Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.918
Filter
Add more filters

Publication year range
1.
Nature ; 620(7976): 1037-1046, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37612505

ABSTRACT

Speech neuroprostheses have the potential to restore communication to people living with paralysis, but naturalistic speed and expressivity are elusive1. Here we use high-density surface recordings of the speech cortex in a clinical-trial participant with severe limb and vocal paralysis to achieve high-performance real-time decoding across three complementary speech-related output modalities: text, speech audio and facial-avatar animation. We trained and evaluated deep-learning models using neural data collected as the participant attempted to silently speak sentences. For text, we demonstrate accurate and rapid large-vocabulary decoding with a median rate of 78 words per minute and median word error rate of 25%. For speech audio, we demonstrate intelligible and rapid speech synthesis and personalization to the participant's pre-injury voice. For facial-avatar animation, we demonstrate the control of virtual orofacial movements for speech and non-speech communicative gestures. The decoders reached high performance with less than two weeks of training. Our findings introduce a multimodal speech-neuroprosthetic approach that has substantial promise to restore full, embodied communication to people living with severe paralysis.


Subject(s)
Face , Neural Prostheses , Paralysis , Speech , Humans , Cerebral Cortex/physiology , Cerebral Cortex/physiopathology , Clinical Trials as Topic , Communication , Deep Learning , Gestures , Movement , Neural Prostheses/standards , Paralysis/physiopathology , Paralysis/rehabilitation , Vocabulary , Voice
2.
Proc Natl Acad Sci U S A ; 121(26): e2318361121, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38889147

ABSTRACT

When listeners hear a voice, they rapidly form a complex first impression of who the person behind that voice might be. We characterize how these multivariate first impressions from voices emerge over time across different levels of abstraction using electroencephalography and representational similarity analysis. We find that for eight perceived physical (gender, age, and health), trait (attractiveness, dominance, and trustworthiness), and social characteristics (educatedness and professionalism), representations emerge early (~80 ms after stimulus onset), with voice acoustics contributing to those representations between ~100 ms and 400 ms. While impressions of person characteristics are highly correlated, we can find evidence for highly abstracted, independent representations of individual person characteristics. These abstracted representationse merge gradually over time. That is, representations of physical characteristics (age, gender) arise early (from ~120 ms), while representations of some trait and social characteristics emerge later (~360 ms onward). The findings align with recent theoretical models and shed light on the computations underpinning person perception from voices.


Subject(s)
Auditory Perception , Brain , Electroencephalography , Voice , Humans , Male , Female , Voice/physiology , Adult , Brain/physiology , Auditory Perception/physiology , Young Adult , Social Perception
3.
Proc Natl Acad Sci U S A ; 121(25): e2405588121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38861607

ABSTRACT

Many animals can extract useful information from the vocalizations of other species. Neuroimaging studies have evidenced areas sensitive to conspecific vocalizations in the cerebral cortex of primates, but how these areas process heterospecific vocalizations remains unclear. Using fMRI-guided electrophysiology, we recorded the spiking activity of individual neurons in the anterior temporal voice patches of two macaques while they listened to complex sounds including vocalizations from several species. In addition to cells selective for conspecific macaque vocalizations, we identified an unsuspected subpopulation of neurons with strong selectivity for human voice, not merely explained by spectral or temporal structure of the sounds. The auditory representational geometry implemented by these neurons was strongly related to that measured in the human voice areas with neuroimaging and only weakly to low-level acoustical structure. These findings provide new insights into the neural mechanisms involved in auditory expertise and the evolution of communication systems in primates.


