Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.113
Filter
Add more filters

Publication year range
1.
Cell ; 186(10): 2127-2143.e22, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37098344

ABSTRACT

Pathogen infection and tissue injury are universal insults that disrupt homeostasis. Innate immunity senses microbial infections and induces cytokines/chemokines to activate resistance mechanisms. Here, we show that, in contrast to most pathogen-induced cytokines, interleukin-24 (IL-24) is predominately induced by barrier epithelial progenitors after tissue injury and is independent of microbiome or adaptive immunity. Moreover, Il24 ablation in mice impedes not only epidermal proliferation and re-epithelialization but also capillary and fibroblast regeneration within the dermal wound bed. Conversely, ectopic IL-24 induction in the homeostatic epidermis triggers global epithelial-mesenchymal tissue repair responses. Mechanistically, Il24 expression depends upon both epithelial IL24-receptor/STAT3 signaling and hypoxia-stabilized HIF1α, which converge following injury to trigger autocrine and paracrine signaling involving IL-24-mediated receptor signaling and metabolic regulation. Thus, parallel to innate immune sensing of pathogens to resolve infections, epithelial stem cells sense injury signals to orchestrate IL-24-mediated tissue repair.


Subject(s)
Cytokines , Wounds and Injuries , Animals , Mice , Adaptive Immunity , Chemokines , Epidermis , Immunity, Innate , Wounds and Injuries/immunology
2.
Nat Immunol ; 19(4): 327-341, 2018 04.
Article in English | MEDLINE | ID: mdl-29507356

ABSTRACT

Trauma can affect any individual at any location and at any time over a lifespan. The disruption of macrobarriers and microbarriers induces instant activation of innate immunity. The subsequent complex response, designed to limit further damage and induce healing, also represents a major driver of complications and fatal outcome after injury. This Review aims to provide basic concepts about the posttraumatic response and is focused on the interactive events of innate immunity at frequent sites of injury: the endothelium at large, and sites within the lungs, inside and outside the brain and at the gut barrier.


Subject(s)
Immunity, Innate/immunology , Wounds and Injuries/immunology , Animals , Humans
3.
Nature ; 629(8010): 174-183, 2024 May.
Article in English | MEDLINE | ID: mdl-38693412

ABSTRACT

Regular exercise promotes whole-body health and prevents disease, but the underlying molecular mechanisms are incompletely understood1-3. Here, the Molecular Transducers of Physical Activity Consortium4 profiled the temporal transcriptome, proteome, metabolome, lipidome, phosphoproteome, acetylproteome, ubiquitylproteome, epigenome and immunome in whole blood, plasma and 18 solid tissues in male and female Rattus norvegicus over eight weeks of endurance exercise training. The resulting data compendium encompasses 9,466 assays across 19 tissues, 25 molecular platforms and 4 training time points. Thousands of shared and tissue-specific molecular alterations were identified, with sex differences found in multiple tissues. Temporal multi-omic and multi-tissue analyses revealed expansive biological insights into the adaptive responses to endurance training, including widespread regulation of immune, metabolic, stress response and mitochondrial pathways. Many changes were relevant to human health, including non-alcoholic fatty liver disease, inflammatory bowel disease, cardiovascular health and tissue injury and recovery. The data and analyses presented in this study will serve as valuable resources for understanding and exploring the multi-tissue molecular effects of endurance training and are provided in a public repository ( https://motrpac-data.org/ ).


Subject(s)
Endurance Training , Multiomics , Physical Conditioning, Animal , Physical Endurance , Animals , Female , Humans , Male , Rats , Acetylation , Blood/immunology , Blood/metabolism , Cardiovascular Diseases/genetics , Cardiovascular Diseases/immunology , Cardiovascular Diseases/metabolism , Databases, Factual , Epigenome , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/metabolism , Internet , Lipidomics , Metabolome , Mitochondria/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/immunology , Non-alcoholic Fatty Liver Disease/metabolism , Organ Specificity/genetics , Organ Specificity/immunology , Organ Specificity/physiology , Phosphorylation , Physical Conditioning, Animal/physiology , Physical Endurance/genetics , Physical Endurance/physiology , Proteome/metabolism , Proteomics , Time Factors , Transcriptome/genetics , Ubiquitination , Wounds and Injuries/genetics , Wounds and Injuries/immunology , Wounds and Injuries/metabolism
4.
Immunity ; 50(4): 892-906, 2019 04 16.
Article in English | MEDLINE | ID: mdl-30995505

