Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters

Country/Region as subject
Publication year range
1.
PLoS Biol ; 22(1): e3002089, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38236818

ABSTRACT

Viral respiratory infections are an important public health concern due to their prevalence, transmissibility, and potential to cause serious disease. Disease severity is the product of several factors beyond the presence of the infectious agent, including specific host immune responses, host genetic makeup, and bacterial coinfections. To understand these interactions within natural infections, we designed a longitudinal cohort study actively surveilling respiratory viruses over the course of 19 months (2016 to 2018) in a diverse cohort in New York City. We integrated the molecular characterization of 800+ nasopharyngeal samples with clinical data from 104 participants. Transcriptomic data enabled the identification of respiratory pathogens in nasopharyngeal samples, the characterization of markers of immune response, the identification of signatures associated with symptom severity, individual viruses, and bacterial coinfections. Specific results include a rapid restoration of baseline conditions after infection, significant transcriptomic differences between symptomatic and asymptomatic infections, and qualitatively similar responses across different viruses. We created an interactive computational resource (Virome Data Explorer) to facilitate access to the data and visualization of analytical results.


Subject(s)
Coinfection , Virus Diseases , Viruses , Humans , Coinfection/genetics , Virome , Longitudinal Studies , Viruses/genetics , Virus Diseases/genetics , Virus Diseases/epidemiology , Bacteria/genetics , Gene Expression Profiling
2.
PLoS Pathog ; 20(1): e1011947, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38232128

ABSTRACT

Microbes associated with an organism can significantly modulate its susceptibility to viral infections, but our understanding of the influence of individual microbes remains limited. The nematode Caenorhabditis elegans is a model organism that in nature inhabits environments rich in bacteria. Here, we examine the impact of 71 naturally associated bacteria on C. elegans susceptibility to its only known natural virus, the Orsay virus. Our findings reveal that viral infection of C. elegans is significantly influenced by monobacterial environments. Compared to an Escherichia coli environmental reference, the majority of tested bacteria reduced C. elegans susceptibility to viral infection. This reduction is not caused by virion degradation or poor animal nutrition by the bacteria. The repression of viral infection by the bacterial strains Chryseobacterium JUb44 and Sphingobacterium BIGb0172 does not require the RIG-I homolog DRH-1, which is known to activate antiviral responses such as RNA interference and transcriptional regulation. Our research highlights the necessity of considering natural biotic environments in viral infection studies and opens the way future research on host-microbe-virus interactions.


Subject(s)
Caenorhabditis elegans Proteins , Virus Diseases , Viruses , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , RNA Interference , Virus Diseases/genetics , Viruses/metabolism
3.
PLoS Pathog ; 20(2): e1012061, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38416782

ABSTRACT

Alternative polyadenylation (APA) is a widespread mechanism of gene regulation that generates mRNA isoforms with alternative 3' untranslated regions (3' UTRs). Our previous study has revealed the global 3' UTR shortening of host mRNAs through APA upon viral infection. However, how the dynamic changes in the APA landscape occur upon viral infection remains largely unknown. Here we further found that, the reduced protein abundance of CPSF6, one of the core 3' processing factors, promotes the usage of proximal poly(A) sites (pPASs) of many immune related genes in macrophages and fibroblasts upon viral infection. Shortening of the 3' UTR of these transcripts may improve their mRNA stability and translation efficiency, leading to the promotion of type I IFN (IFN-I) signalling-based antiviral immune responses. In addition, dysregulated expression of CPSF6 is also observed in many immune related physiological and pathological conditions, especially in various infections and cancers. Thus, the global APA dynamics of immune genes regulated by CPSF6, can fine-tune the antiviral response as well as the responses to other cellular stresses to maintain the tissue homeostasis, which may represent a novel regulatory mechanism for antiviral immunity.