Subject(s)
Auditory Perception , Magnetic Resonance Imaging , Neurons , Vocalization, Animal , Voice , Animals , Humans , Neurons/physiology , Voice/physiology , Magnetic Resonance Imaging/methods , Vocalization, Animal/physiology , Auditory Perception/physiology , Male , Macaca mulatta , Brain/physiology , Acoustic Stimulation , Brain Mapping/methods
4.
Proc Natl Acad Sci U S A ; 120(17): e2218367120, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37068255

ABSTRACT

Italian is sexy, German is rough-but how about Páez or Tamil? Are there universal phonesthetic judgments based purely on the sound of a language, or are preferences attributable to language-external factors such as familiarity and cultural stereotypes? We collected 2,125 recordings of 228 languages from 43 language families, including 5 to 11 speakers of each language to control for personal vocal attractiveness, and asked 820 native speakers of English, Chinese, or Semitic languages to indicate how much they liked these languages. We found a strong preference for languages perceived as familiar, even when they were misidentified, a variety of cultural-geographical biases, and a preference for breathy female voices. The scores by English, Chinese, and Semitic speakers were weakly correlated, indicating some cross-cultural concordance in phonesthetic judgments, but overall there was little consensus between raters about which languages sounded more beautiful, and average scores per language remained within ±2% after accounting for confounds related to familiarity and voice quality of individual speakers. None of the tested phonetic features-the presence of specific phonemic classes, the overall size of phonetic repertoire, its typicality and similarity to the listener's first language-were robust predictors of pleasantness ratings, apart from a possible slight preference for nontonal languages. While population-level phonesthetic preferences may exist, their contribution to perceptual judgments of short speech recordings appears to be minor compared to purely personal preferences, the speaker's voice quality, and perceived resemblance to other languages culturally branded as beautiful or ugly.


Subject(s)
Speech Perception , Voice , Humans , Female , India , Language , Sound , Speech
5.
Proc Natl Acad Sci U S A ; 120(9): e2219394120, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36802437

ABSTRACT

Vocal fatigue is a measurable form of performance fatigue resulting from overuse of the voice and is characterized by negative vocal adaptation. Vocal dose refers to cumulative exposure of the vocal fold tissue to vibration. Professionals with high vocal demands, such as singers and teachers, are especially prone to vocal fatigue. Failure to adjust habits can lead to compensatory lapses in vocal technique and an increased risk of vocal fold injury. Quantifying and recording vocal dose to inform individuals about potential overuse is an important step toward mitigating vocal fatigue. Previous work establishes vocal dosimetry methods, that is, processes to quantify vocal fold vibration dose but with bulky, wired devices that are not amenable to continuous use during natural daily activities; these previously reported systems also provide limited mechanisms for real-time user feedback. This study introduces a soft, wireless, skin-conformal technology that gently mounts on the upper chest to capture vibratory responses associated with vocalization in a manner that is immune to ambient noises. Pairing with a separate, wirelessly linked device supports haptic feedback to the user based on quantitative thresholds in vocal usage. A machine learning-based approach enables precise vocal dosimetry from the recorded data, to support personalized, real-time quantitation and feedback. These systems have strong potential to guide healthy behaviors in vocal use.


Subject(s)
Singing , Voice Disorders , Voice , Humans , Feedback , Voice Disorders/etiology , Voice/physiology , Vocal Cords/physiology
6.
PLoS Biol ; 20(7): e3001742, 2022 07.
Article in English | MEDLINE | ID: mdl-35905075

ABSTRACT

Categorising voices is crucial for auditory-based social interactions. A recent study by Rupp and colleagues in PLOS Biology capitalises on human intracranial recordings to describe the spatiotemporal pattern of neural activity leading to voice-selective responses in associative auditory cortex.


Subject(s)
Auditory Perception , Voice , Auditory Perception/physiology , Brain/physiology , Brain Mapping , Humans , Temporal Lobe , Voice/physiology
7.
PLoS Biol ; 20(7): e3001675, 2022 07.
Article in English | MEDLINE | ID: mdl-35900975

ABSTRACT

The ability to recognize abstract features of voice during auditory perception is an intricate feat of human audition. For the listener, this occurs in near-automatic fashion to seamlessly extract complex cues from a highly variable auditory signal. Voice perception depends on specialized regions of auditory cortex, including superior temporal gyrus (STG) and superior temporal sulcus (STS). However, the nature of voice encoding at the cortical level remains poorly understood. We leverage intracerebral recordings across human auditory cortex during presentation of voice and nonvoice acoustic stimuli to examine voice encoding at the cortical level in 8 patient-participants undergoing epilepsy surgery evaluation. We show that voice selectivity increases along the auditory hierarchy from supratemporal plane (STP) to the STG and STS. Results show accurate decoding of vocalizations from human auditory cortical activity even in the complete absence of linguistic content. These findings show an early, less-selective temporal window of neural activity in the STG and STS followed by a sustained, strongly voice-selective window. Encoding models demonstrate divergence in the encoding of acoustic features along the auditory hierarchy, wherein STG/STS responses are best explained by voice category and acoustics, as opposed to acoustic features of voice stimuli alone. This is in contrast to neural activity recorded from STP, in which responses were accounted for by acoustic features. These findings support a model of voice perception that engages categorical encoding mechanisms within STG and STS to facilitate feature extraction.


