 weeks after enrollment and were included in this analysis. Among women with undetectable/nonquantifiable PVL during ART, the overall rate of quantifiable VVL at week 4 was 2.54% (7/275). Of the 275 with nonquantifiable PVL, 99.1% (115/116) and 96.2% (153/159) had nonquantifiable VVL in the efavirenz and raltegravir arms, respectively. None of the 7 women with quantifiable VVL at the week 4 study visit transmitted HIV to their infants. CONCLUSIONS: Detectable VVL in pregnant women with undetectable/nonquantifiable PVL while receiving ART was rare and not associated with perinatal HIV transmission.
Subject(s)
Anti-HIV Agents/therapeutic use , Antiretroviral Therapy, Highly Active/methods , HIV Infections/drug therapy , Infectious Disease Transmission, Vertical/prevention & control , Pregnancy Complications, Infectious/drug therapy , Vigna/virology , Viral Load/drug effects , Virus Shedding , Adult , Alkynes/therapeutic use , Benzoxazines/therapeutic use , Cyclopropanes/therapeutic use , Drug Resistance, Viral , Female , HIV Infections/transmission , HIV Infections/virology , Humans , Infant , Lamivudine/therapeutic use , Pregnancy , Pregnant Women , Raltegravir Potassium/therapeutic use , Zidovudine/therapeutic useABSTRACT
The female genital tract (FGT) is an important site of human immunodeficiency virus (HIV) infection. Discerning the nature of HIV-specific local immune responses is crucial for identifying correlates of protection in HIV-exposed seronegative (HESN) individuals. The present study involved a comprehensive analysis of soluble immune mediators, secretory immunoglobulins (sIg), natural killer (NK) cells, CXCR5+ CD8+ T cells, T follicular helper (Tfh) cells, and T regulatory cells (Tregs) in the vaginal mucosa as well as the nature and composition of the cervicovaginal microbiome in HESN women. We found significantly elevated antiviral cytokines, soluble immunoglobulins, and increased frequencies of activated NK cells, CXCR5+ CD8+ T cells, and Tfh cells in HESN females compared to HIV-unexposed healthy (UH) women. Analysis of the genital microbiome of HESN women revealed a greater bacterial diversity and increased abundance of Gardnerella spp. in the mucosa. The findings suggest that the female genital tract of HESN females represents a microenvironment equipped with innate immune factors, antiviral mediators, and critical T cell subsets that protect against HIV infection. IMPORTANCE The vast majority of human immunodeficiency virus (HIV) infections across the world occur via the sexual route. The genital tract mucosa is thus the primary site of HIV replication, and discerning the nature of HIV-specific immune responses in this compartment is crucial. The role of the innate immune system at the mucosal level in exposed seronegative individuals and other HIV controllers remains largely unexplored. This understanding can provide valuable insights to improve vaccine design. We investigated mucosal T follicular helper (Tfh) cells, CXCR5+ CD8+ T cells, natural killer (NK) cells subsets, soluble immune markers, and microbiome diversity in HIV-exposed seronegative (HESN) women. We found a significantly higher level of mucosal CXCR5+ CD8+ T cells, CD4+ Tfh cells, activated NK cell subsets, and antiviral immune cell mediators in HESN women. We also found a higher abundance of Gardnerella spp., microbiome dysbiosis, and decreased levels of inflammatory markers to be associated with reduced susceptibility to HIV infection. Our findings indicate that increased distribution of mucosal NK cells, CXCR5+ CD8+ T cells, Tfh cells, and soluble markers in HIV controllers with a highly diverse cervicovaginal microbiome could contribute effectively to protection against HIV infection. Overall, our findings imply that future vaccine design should emphasize inducing these highly functional cell types at the mucosal sites.