ABSTRACT

The interleukin 17 (IL-17) family of cytokines contains 6 structurally related cytokines, IL-17A through IL-17F. IL-17A, the prototypical member of this family, just passed the 25th anniversary of its discovery. Although less is known about IL-17B-F, IL-17A (commonly known as IL-17) has received much attention for its pro-inflammatory role in autoimmune disease. Over the past decade, however, it has become clear that the functions of IL-17 are far more nuanced than simply turning on inflammation. Accumulating evidence indicates that IL-17 has important context- and tissue-dependent roles in maintaining health during response to injury, physiological stress, and infection. Here, we discuss the functions of the IL-17 family, with a focus on the balance between the pathogenic and protective roles of IL-17 in cancer and autoimmune disease, including results of therapeutic blockade and novel aspects of IL-17 signal transduction regulation.


Subject(s)
Cytokines/immunology , Interleukin-17/immunology , Animals , Autoimmune Diseases/immunology , Autoimmune Diseases/therapy , Brain/immunology , Gene Expression Regulation , Humans , Infections/immunology , Inflammation/immunology , Interleukin-17/antagonists & inhibitors , Mice , Molecular Targeted Therapy , Neoplasms/immunology , RNA-Binding Proteins/immunology , Receptors, Interleukin-17/antagonists & inhibitors , Receptors, Interleukin-17/immunology , Signal Transduction , Stress, Physiological/immunology , T-Lymphocytes, Helper-Inducer/immunology , Wounds and Injuries/immunology
5.
Annu Rev Cell Dev Biol ; 30: 141-67, 2014.
Article in English | MEDLINE | ID: mdl-25150013

ABSTRACT

Secondary lymphoid tissues are the sites of both innate and adaptive host defense. Aside from the relatively static nonhematopoietic stromal elements and some macrophages and dendritic cells, most of the cells in these tissues are in constant movement, but the organs maintain a defined microanatomy with preferred locations for the bulk of T cells, B cells, and other lymphocytes and subsets of myeloid cells. Here we describe both the cell dynamics and spatial organization of lymph nodes and review how both physical features and molecular cues guide cell movement to optimize host defense. We emphasize the role of locality in improving the efficiency of a system requiring rare cells to find each other and interact productively through membrane-bound or short-range secreted mediators and highlight how changes in steady-state cell positioning during an infectious challenge contribute to rapid generation of productive responses.


Subject(s)
Adaptive Immunity , Immunity, Innate , Lymphoid Tissue/immunology , Animals , Cell Communication , Chemokines/physiology , Chemotaxis, Leukocyte/physiology , Dendritic Cells/immunology , Germinal Center/immunology , Germinal Center/ultrastructure , Humans , Infections/immunology , Inflammation/immunology , Lymph Nodes/immunology , Lymph Nodes/ultrastructure , Lymphocyte Activation , Lymphocyte Subsets/immunology , Lymphoid Tissue/ultrastructure , Macrophages/immunology , Neutrophils/immunology , Organ Specificity , Stromal Cells/immunology , Time Factors , Vertebrates/anatomy & histology , Vertebrates/immunology , Wounds and Injuries/immunology
6.
Nat Immunol ; 15(9): 833-8, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25086774

ABSTRACT

Immune defenses are triggered by microbe-associated molecular patterns or as a result of damage to host cells. The elicitors of immune responses in the nematode Caenorhabditis elegans are unclear. Using a genome-wide RNA-mediated interference (RNAi) screen, we identified the G protein-coupled receptor (GPCR) DCAR-1 as being required for the response to fungal infection and wounding. DCAR-1 acted in the epidermis to regulate the expression of antimicrobial peptides via a conserved p38 mitogen-activated protein kinase pathway. Through targeted metabolomics analysis we identified the tyrosine derivative 4-hydroxyphenyllactic acid (HPLA) as an endogenous ligand. Our findings reveal DCAR-1 and its cognate ligand HPLA to be triggers of the epidermal innate immune response in C. elegans and highlight the ancient role of GPCRs in host defense.