Subject(s)
Auditory Cortex , Speech Perception , Voice , Acoustic Stimulation , Auditory Cortex/physiology , Auditory Perception/physiology , Brain Mapping/methods , Humans , Magnetic Resonance Imaging , Speech Perception/physiology , Temporal Lobe/physiology
8.
PLoS Comput Biol ; 20(2): e1011849, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38315733

ABSTRACT

Sleep deprivation has an ever-increasing impact on individuals and societies. Yet, to date, there is no quick and objective test for sleep deprivation. Here, we used automated acoustic analyses of the voice to detect sleep deprivation. Building on current machine-learning approaches, we focused on interpretability by introducing two novel ideas: the use of a fully generic auditory representation as input feature space, combined with an interpretation technique based on reverse correlation. The auditory representation consisted of a spectro-temporal modulation analysis derived from neurophysiology. The interpretation method aimed to reveal the regions of the auditory representation that supported the classifiers' decisions. Results showed that generic auditory features could be used to detect sleep deprivation successfully, with an accuracy comparable to state-of-the-art speech features. Furthermore, the interpretation revealed two distinct effects of sleep deprivation on the voice: changes in slow temporal modulations related to prosody and changes in spectral features related to voice quality. Importantly, the relative balance of the two effects varied widely across individuals, even though the amount of sleep deprivation was controlled, thus confirming the need to characterize sleep deprivation at the individual level. Moreover, while the prosody factor correlated with subjective sleepiness reports, the voice quality factor did not, consistent with the presence of both explicit and implicit consequences of sleep deprivation. Overall, the findings show that individual effects of sleep deprivation may be observed in vocal biomarkers. Future investigations correlating such markers with objective physiological measures of sleep deprivation could enable "sleep stethoscopes" for the cost-effective diagnosis of the individual effects of sleep deprivation.


Subject(s)
Sleep Deprivation , Voice , Humans , Sleep , Voice Quality , Wakefulness
9.
Cereb Cortex ; 34(1)2024 01 14.
Article in English | MEDLINE | ID: mdl-38142293

ABSTRACT

Selective attention to one speaker in multi-talker environments can be affected by the acoustic and semantic properties of speech. One highly ecological feature of speech that has the potential to assist in selective attention is voice familiarity. Here, we tested how voice familiarity interacts with selective attention by measuring the neural speech-tracking response to both target and non-target speech in a dichotic listening "Cocktail Party" paradigm. We measured Magnetoencephalography from n = 33 participants, presented with concurrent narratives in two different voices, and instructed to pay attention to one ear ("target") and ignore the other ("non-target"). Participants were familiarized with one of the voices during the week prior to the experiment, rendering this voice familiar to them. Using multivariate speech-tracking analysis we estimated the neural responses to both stimuli and replicate their well-established modulation by selective attention. Importantly, speech-tracking was also affected by voice familiarity, showing enhanced response for target speech and reduced response for non-target speech in the contra-lateral hemisphere, when these were in a familiar vs. an unfamiliar voice. These findings offer valuable insight into how voice familiarity, and by extension, auditory-semantics, interact with goal-driven attention, and facilitate perceptual organization and speech processing in noisy environments.