Subject(s)
Polyadenylation , Virus Diseases , mRNA Cleavage and Polyadenylation Factors , Humans , 3' Untranslated Regions/genetics , Down-Regulation , Immunity/genetics , mRNA Cleavage and Polyadenylation Factors/genetics , mRNA Cleavage and Polyadenylation Factors/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Virus Diseases/genetics , Mice , Animals
4.
PLoS Pathog ; 20(1): e1011366, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38190406

ABSTRACT

C. elegans is a free-living nematode that is widely used as a small animal model for studying fundamental biological processes and disease mechanisms. Since the discovery of the Orsay virus in 2011, C. elegans also holds the promise of dissecting virus-host interaction networks and innate antiviral immunity pathways in an intact animal. Orsay virus primarily targets the worm intestine, causing enlarged intestinal lumen as well as visible changes to infected cells such as liquefaction of cytoplasm and convoluted apical border. Previous studies of Orsay virus identified that C. elegans is able to mount antiviral responses by DRH-1/RIG-I mediated RNA interference and Intracellular Pathogen Response, a uridylyltransferase that destabilizes viral RNAs by 3' end uridylation, and ubiquitin protein modifications and turnover. To comprehensively search for novel antiviral pathways in C. elegans, we performed genome-wide RNAi screens by bacterial feeding using existing bacterial RNAi libraries covering 94% of the entire genome. Out of the 106 potential antiviral gene hits identified, we investigated those in three new pathways: collagens, actin remodelers, and epigenetic regulators. By characterizing Orsay virus infection in RNAi and mutant worms, our results indicate that collagens likely form a physical barrier in intestine cells to inhibit viral infection by preventing Orsay virus entry. Furthermore, evidence suggests that actin remodeling proteins (unc-34, wve-1 and wsp-1) and chromatin remodelers (nurf-1 and isw-1) exert their antiviral activities by regulating the intestinal actin (act-5), a critical component of the terminal web which likely function as another physical barrier to prevent Orsay infection.


Subject(s)
Caenorhabditis elegans Proteins , Virus Diseases , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Actins/metabolism , RNA Interference , Virus Diseases/genetics , Collagen/genetics , Collagen/metabolism , Host-Pathogen Interactions , Nerve Tissue Proteins/metabolism
5.
Blood ; 144(4): 420-434, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38718314

ABSTRACT

ABSTRACT: The leucine-rich repeat-containing G-protein-coupled receptor 6 (LGR6) was recently identified as the cognate receptor for the proresolving mediator maresin 1 (MaR1). To address the biological role of LGR6 in humans, we investigated the functional impact of a genetic variant in the gene encoding for LGR6, which is predicted to lead to a frameshift mutation in one of the receptor isoforms, on both receptor expression and immune cell responses. In neutrophils, monocytes, and natural killer (NK) cells from volunteers homozygous for this variant, we found a significant downregulation in the expression of LGR6 when compared with controls without the variant; whereas the LGR6 expression was essentially similar in monocyte-derived macrophages and CD8+ T cells. Functionally, loss of LGR6 expression was linked with a decreased ability of neutrophils and monocytes to phagocytose bacteria. We observed an increase in neutrophil chemotaxis and leukotriene B4 production and increased expression of activation markers, including markers for platelet-leukocyte phagocyte heterotypic aggregates, such as CD41, in neutrophils and monocytes from the variant group. Using data from the UK Biobank, we found that at a population level the rs4266947 variant, which is in high linkage disequilibrium with rs74355478, was associated with a higher incidence of viral infections. Intriguingly, neutrophils, NK cells, and CD8+ T cells from volunteers with the LGR6 variant displayed altered viral responses when stimulated with Toll-like receptor 3 (TLR3), TLR7/TLR8, and TLR9 agonists. Together, these findings shed new light on the cell type-specific regulation of LGR6 expression and the role of this receptor in directing host immune responses.