Subject(s)
Caenorhabditis elegans Proteins/immunology , Caenorhabditis elegans/immunology , Epidermis/immunology , Immunity, Innate/immunology , Mycoses/immunology , Phenylpropionates/immunology , Receptors, G-Protein-Coupled/immunology , Wounds and Injuries/immunology , Animals , Ligands , MAP Kinase Signaling System/immunology , RNA Interference
7.
Immunity ; 46(6): 943-956, 2017 06 20.
Article in English | MEDLINE | ID: mdl-28636961

ABSTRACT

The central nervous system (CNS) and its meningeal coverings accommodate a diverse myeloid compartment that includes parenchymal microglia and perivascular macrophages, as well as choroid plexus and meningeal macrophages, dendritic cells, and granulocytes. These myeloid populations enjoy an intimate relationship with the CNS, where they play an essential role in both health and disease. Although the importance of these cells is clearly recognized, their exact function in the CNS continues to be explored. Here, we review the subsets of myeloid cells that inhabit the parenchyma, meninges, and choroid plexus and discuss their roles in CNS homeostasis. We also discuss the role of these cells in various neurological pathologies, such as autoimmunity, mechanical injury, neurodegeneration, and infection. We highlight the neuroprotective nature of certain myeloid cells by emphasizing their therapeutic potential for the treatment of neurological conditions.


Subject(s)
Autoimmune Diseases/immunology , Choroid Plexus/immunology , Infections/immunology , Myeloid Cells/physiology , Neurodegenerative Diseases/immunology , Neuroimmunomodulation , Wounds and Injuries/immunology , Animals , Central Nervous System , Humans , Meninges/immunology , Neuroprotection
8.
Immunity ; 45(1): 119-30, 2016 07 19.
Article in English | MEDLINE | ID: mdl-27438769

ABSTRACT

Type 1 interferons (IFNs) promote inflammation in the skin but the mechanisms responsible for inducing these cytokines are not well understood. We found that IFN-ß was abundantly produced by epidermal keratinocytes (KCs) in psoriasis and during wound repair. KC IFN-ß production depended on stimulation of mitochondrial antiviral-signaling protein (MAVS) by the antimicrobial peptide LL37 and double stranded-RNA released from necrotic cells. MAVS activated downstream TBK1 (TANK-Binding Kinase 1)-AKT (AKT serine/threonine kinase 1)-IRF3 (interferon regulatory factor 3) signaling cascade leading to IFN-ß production and then promoted maturation of dendritic cells. In mice, the production of epidermal IFN-ß by LL37 required MAVS, and human wounded and/or psoriatic skin showed activation of MAVS-associated IRF3 and induction of MAVS and IFN-ß gene signatures. These findings show that KCs are an important source of IFN-ß and MAVS is critical to this function, and demonstrates how the epidermis triggers unwanted skin inflammation under disease conditions.


Subject(s)
Cathelicidins/metabolism , Dendritic Cells/physiology , Epidermis/pathology , Keratinocytes/immunology , Mitochondria/metabolism , Psoriasis/immunology , Wounds and Injuries/immunology , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Antimicrobial Cationic Peptides , Cathelicidins/genetics , Cell Differentiation , Cells, Cultured , Humans , Interferon-beta/metabolism , Mice , Mice, Knockout , RNA, Small Interfering/genetics , Signal Transduction , Wound Healing
9.
Retrovirology ; 21(1): 17, 2024 Nov 04.
Article in English | MEDLINE | ID: mdl-39497142