Subject(s)
Speech Perception , Voice , Humans , Speech , Speech Perception/physiology , Recognition, Psychology/physiology , Semantics
10.
Cereb Cortex ; 34(9)2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39270675

ABSTRACT

The human auditory system includes discrete cortical patches and selective regions for processing voice information, including emotional prosody. Although behavioral evidence indicates individuals with autism spectrum disorder (ASD) have difficulties in recognizing emotional prosody, it remains understudied whether and how localized voice patches (VPs) and other voice-sensitive regions are functionally altered in processing prosody. This fMRI study investigated neural responses to prosodic voices in 25 adult males with ASD and 33 controls using voices of anger, sadness, and happiness with varying degrees of emotion. We used a functional region-of-interest analysis with an independent voice localizer to identify multiple VPs from combined ASD and control data. We observed a general response reduction to prosodic voices in specific VPs of left posterior temporal VP (TVP) and right middle TVP. Reduced cortical responses in right middle TVP were consistently correlated with the severity of autistic symptoms for all examined emotional prosodies. Moreover, representation similarity analysis revealed the reduced effect of emotional intensity in multivoxel activation patterns in left anterior superior temporal cortex only for sad prosody. These results indicate reduced response magnitudes to voice prosodies in specific TVPs and altered emotion intensity-dependent multivoxel activation patterns in adult ASDs, potentially underlying their socio-communicative difficulties.


Subject(s)
Autism Spectrum Disorder , Emotions , Magnetic Resonance Imaging , Temporal Lobe , Voice , Humans , Male , Autism Spectrum Disorder/physiopathology , Autism Spectrum Disorder/diagnostic imaging , Autism Spectrum Disorder/psychology , Temporal Lobe/physiopathology , Temporal Lobe/diagnostic imaging , Adult , Emotions/physiology , Young Adult , Speech Perception/physiology , Brain Mapping/methods , Acoustic Stimulation , Auditory Perception/physiology
11.
Eur J Neurosci ; 60(2): 4078-4094, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38777332

ABSTRACT

Although the attractiveness of voices plays an important role in social interactions, it is unclear how voice attractiveness and social interest influence social decision-making. Here, we combined the ultimatum game with recording event-related brain potentials (ERPs) and examined the effect of attractive versus unattractive voices of the proposers, expressing positive versus negative social interest ("I like you" vs. "I don't like you"), on the acceptance of the proposal. Overall, fair offers were accepted at significantly higher rates than unfair offers, and high voice attractiveness increased acceptance rates for all proposals. In ERPs in response to the voices, their attractiveness and expressed social interests yielded early additive effects in the N1 component, followed by interactions in the subsequent P2, P3 and N400 components. More importantly, unfair offers elicited a larger Medial Frontal Negativity (MFN) than fair offers but only when the proposer's voice was unattractive or when the voice carried positive social interest. These results suggest that both voice attractiveness and social interest moderate social decision-making and there is a similar "beauty premium" for voices as for faces.


Subject(s)
Decision Making , Evoked Potentials , Voice , Humans , Male , Female , Evoked Potentials/physiology , Voice/physiology , Decision Making/physiology , Young Adult , Adult , Electroencephalography/methods , Brain/physiology , Adolescent
12.
Hum Brain Mapp ; 45(10): e26724, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39001584

ABSTRACT

Music is ubiquitous, both in its instrumental and vocal forms. While speech perception at birth has been at the core of an extensive corpus of research, the origins of the ability to discriminate instrumental or vocal melodies is still not well investigated. In previous studies comparing vocal and musical perception, the vocal stimuli were mainly related to speaking, including language, and not to the non-language singing voice. In the present study, to better compare a melodic instrumental line with the voice, we used singing as a comparison stimulus, to reduce the dissimilarities between the two stimuli as much as possible, separating language perception from vocal musical perception. In the present study, 45 newborns were scanned, 10 full-term born infants and 35 preterm infants at term-equivalent age (mean gestational age at test = 40.17 weeks, SD = 0.44) using functional magnetic resonance imaging while listening to five melodies played by a musical instrument (flute) or sung by a female voice. To examine the dynamic task-based effective connectivity, we employed a psychophysiological interaction of co-activation patterns (PPI-CAPs) analysis, using the auditory cortices as seed region, to investigate moment-to-moment changes in task-driven modulation of cortical activity during an fMRI task. Our findings reveal condition-specific, dynamically occurring patterns of co-activation (PPI-CAPs). During the vocal condition, the auditory cortex co-activates with the sensorimotor and salience networks, while during the instrumental condition, it co-activates with the visual cortex and the superior frontal cortex. Our results show that the vocal stimulus elicits sensorimotor aspects of the auditory perception and is processed as a more salient stimulus while the instrumental condition activated higher-order cognitive and visuo-spatial networks. Common neural signatures for both auditory stimuli were found in the precuneus and posterior cingulate gyrus. Finally, this study adds knowledge on the dynamic brain connectivity underlying the newborns capability of early and specialized auditory processing, highlighting the relevance of dynamic approaches to study brain function in newborn populations.