Subject(s)
Frameshift Mutation , Receptors, G-Protein-Coupled , Humans , Receptors, G-Protein-Coupled/genetics , Virus Diseases/immunology , Virus Diseases/genetics , Male , Female , Phagocytosis , Neutrophils/metabolism , Neutrophils/immunology , Leukocytes/metabolism , Leukocytes/immunology , Monocytes/metabolism , Monocytes/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Middle Aged , Adult , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism
6.
Nucleic Acids Res ; 52(9): 5209-5225, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38636948

ABSTRACT

RNA silencing is a post-transcriptional gene-silencing mechanism mediated by microRNAs (miRNAs). However, the regulatory mechanism of RNA silencing during viral infection is unclear. TAR RNA-binding protein (TRBP) is an enhancer of RNA silencing that induces miRNA maturation by interacting with the ribonuclease Dicer. TRBP interacts with a virus sensor protein, laboratory of genetics and physiology 2 (LGP2), in the early stage of viral infection of human cells. Next, it induces apoptosis by inhibiting the maturation of miRNAs, thereby upregulating the expression of apoptosis regulatory genes. In this study, we show that TRBP undergoes a functional conversion in the late stage of viral infection. Viral infection resulted in the activation of caspases that proteolytically processed TRBP into two fragments. The N-terminal fragment did not interact with Dicer but interacted with type I interferon (IFN) signaling modulators, such as protein kinase R (PKR) and LGP2, and induced ER stress. The end results were irreversible apoptosis and suppression of IFN signaling. Our results demonstrate that the processing of TRBP enhances apoptosis, reducing IFN signaling during viral infection.


Subject(s)
Apoptosis , Caspases , RNA-Binding Proteins , Humans , Caspases/metabolism , Cell Line , eIF-2 Kinase/metabolism , eIF-2 Kinase/genetics , Endoplasmic Reticulum Stress/genetics , HEK293 Cells , HeLa Cells , Interferon Type I/metabolism , Interferon Type I/genetics , MicroRNAs/metabolism , MicroRNAs/genetics , Ribonuclease III/metabolism , Ribonuclease III/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Signal Transduction , Virus Diseases/genetics , Virus Diseases/metabolism
7.
Rev Med Virol ; 34(1): e2511, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38282406

ABSTRACT

Bat borne disease have attracted many researchers for years. The ability of the bat to host several exogenous viruses has been a focal point in research lately. The latest pandemic shifted the focus of scholars towards understanding the difference in response to viral infection between humans and bats. In a way to understand the basis of the interaction and behaviour between SARS-CoV-2 and the environment, a conflict between different researchers across the globe arose. This conflict asked many questions about the truth of virus-host integration, whether an interaction between RNA viruses and human genomes has ever been reported, the possible route and mechanism that could lead to genomic integration of viral sequences and the methods used to detect integration. This article highlights those questions and will discuss the diverse opinions of the controversy and provide examples on reported integration mechanisms and possible detection techniques.


Subject(s)
COVID-19 , Chiroptera , Virus Diseases , Animals , Humans , SARS-CoV-2/genetics , Genome, Human , COVID-19/genetics , Virus Diseases/genetics , Genome, Viral , Phylogeny
8.
J Cell Biochem ; 125(7): e30624, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38946063

ABSTRACT

The 14-3-3 family of proteins are highly conserved acidic eukaryotic proteins (25-32 kDa) abundantly present in the body. Through numerous binding partners, the 14-3-3 is responsible for many essential cellular pathways, such as cell cycle regulation and gene transcription control. Hence, its dysregulation has been linked to the onset of critical illnesses such as cancers, neurodegenerative diseases and viral infections. Interestingly, explorative studies have revealed an inverse correlation of 14-3-3 protein in cancer and neurodegenerative diseases, and the direct manipulation of 14-3-3 by virus to enhance infection capacity has dramatically extended its significance. Of these, COVID-19 has been linked to the 14-3-3 proteins by the interference of the SARS-CoV-2 nucleocapsid (N) protein during virion assembly. Given its predisposition towards multiple essential host signalling pathways, it is vital to understand the holistic interactions between the 14-3-3 protein to unravel its potential therapeutic unit in the future. As such, the general structure and properties of the 14-3-3 family of proteins, as well as their known biological functions and implications in cancer, neurodegeneration, and viruses, were covered in this review. Furthermore, the potential therapeutic target of 14-3-3 proteins in the associated diseases was discussed.