ABSTRACT

Since previous studies have suggested that the RNAs of human endogenous retrovirus (HERV) might be involved in regulating innate immunity, it is important to investigate the HERV transcriptome patterns in innate immune cell types such as CD14 + monocytes. Using single cell RNA-seq datasets from resting or stimulated PBMCs mapped to 3,220 known discrete autonomous proviral HERV loci, we found individual-specific variation in HERV transcriptomes between HERV loci in CD14 + monocytes. Analysis of paired datasets from the same individual that were cultured in vitro with LPS or without (i.e. control) revealed 36 HERV loci in CD14 + monocytes that were detected only after activation. To extend our analysis to in vivo activated CD14 + monocytes, we used two scRNA-seq datasets from studies that had demonstrated activation of circulating CD14 + monocytes in patients with physical trauma or patients hospitalized with COVID-19 infections. For direct comparison between the trauma and COVID-19 datasets, we first analyzed 1.625 billion sequence reads from a composite pangenome control of 21 normal individuals. Comparison of the sequence read depth of HERV loci in the trauma or COVID-19 samples to the pangenome control revealed that 39 loci in the COVID-19 and 11 HERV loci in the trauma samples were significantly different (Mann-Whitney U test), with 9 HERV loci shared between the COVID-19 and trauma datasets. The capacity to compare HERV loci transcriptome patterns in innate immune cells, like CD14 + monocytes, across different pathological conditions will lead to greater understanding of the physiological role of HERV expression in health and disease.


Subject(s)
COVID-19 , Endogenous Retroviruses , Lipopolysaccharide Receptors , Monocytes , SARS-CoV-2 , Transcriptome , Wounds and Injuries , Humans , Endogenous Retroviruses/genetics , COVID-19/immunology , COVID-19/virology , COVID-19/genetics , Lipopolysaccharide Receptors/genetics , Monocytes/immunology , Monocytes/virology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Wounds and Injuries/virology , Wounds and Injuries/immunology , Wounds and Injuries/genetics , Immunity, Innate/genetics , Male , Female , Genetic Loci
10.
Cytotherapy ; 26(7): 714-718, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38506768

ABSTRACT

BACKGROUND AIMS: In this paper, we present a review of several selected talks presented at the CTTACC conference (Cellular Therapies in Trauma and Critical Care) held in Scottsdale, AZ in May 2023. This conference review highlights the potential for cellular therapies to "reset" the dysregulated immune response and restore physiologic functions to normal. Improvements in medical care systems and technology have increasingly saved lives after major traumatic events. However, many of these patients have complicated post-traumatic sequelae, ranging from short-term multi-organ failure to chronic critical illness. METHODS/RESULTS: Patients with chronic critical illness have been found to have dysregulated immune responses. These abnormal and harmful immune responses persist for years after the initial insult and can potentially be mitigated by treatment with cellular therapies. CONCLUSIONS: The sessions emphasized the need for more research and clinical trials with cellular therapies for the treatment of a multitude of chronic illnesses: post-trauma, radiation injury, COVID-19, burns, traumatic brain injury (TBI) and other chronic infections.


Subject(s)
Burns , COVID-19 , Cell- and Tissue-Based Therapy , Humans , Brain Injuries, Traumatic/therapy , Brain Injuries, Traumatic/immunology , Brain Injuries, Traumatic/complications , Burns/therapy , Burns/immunology , Burns/complications , Cell- and Tissue-Based Therapy/methods , Chronic Disease , COVID-19/immunology , COVID-19/therapy , Critical Illness , Immune System , Infections/therapy , Infections/immunology , Infections/etiology , SARS-CoV-2 , Wounds and Injuries/therapy , Wounds and Injuries/immunology , Wounds and Injuries/complications , Congresses as Topic
11.
Immunity ; 42(6): 1005-19, 2015 Jun 16.
Article in English | MEDLINE | ID: mdl-26084021

ABSTRACT

Interleukin-33 (IL-33) is a nuclear-associated cytokine of the IL-1 family originally described as a potent inducer of allergic type 2 immunity. IL-33 signals via the receptor ST2, which is highly expressed on group 2 innate lymphoid cells (ILC2s) and T helper 2 (Th2) cells, thus underpinning its association with helminth infection and allergic pathology. Recent studies have revealed ST2 expression on subsets of regulatory T cells, and for a role for IL-33 in tissue homeostasis and repair that suggests previously unrecognized interactions within these cellular networks. IL-33 can participate in pathologic fibrotic reactions, or, in the setting of microbial invasion, can cooperate with inflammatory cytokines to promote responses by cytotoxic NK cells, Th1 cells, and CD8(+) T cells. Here, we highlight the regulation and function of IL-33 and ST2 and review their roles in homeostasis, damage, and inflammation, suggesting a conceptual framework for future studies.