Subject(s)
Auditory Perception , Magnetic Resonance Imaging , Music , Humans , Female , Male , Auditory Perception/physiology , Infant, Newborn , Singing/physiology , Infant, Premature/physiology , Brain Mapping , Acoustic Stimulation , Brain/physiology , Brain/diagnostic imaging , Voice/physiology
13.
Psychol Sci ; 35(3): 250-262, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38289294

ABSTRACT

Fundamental frequency ( fo) is the most perceptually salient vocal acoustic parameter, yet little is known about how its perceptual influence varies across societies. We examined how fo affects key social perceptions and how socioecological variables modulate these effects in 2,647 adult listeners sampled from 44 locations across 22 nations. Low male fo increased men's perceptions of formidability and prestige, especially in societies with higher homicide rates and greater relational mobility in which male intrasexual competition may be more intense and rapid identification of high-status competitors may be exigent. High female fo increased women's perceptions of flirtatiousness where relational mobility was lower and threats to mating relationships may be greater. These results indicate that the influence of fo on social perceptions depends on socioecological variables, including those related to competition for status and mates.


Subject(s)
Voice , Adult , Humans , Male , Female , Homicide , Social Perception , Sexual Partners
14.
Psychol Sci ; 35(5): 543-557, 2024 May.
Article in English | MEDLINE | ID: mdl-38620057

ABSTRACT

Recently, gender-ambiguous (nonbinary) voices have been added to voice assistants to combat gender stereotypes and foster inclusion. However, if people react negatively to such voices, these laudable efforts may be counterproductive. In five preregistered studies (N = 3,684 adult participants) we found that people do react negatively, rating products described by narrators with gender-ambiguous voices less favorably than when they are described by clearly male or female narrators. The voices create a feeling of unease, or social disfluency, that affects evaluations of the products being described. These effects are best explained by low familiarity with voices that sound ambiguous. Thus, initial negative reactions can be overcome with more exposure.


Subject(s)
Voice , Humans , Female , Male , Adult , Young Adult , Stereotyping , Social Perception , Gender Identity , Adolescent , Middle Aged
15.
Psychol Med ; 54(3): 569-581, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37779256

ABSTRACT

BACKGROUND: Inducing hallucinations under controlled experimental conditions in non-hallucinating individuals represents a novel research avenue oriented toward understanding complex hallucinatory phenomena, avoiding confounds observed in patients. Auditory-verbal hallucinations (AVH) are one of the most common and distressing psychotic symptoms, whose etiology remains largely unknown. Two prominent accounts portray AVH either as a deficit in auditory-verbal self-monitoring, or as a result of overly strong perceptual priors. METHODS: In order to test both theoretical models and evaluate their potential integration, we developed a robotic procedure able to induce self-monitoring perturbations (consisting of sensorimotor conflicts between poking movements and corresponding tactile feedback) and a perceptual prior associated with otherness sensations (i.e. feeling the presence of a non-existing another person). RESULTS: Here, in two independent studies, we show that this robotic procedure led to AVH-like phenomena in healthy individuals, quantified as an increase in false alarm rate in a voice detection task. Robotically-induced AVH-like sensations were further associated with delusional ideation and to both AVH accounts. Specifically, a condition with stronger sensorimotor conflicts induced more AVH-like sensations (self-monitoring), while, in the otherness-related experimental condition, there were more AVH-like sensations when participants were detecting other-voice stimuli, compared to detecting self-voice stimuli (strong-priors). CONCLUSIONS: By demonstrating an experimental procedure able to induce AVH-like sensations in non-hallucinating individuals, we shed new light on AVH phenomenology, thereby integrating self-monitoring and strong-priors accounts.