Subject(s)
14-3-3 Proteins , COVID-19 , Neoplasms , Neurodegenerative Diseases , 14-3-3 Proteins/metabolism , Humans , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/virology , Neoplasms/metabolism , Neoplasms/virology , Neoplasms/genetics , COVID-19/metabolism , COVID-19/virology , SARS-CoV-2/metabolism , Virus Diseases/metabolism , Virus Diseases/virology , Virus Diseases/genetics
9.
Virus Genes ; 60(4): 333-346, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38833149

ABSTRACT

P-element-induced wimpy testis-interacting RNAs (piRNAs), a class of small noncoding RNAs with about 24-32 nucleotides, often interact with PIWI proteins to form a piRNA/PIWI complex that could influence spermiogenesis, transposon silencing, epigenetic regulation, etc. PIWI proteins have a highly conserved function in a variety of species and are usually expressed in germ cells. However, increasing evidence has revealed the important role of the piRNA/PIWI complex in the occurrence and prognosis of various human diseases and suggests its potential application in the diagnosis and treatment of related diseases, becoming a prominent marker for these human diseases. Recent studies have confirmed that piRNA/PIWI complexes or piRNAs are abnormally expressed in some viral infections, effecting disease progression and viral replication. In this study, we reviewed the association between the piRNA/PIWI complex and several human disease-associated viruses, including human papillomavirus, human immunodeficiency virus, human rhinovirus, severe acute respiratory syndrome coronavirus 2, respiratory syncytial virus, and herpes simplex virus type 1.


Subject(s)
Argonaute Proteins , RNA, Small Interfering , Virus Diseases , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Humans , Virus Diseases/virology , Virus Diseases/genetics , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , Animals , Virus Replication/genetics , Piwi-Interacting RNA
10.
Subcell Biochem ; 106: 403-439, 2023.
Article in English | MEDLINE | ID: mdl-38159236

ABSTRACT

Human endogenous retroviruses (HERVs), which are conserved sequences of ancient retroviruses, are widely distributed in the human genome. Although most HERVs have been rendered inactive by evolution, some have continued to exhibit important cytological functions. HERVs in the human genome perform dual functions: on the one hand, they are involved in important physiological processes such as placental development and immune regulation; on the other hand, their aberrant expression is closely associated with the pathological processes of several diseases, such as cancers, autoimmune diseases, and viral infections. HERVs can also regulate a variety of host cellular functions, including the expression of protein-coding genes and regulatory elements that have evolved from HERVs. Here, we present recent research on the roles of HERVs in viral infections and cancers, including the dysregulation of HERVs in various viral infections, HERV-induced epigenetic modifications of histones (such as methylation and acetylation), and the potential mechanisms of HERV-mediated antiviral immunity. We also describe therapies to improve the efficacy of vaccines and medications either by directly or indirectly targeting HERVs, depending on the HERV.


Subject(s)
Endogenous Retroviruses , Neoplasms , Virus Diseases , Pregnancy , Humans , Female , Endogenous Retroviruses/genetics , Placenta , Neoplasms/genetics , Epigenesis, Genetic , Virus Diseases/genetics
11.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732074

ABSTRACT

Early diagnosis of infections in young infants remains a clinical challenge. Young infants are particularly vulnerable to infection, and it is often difficult to clinically distinguish between bacterial and viral infections. Urinary tract infection (UTI) is the most common bacterial infection in young infants, and the incidence of associated bacteremia has decreased in the recent decades. Host RNA expression signatures have shown great promise for distinguishing bacterial from viral infections in young infants. This prospective study included 121 young infants admitted to four pediatric emergency care departments in the capital region of Denmark due to symptoms of infection. We collected whole blood samples and performed differential gene expression analysis. Further, we tested the classification performance of a two-gene host RNA expression signature approaching clinical implementation. Several genes were differentially expressed between young infants with UTI without bacteremia and viral infection. However, limited immunological response was detected in UTI without bacteremia compared to a more pronounced response in viral infection. The performance of the two-gene signature was limited, especially in cases of UTI without bloodstream involvement. Our results indicate a need for further investigation and consideration of UTI in young infants before implementing host RNA expression signatures in clinical practice.