Subject(s)
Homeostasis/immunology , Inflammation/immunology , Interleukins/metabolism , Receptors, Cell Surface/metabolism , T-Lymphocytes, Regulatory/immunology , Th2 Cells/immunology , Wounds and Injuries/immunology , Animals , Cytotoxicity, Immunologic , Humans , Immunity, Innate , Interleukin-1 Receptor-Like 1 Protein , Interleukin-33 , Interleukins/immunology , Signal Transduction
12.
Immunity ; 42(6): 1075-86, 2015 Jun 16.
Article in English | MEDLINE | ID: mdl-26047922

ABSTRACT

Breaching endothelial cells (ECs) is a decisive step in the migration of leukocytes from the vascular lumen to the extravascular tissue, but fundamental aspects of this response remain largely unknown. We have previously shown that neutrophils can exhibit abluminal-to-luminal migration through EC junctions within mouse cremasteric venules and that this response is elicited following reduced expression and/or functionality of the EC junctional adhesion molecule-C (JAM-C). Here we demonstrate that the lipid chemoattractant leukotriene B4 (LTB4) was efficacious at causing loss of venular JAM-C and promoting neutrophil reverse transendothelial cell migration (rTEM) in vivo. Local proteolytic cleavage of EC JAM-C by neutrophil elastase (NE) drove this cascade of events as supported by presentation of NE to JAM-C via the neutrophil adhesion molecule Mac-1. The results identify local LTB4-NE axis as a promoter of neutrophil rTEM and provide evidence that this pathway can propagate a local sterile inflammatory response to become systemic.


Subject(s)
Cell Adhesion Molecules/metabolism , Immunoglobulins/metabolism , Leukocyte Elastase/metabolism , Leukotriene B4/metabolism , Neutrophils/immunology , Transendothelial and Transepithelial Migration/immunology , Animals , Benzoates/administration & dosage , Cell Adhesion Molecules/genetics , Cells, Cultured , Endothelial Cells/physiology , Humans , Immunoglobulins/genetics , Intercellular Junctions/drug effects , Leukocyte Elastase/genetics , Leukotriene B4/administration & dosage , Macrophage-1 Antigen/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Reperfusion Injury/immunology , Transendothelial and Transepithelial Migration/drug effects , Venules/physiology , Wounds and Injuries/immunology
13.
Crit Care ; 28(1): 227, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978044

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) is common in hospitalized patients and results in significant morbidity and mortality. The objective of the study was to explore the systemic immune response of intensive care unit patients presenting with AKI, especially the association between immune profiles and persistent AKI during the first week after admission following various types of injuries (sepsis, trauma, surgery, and burns). METHODS: REALAKI is an ancillary analysis of the REAnimation Low Immune Status Marker (REALISM) cohort study, in which 359 critically ill patients were enrolled in three different intensive care units. Patients with end-stage renal disease were excluded from the REALAKI study. Clinical samples and data were collected three times after admission: at day 1 or 2 (D1-2), day 3 or 4 (D3-4) and day 5, 6 or 7 (D5-7). Immune profiles were compared between patients presenting with or without AKI. Patients with AKI at both D1-2 and D5-7 were defined as persistent AKI. A multivariable logistic regression model was performed to determine the independent association between AKI and patients' immunological parameters. RESULTS: Three hundred and fifty-nine patients were included in this analysis. Among them, 137 (38%) were trauma patients, 103 (29%) post-surgery patients, 95 (26%) sepsis patients, and 24 (7%) were burn patients. One hundred and thirty-nine (39%) patients presented with AKI at D1-2 and 61 (20%) at D5-7. Overall, 94% presented with persistent AKI at D5-7. Patients with AKI presented with increased pro and anti-inflammatory cytokines and altered innate and adaptive immune responses. The modifications observed in the immune profiles tended to be more pronounced with increasing KDIGO stages. In the logistic regression model, a statistically significant association was observed at D1-2 between AKI and CD10lowCD16low immature neutrophils (OR 3.03 [1.7-5.5]-p < 0.001). At D5-7, increased interleukin-10 (IL-10) levels and reduced ex vivo TNF-α production after LPS stimulation were significantly associated with the presence of AKI (OR 1.38 [1.12-1.71]-p = 0.001 and 0.51 [0.27-0.91]-p = 0.03, respectively). Patients who recovered from AKI between D1-2 and D5-7 compared to patients with persistent AKI at D5-7, tended to correct these alterations. CONCLUSION: Following various types of severe injuries, early AKI is associated with the initial inflammatory response. Presence of AKI at the end of the first week after injury is associated with injury-induced immunosuppression.