Subject(s)
Psychotic Disorders , Voice , Humans , Hallucinations/etiology , Psychotic Disorders/diagnosis , Emotions
16.
Exp Brain Res ; 242(1): 225-239, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37999725

ABSTRACT

The present study examined opposing and following vocal responses to altered auditory feedback (AAF) to determine how damage to left-hemisphere brain networks impairs the internal forward model and feedback mechanisms in post-stroke aphasia. Forty-nine subjects with aphasia and sixty age-matched controls performed speech vowel production tasks while their auditory feedback was altered using randomized ± 100 cents upward and downward pitch-shift stimuli. Data analysis revealed that when vocal responses were averaged across all trials (i.e., opposing and following), the overall magnitude of vocal compensation was significantly reduced in the aphasia group compared with controls. In addition, when vocal responses were analyzed separately for opposing and following trials, subjects in the aphasia group showed a significantly lower percentage of opposing and higher percentage of following vocal response trials compared with controls, particularly for the upward pitch-shift stimuli. However, there was no significant difference in the magnitude of opposing and following vocal responses between the two groups. These findings further support previous evidence on the impairment of vocal sensorimotor control in aphasia and provide new insights into the distinctive impact of left-hemisphere stroke on the internal forward model and feedback mechanisms. In this context, we propose that the lower percentage of opposing responses in aphasia may be accounted for by deficits in feedback-dependent mechanisms of audio-vocal integration and motor control. In addition, the higher percentage of following responses may reflect aberrantly increased reliance of the speech system on the internal forward model for generating sensory predictions during vocal error detection and motor control.


Subject(s)
Aphasia , Voice , Humans , Feedback , Pitch Perception/physiology , Voice/physiology , Speech/physiology , Feedback, Sensory/physiology , Aphasia/etiology
17.
Brain ; 146(5): 1775-1790, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36746488

ABSTRACT

Classical neural architecture models of speech production propose a single system centred on Broca's area coordinating all the vocal articulators from lips to larynx. Modern evidence has challenged both the idea that Broca's area is involved in motor speech coordination and that there is only one coordination network. Drawing on a wide range of evidence, here we propose a dual speech coordination model in which laryngeal control of pitch-related aspects of prosody and song are coordinated by a hierarchically organized dorsolateral system while supralaryngeal articulation at the phonetic/syllabic level is coordinated by a more ventral system posterior to Broca's area. We argue further that these two speech production subsystems have distinguishable evolutionary histories and discuss the implications for models of language evolution.


Subject(s)
Speech , Voice , Humans , Broca Area , Phonetics , Language
18.
Ear Hear ; 45(4): 952-968, 2024.
Article in English | MEDLINE | ID: mdl-38616318

ABSTRACT

OBJECTIVES: Postlingually deaf adults with cochlear implants (CIs) have difficulties with perceiving differences in speakers' voice characteristics and benefit little from voice differences for the perception of speech in competing speech. However, not much is known yet about the perception and use of voice characteristics in prelingually deaf implanted children with CIs. Unlike CI adults, most CI children became deaf during the acquisition of language. Extensive neuroplastic changes during childhood could make CI children better at using the available acoustic cues than CI adults, or the lack of exposure to a normal acoustic speech signal could make it more difficult for them to learn which acoustic cues they should attend to. This study aimed to examine to what degree CI children can perceive voice cues and benefit from voice differences for perceiving speech in competing speech, comparing their abilities to those of normal-hearing (NH) children and CI adults. DESIGN: CI children's voice cue discrimination (experiment 1), voice gender categorization (experiment 2), and benefit from target-masker voice differences for perceiving speech in competing speech (experiment 3) were examined in three experiments. The main focus was on the perception of mean fundamental frequency (F0) and vocal-tract length (VTL), the primary acoustic cues related to speakers' anatomy and perceived voice characteristics, such as voice gender. RESULTS: CI children's F0 and VTL discrimination thresholds indicated lower sensitivity to differences compared with their NH-age-equivalent peers, but their mean discrimination thresholds of 5.92 semitones (st) for F0 and 4.10 st for VTL indicated higher sensitivity than postlingually deaf CI adults with mean thresholds of 9.19 st for F0 and 7.19 st for VTL. Furthermore, CI children's perceptual weighting of F0 and VTL cues for voice gender categorization closely resembled that of their NH-age-equivalent peers, in contrast with CI adults. Finally, CI children had more difficulties in perceiving speech in competing speech than their NH-age-equivalent peers, but they performed better than CI adults. Unlike CI adults, CI children showed a benefit from target-masker voice differences in F0 and VTL, similar to NH children. CONCLUSION: Although CI children's F0 and VTL voice discrimination scores were overall lower than those of NH children, their weighting of F0 and VTL cues for voice gender categorization and their benefit from target-masker differences in F0 and VTL resembled that of NH children. Together, these results suggest that prelingually deaf implanted CI children can effectively utilize spectrotemporally degraded F0 and VTL cues for voice and speech perception, generally outperforming postlingually deaf CI adults in comparable tasks. These findings underscore the presence of F0 and VTL cues in the CI signal to a certain degree and suggest other factors contributing to the perception challenges faced by CI adults.