Subject(s)
Urinary Tract Infections , Humans , Urinary Tract Infections/genetics , Infant , Prospective Studies , Female , Male , Transcriptome , Infant, Newborn , Gene Expression Profiling/methods , Bacteremia/genetics , RNA/genetics , Virus Diseases/genetics
13.
Viruses ; 16(2)2024 01 25.
Article in English | MEDLINE | ID: mdl-38399958

ABSTRACT

The ongoing arms race between viruses and their hosts is constantly evolving. One of the ways in which cells defend themselves against invading viruses is by using restriction factors (RFs), which are cell-intrinsic antiviral mechanisms that block viral replication and transcription. Recent research has identified a specific group of RFs that belong to the cellular epigenetic machinery and are able to restrict the gene expression of certain viruses. These RFs can be referred to as epigenetic restriction factors or eRFs. In this review, eRFs have been classified into two categories. The first category includes eRFs that target viral chromatin. So far, the identified eRFs in this category include the PML-NBs, the KRAB/KAP1 complex, IFI16, and the HUSH complex. The second category includes eRFs that target viral RNA or, more specifically, the viral epitranscriptome. These epitranscriptomic eRFs have been further classified into two types: those that edit RNA bases-adenosine deaminase acting on RNA (ADAR) and pseudouridine synthases (PUS), and those that covalently modify viral RNA-the N6-methyladenosine (m6A) writers, readers, and erasers. We delve into the molecular machinery of eRFs, their role in limiting various viruses, and the mechanisms by which viruses have evolved to counteract them. We also examine the crosstalk between different eRFs, including the common effectors that connect them. Finally, we explore the potential for new discoveries in the realm of epigenetic networks that restrict viral gene expression, as well as the future research directions in this area.


Subject(s)
Virus Diseases , Viruses , Humans , Virus Diseases/genetics , Virus Replication , Viruses/genetics , RNA, Viral , Epigenesis, Genetic
14.
Biosci Rep ; 44(3)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38372298

ABSTRACT

Septin proteins are a subfamily of closely related GTP-binding proteins conserved in all species except for higher plants and perform essential biological processes. Septins self-assemble into heptameric or octameric complexes and form higher-order structures such as filaments, rings, or gauzes by end-to-end binding. Their close association with cell membrane components makes them central in regulating critical cellular processes. Due to their organisation and properties, septins function as diffusion barriers and are integral in providing scaffolding to support the membrane's curvature and stability of its components. Septins are also involved in vesicle transport and exocytosis through the plasma membrane by co-localising with exocyst protein complexes. Recently, there have been emerging reports of several human and animal diseases linked to septins and abnormalities in their functions. Most of our understanding of the significance of septins during microbial diseases mainly pertains to their roles in bacterial infections but not viruses. This present review focuses on the known roles of septins in host-viral interactions as detailed by various studies.


Subject(s)
Septins , Virus Diseases , Animals , Humans , Septins/genetics , Septins/metabolism , GTP-Binding Proteins , Cytoskeleton/metabolism , Cytoplasm/metabolism , Virus Diseases/genetics
15.
mBio ; 15(5): e0069224, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38567955

ABSTRACT

Defective viral genomes (DVGs) are truncated derivatives of their parental viral genomes generated during an aberrant round of viral genomic replication. Distinct classes of DVGs have been identified in most families of both positive- and negative-sense RNA viruses. Importantly, DVGs have been detected in clinical samples from virally infected individuals and an emerging body of association studies implicates DVGs in shaping the severity of disease caused by viral infections in humans. Consequently, there is growing interest in understanding the molecular mechanisms of de novo DVG generation, how DVGs interact with the innate immune system, and harnessing DVGs as novel therapeutics and vaccine adjuvants to attenuate viral pathogenesis. This minireview focuses on single-stranded RNA viruses (excluding retroviridae), and summarizes the current knowledge of DVG generation, the functions and diversity of DVG species, the roles DVGs play in influencing disease progression, and their application as antivirals and vaccine adjuvants.