Subject(s)
HIV Infections/immunology , Microbiota , Vigna/microbiology , Adult , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , CD8-Positive T-Lymphocytes/immunology , Cytokines/genetics , Cytokines/immunology , Esophageal Mucosa/immunology , Esophageal Mucosa/microbiology , Esophageal Mucosa/virology , Female , HIV Infections/genetics , HIV Infections/microbiology , HIV Infections/virology , HIV Seronegativity , Humans , Immunity, Mucosal , Killer Cells, Natural/immunology , T Follicular Helper Cells/immunology , T-Lymphocytes, Regulatory/immunology , Vigna/immunology , Vigna/virology , Young AdultABSTRACT
Soybean yellow mottle mosaic virus (SYMMV) is a newly identified member of the genus Gammacarmovirus from grain legumes in India. As the modes of transmission of this virus have not been described, we assessed the possibility of SYMMV to be transmitted through seed collected from field infected mungbean plants and mechanically sap inoculated French bean plants using serological and molecular techniques followed by progeny assays. Direct antigen coated enzyme linked immunosorbent assay (DAC-ELISA) and reverse transcription polymerase chain reaction (RT-PCR) results are inconsistent with field infected mungbean seed tissues to ensure seed transmissibility irrespective of seed number used. Seed from mechanical sap inoculated French bean showed higher absorbance values in DAC-ELISA and amplification corresponding to replicase, movement and coat protein regions of SYMMV genome. The relative accumulation of SYMMV was higher in pod walls, immature seed and stamens and stigma of mechanical sap inoculated French bean. Progeny assays with infected seed revealed the seed transmissibility of SYMMV at the rate of 63.33% in mungbeanand 73.33% in French bean. Mechanical sap inoculation of mungbean progeny seedlings on French bean cv. Pusa Parvati produced characteristic symptoms of SYMMV. The results obtained from this study demonstrate that SYMMV is seed borne in nature and can be transmitted to next generation seedlings. This is the first report of seed transmission of SYMMV in mungbean and French bean.
Subject(s)
Plant Diseases/virology , Seeds/virology , Tombusviridae/genetics , Vigna/virology , Genome, Viral , India , Phaseolus/virology , Phylogeny , Seedlings/virologyABSTRACT
In the rapidly evolving field of nanotechnology, plant virus nanoparticles (pVNPs) are emerging as powerful tools in diverse applications ranging from biomedicine to materials science. The proteinaceous structure of plant viruses allows the capsid structure to be modified by genetic engineering and/or chemical conjugation with nanoscale precision. This means that pVNPs can be engineered to display peptides and proteins on their external surface, including immunodominant peptides derived from pathogens allowing pVNPs to be used for active immunization. In this context, pVNPs are safer than VNPs derived from mammalian viruses because there is no risk of infection or reversion to pathogenicity. Furthermore, pVNPs can be produced rapidly and inexpensively in natural host plants or heterologous production platforms. In this review, we discuss the use of pVNPs for the delivery of peptide antigens to the host immune in pre-clinical studies with the final aim of promoting systemic immunity against the corresponding pathogens. Furthermore, we described the versatility of plant viruses, with innate immunostimulatory properties, in providing a huge natural resource of carriers that can be used to develop the next generation of sustainable vaccines.
Subject(s)
Nanoparticles/chemistry , Nanotechnology/methods , Nicotiana/genetics , Plant Viruses/immunology , Vaccines, Virus-Like Particle/administration & dosage , Vigna/genetics , Animals , Antigens, Viral/chemistry , Antigens, Viral/genetics , Antigens, Viral/immunology , Capsid/chemistry , Capsid/immunology , Drug Evaluation, Preclinical , Genetic Engineering/methods , Humans , Immunization , Immunogenicity, Vaccine , Mice , Nanoparticles/administration & dosage , Peptides/chemistry , Peptides/genetics , Peptides/immunology , Plant Viruses/genetics , Nicotiana/virology , Vaccines, Subunit , Vaccines, Virus-Like Particle/biosynthesis , Vaccines, Virus-Like Particle/genetics , Vigna/virologyABSTRACT
Infection with Cowpea severe mosaic virus (CPSMV) represents one of the main limitations for cowpea (Vigna unguiculata L. Walp.) productivity due to the severity of the disease symptoms, frequency of incidence, and difficulties in dissemination control. This study aimed to identify the proteins and metabolic pathways associated with the susceptibility and resistance of cowpea plants to CPSMV. Therefore, we treated the seeds of a naturally susceptible cowpea genotype (CE-31) with the mutagenic agent ethyl methane sulfonate (EMS) and compared the secondary leaf proteomic profile of the mutagenized resistant plants inoculated with CPSMV (MCPI plant group) to those of the naturally susceptible cowpea genotype CE-31 inoculated (CPI) and noninoculated (CPU) with CPSMV. MCPI responded to CPSMV by accumulating proteins involved in the oxidative burst, increasing H2O2 generation, promoting leaf cell death (LCD), increasing the synthesis of defense proteins, and decreasing host factors important for the establishment of CPSMV infection. In contrast, CPI accumulated several host factors that favor CPSMV infection and did not accumulate H2O2 or present LCD, which allowed CPSMV replication and systemic dissemination. Based on these results, we propose that the differential abundance of defense proteins and proteins involved in the oxidative burst, LCD, and the decrease in cowpea protein factors required for CPSMV replication are associated with the resistance trait acquired by the MCPI plant group.