Subject(s)
Cochlear Implantation , Cochlear Implants , Cues , Deafness , Speech Perception , Humans , Deafness/rehabilitation , Male , Female , Child , Adult , Young Adult , Adolescent , Voice/physiology , Case-Control Studies , Child, Preschool , Middle Aged
19.
Cereb Cortex ; 33(3): 709-728, 2023 01 05.
Article in English | MEDLINE | ID: mdl-35296892

ABSTRACT

During social interactions, speakers signal information about their emotional state through their voice, which is known as emotional prosody. Little is known regarding the precise brain systems underlying emotional prosody decoding in children and whether accurate neural decoding of these vocal cues is linked to social skills. Here, we address critical gaps in the developmental literature by investigating neural representations of prosody and their links to behavior in children. Multivariate pattern analysis revealed that representations in the bilateral middle and posterior superior temporal sulcus (STS) divisions of voice-sensitive auditory cortex decode emotional prosody information in children. Crucially, emotional prosody decoding in middle STS was correlated with standardized measures of social communication abilities; more accurate decoding of prosody stimuli in the STS was predictive of greater social communication abilities in children. Moreover, social communication abilities were specifically related to decoding sadness, highlighting the importance of tuning in to negative emotional vocal cues for strengthening social responsiveness and functioning. Findings bridge an important theoretical gap by showing that the ability of the voice-sensitive cortex to detect emotional cues in speech is predictive of a child's social skills, including the ability to relate and interact with others.


Subject(s)
Auditory Cortex , Speech Perception , Voice , Humans , Child , Social Skills , Magnetic Resonance Imaging , Emotions , Communication
20.
Cereb Cortex ; 33(4): 1170-1185, 2023 02 07.
Article in English | MEDLINE | ID: mdl-35348635

ABSTRACT

Voice signaling is integral to human communication, and a cortical voice area seemed to support the discrimination of voices from other auditory objects. This large cortical voice area in the auditory cortex (AC) was suggested to process voices selectively, but its functional differentiation remained elusive. We used neuroimaging while humans processed voices and nonvoice sounds, and artificial sounds that mimicked certain voice sound features. First and surprisingly, specific auditory cortical voice processing beyond basic acoustic sound analyses is only supported by a very small portion of the originally described voice area in higher-order AC located centrally in superior Te3. Second, besides this core voice processing area, large parts of the remaining voice area in low- and higher-order AC only accessorily process voices and might primarily pick up nonspecific psychoacoustic differences between voices and nonvoices. Third, a specific subfield of low-order AC seems to specifically decode acoustic sound features that are relevant but not exclusive for voice detection. Taken together, the previously defined voice area might have been overestimated since cortical support for human voice processing seems rather restricted. Cortical voice processing also seems to be functionally more diverse and embedded in broader functional principles of the human auditory system.


Subject(s)
Auditory Cortex , Voice , Humans , Acoustic Stimulation/methods , Auditory Perception , Sound , Magnetic Resonance Imaging/methods
SELECTION OF CITATIONS
SEARCH DETAIL