Subject(s)
Defective Viruses , Genome, Viral , Humans , Defective Viruses/genetics , Virus Replication , Animals , RNA Viruses/genetics , Immunity, Innate , Virus Diseases/virology , Virus Diseases/genetics , Virus Diseases/immunology
16.
Biochim Biophys Acta Gene Regul Mech ; 1867(2): 195023, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38513793

ABSTRACT

Long non-coding RNAs (lncRNAs) are RNA transcripts of size >200 bp that do not translate into proteins. Emerging data revealed that viral infection results in systemic changes in the host at transcriptional level. These include alterations in the lncRNA expression levels and triggering of antiviral immune response involving several effector molecules and diverse signalling pathways. Thus, lncRNAs have emerged as an essential mediatory element at distinct phases of the virus infection cycle. The complete eradication of the viral disease requires more precise and novel approach, thus manipulation of the lncRNAs could be one of them. This review shed light upon the existing knowledge of lncRNAs wherein the implication of differentially expressed lncRNAs in blood-borne, air-borne, and vector-borne viral diseases and its promising therapeutic applications under clinical settings has been discussed. It further enhances our understanding of the complex interplay at host-pathogen interface with respect to lncRNA expression and function.


Subject(s)
RNA, Long Noncoding , Virus Diseases , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Humans , Virus Diseases/genetics , Host-Pathogen Interactions/genetics , Animals , Transcription, Genetic , Gene Expression Regulation
17.
Virus Res ; 341: 199314, 2024 03.
Article in English | MEDLINE | ID: mdl-38211734

ABSTRACT

The CRISPR/Cas system, identified as a type of bacterial adaptive immune system, have attracted significant attention due to its remarkable ability to precisely detect and eliminate foreign genetic material and nucleic acids. Expanding upon these inherent capabilities, recent investigations have unveiled the potential of reprogrammed CRISPR/Cas 9, 12, and 13 systems for treating viral infections associated with human diseases, specifically targeting DNA and RNA viruses, respectively. Of particular interest is the RNA virus responsible for the recent global outbreak of coronavirus disease 2019 (COVID-19), which presents a substantial public health risk, coupled with limited efficacy of current prophylactic and therapeutic techniques. In this regard, the utilization of CRISPR/Cas technology offers a promising gene editing approach to overcome the limitations of conventional methods in managing viral infections. This comprehensive review provides an overview of the latest CRISPR/Cas-based therapeutic and vaccine strategies employed to combat human viral infections. Additionally, we discuss significant challenges and offer insights into the future prospects of this cutting-edge gene editing technology.


Subject(s)
RNA Viruses , Vaccines , Virus Diseases , Viruses , Humans , CRISPR-Cas Systems , Gene Editing/methods , Viruses/genetics , Virus Diseases/prevention & control , Virus Diseases/genetics , RNA Viruses/genetics
18.
Front Cell Infect Microbiol ; 14: 1308362, 2024.
Article in English | MEDLINE | ID: mdl-38476167

ABSTRACT

Infectious peritonitis is a leading cause of peritoneal functional impairment and a primary factor for therapy discontinuation in peritoneal dialysis (PD) patients. Although bacterial infections are a common cause of peritonitis episodes, emerging evidence suggests a role for viral pathogens. Toll-like receptors (TLRs) specifically recognize conserved pathogen-associated molecular patterns (PAMPs) from bacteria, viruses, and fungi, thereby orchestrating the ensuing inflammatory/immune responses. Among TLRs, TLR3 recognizes viral dsRNA and triggers antiviral response cascades upon activation. Epigenetic regulation, mediated by histone deacetylase (HDAC), has been demonstrated to control several cellular functions in response to various extracellular stimuli. Employing epigenetic target modulators, such as epidrugs, is a current therapeutic option in several cancers and holds promise in treating viral diseases. This study aims to elucidate the impact of TLR3 stimulation on the plasticity of human mesothelial cells (MCs) in PD patients and to investigate the effects of HDAC1-3 inhibition. Treatment of MCs from PD patients with the TLR3 agonist polyinosinic:polycytidylic acid (Poly(I:C)), led to the acquisition of a bona fide mesothelial-to-mesenchymal transition (MMT) characterized by the upregulation of mesenchymal genes and loss of epithelial-like features. Moreover, Poly(I:C) modulated the expression of several inflammatory cytokines and chemokines. A quantitative proteomic analysis of MCs treated with MS-275, an HDAC1-3 inhibitor, unveiled altered expression of several proteins, including inflammatory cytokines/chemokines and interferon-stimulated genes (ISGs). Treatment with MS-275 facilitated MMT reversal and inhibited the interferon signature, which was associated with reduced STAT1 phosphorylation. However, the modulation of inflammatory cytokine/chemokine production was not univocal, as IL-6 and CXCL8 were augmented while TNF-α and CXCL10 were decreased. Collectively, our findings underline the significance of viral infections in acquiring a mesenchymal-like phenotype by MCs and the potential consequences of virus-associated peritonitis episodes for PD patients. The observed promotion of MMT reversal and interferon response inhibition by an HDAC1-3 inhibitor, albeit without a general impact on inflammatory cytokine production, has translational implications deserving further analysis.


Subject(s)
Benzamides , Interferon Type I , Peritonitis , Pyridines , Virus Diseases , Humans , Interferon Type I/metabolism , Toll-Like Receptor 3/metabolism , Epigenesis, Genetic , Proteomics , Cytokines/metabolism , Chemokines/metabolism , Poly I-C/pharmacology , Toll-Like Receptors/metabolism , Virus Diseases/genetics , Phenotype , Histone Deacetylase 1/genetics , Histone Deacetylase 1/metabolism
19.
Nucleus ; 15(1): 2350178, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38717150

ABSTRACT

Paraspeckles are non-membranous subnuclear bodies, formed through the interaction between the architectural long non-coding RNA (lncRNA) nuclear paraspeckle assembly transcript 1 (NEAT1) and specific RNA-binding proteins, including the three Drosophila Behavior/Human Splicing (DBHS) family members (PSPC1 (Paraspeckle Component 1), SFPQ (Splicing Factor Proline and Glutamine Rich) and NONO (Non-POU domain-containing octamer-binding protein)). Paraspeckle components were found to impact viral infections through various mechanisms, such as induction of antiviral gene expression, IRES-mediated translation, or viral mRNA polyadenylation. A complex involving NEAT1 RNA and paraspeckle proteins was also found to modulate interferon gene transcription after nuclear DNA sensing, through the activation of the cGAS-STING axis. This review aims to provide an overview on how these elements actively contribute to the dynamics of viral infections.


Subject(s)
Virus Diseases , Humans , Virus Diseases/metabolism , Virus Diseases/genetics , Virus Diseases/virology , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics
20.
Methods Mol Biol ; 2813: 79-94, 2024.
Article in English | MEDLINE | ID: mdl-38888771

ABSTRACT

RNA sequencing (RNA-seq) analysis of virus-infected host cells enables researchers to study a wide range of phenomena involving host-virus interactions. This includes genomic analysis of the viral population itself, as well as analysis of the transcriptional dynamics of the virus and host during infection. In this chapter, we provide a guide for researchers interested in performing RNA-seq data analysis of virus-infected host cells or cell lines. We outline several bioinformatic protocols for quantifying viral abundance, assembling viral genomes from mixed samples, and performing differential expression analysis, among other common workflows. These workflows can be used as starting points for researchers aiming to analyze RNA-seq datasets of mixed samples containing both host and viral RNA, such as virus-infected cell lines or clinical samples.


Subject(s)
Computational Biology , RNA-Seq , Humans , RNA-Seq/methods , Computational Biology/methods , RNA, Viral/genetics , Host-Pathogen Interactions/genetics , Gene Expression Profiling/methods , Sequence Analysis, RNA/methods , Transcriptome , Genome, Viral , Software , Viruses/genetics , Virus Diseases/virology , Virus Diseases/genetics , High-Throughput Nucleotide Sequencing/methods , Cell Line
SELECTION OF CITATIONS
SEARCH DETAIL