Subject(s)
Acute Kidney Injury , Critical Illness , Humans , Male , Acute Kidney Injury/immunology , Acute Kidney Injury/etiology , Female , Middle Aged , Aged , Adult , Cohort Studies , Intensive Care Units/statistics & numerical data , Intensive Care Units/organization & administration , Wounds and Injuries/complications , Wounds and Injuries/immunology , Prospective Studies , Time Factors , Biomarkers/blood , Biomarkers/analysis , Sepsis/complications , Sepsis/immunology
14.
Crit Care ; 28(1): 240, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39010113

ABSTRACT

BACKGROUND: The immune response of critically ill patients, such as those with sepsis, severe trauma, or major surgery, is heterogeneous and dynamic, but its characterization and impact on outcomes are poorly understood. Until now, the primary challenge in advancing our understanding of the disease has been to concurrently address both multiparametric and temporal aspects. METHODS: We used a clustering method to identify distinct groups of patients, based on various immune marker trajectories during the first week after admission to ICU. In 339 severely injured patients, we initially longitudinally clustered common biomarkers (both soluble and cellular parameters), whose variations are well-established during the immunosuppressive phase of sepsis. We then applied this multi-trajectory clustering using markers composed of whole blood immune-related mRNA. RESULTS: We found that both sets of markers revealed two immunotypes, one of which was associated with worse outcomes, such as increased risk of hospital-acquired infection and mortality, and prolonged hospital stays. This immunotype showed signs of both hyperinflammation and immunosuppression, which persisted over time. CONCLUSION: Our study suggest that the immune system of critically ill patients can be characterized by two distinct longitudinal immunotypes, one of which included patients with a persistently dysregulated and impaired immune response. This work confirms the relevance of such methodology to stratify patients and pave the way for further studies using markers indicative of potential immunomodulatory drug targets.


Subject(s)
Biomarkers , Wounds and Injuries , Humans , Male , Female , Biomarkers/blood , Biomarkers/analysis , Middle Aged , Adult , Wounds and Injuries/immunology , Wounds and Injuries/blood , Cluster Analysis , Critical Illness , Intensive Care Units/statistics & numerical data , Intensive Care Units/organization & administration , Aged , Sepsis/blood , Sepsis/immunology , Longitudinal Studies
15.
Int Wound J ; 21(8): e14913, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39175213

ABSTRACT

The disturbance of the inflammatory microenvironment is a frequent pathological trait of diabetic wounds, contributing to the emergence of numerous chronic illnesses. This is crucial in both the development and recovery of wounds caused by diabetes. This study aims to perform a bibliometric analysis of research on the inflammatory microenvironment within the domain of diabetic wounds (DW) over the past 10 years. The objective is to map out the current global research landscape, pinpoint the most significant areas of study and offer guidance for future research avenues. Our research involved querying the Web of Science Core Collection (WoSCC) database for all pertinent studies on the inflammatory microenvironment in diabetic wounds (DW). We utilized bibliometric tools such as CiteSpace, VOSviewer and R (version 4.3.1) to identify and highlight the most impactful studies in the field. The study encompassed a review of 1454 articles published from 2014 to 2023, highlighting China and the United States as pivotal nations in the research of the inflammatory microenvironment in diabetic wounds (DW). Within this sphere, the University of Michigan and Harvard University in the United States, along with Shanghai Jiaotong University in China, emerged as the most prolific institutions. WANG Y from China was identified as the most productive author, while KUNKEL SL from the United States received the most citations. The research primarily focuses on topics such as wound healing, repair processes, angiogenesis, oxidative stress and macrophage activity. Additionally, "macrophage" and "delivery" were pinpointed as the leading subjects with promising research potential in this area. Research on the inflammatory microenvironment of diabetic wounds is rapidly advancing through active international collaboration. The study of new mechanisms related to the inflammatory microenvironment and the development of novel materials for repair based on this microenvironment represent emerging fields of future research, particularly in terms of translational applications. This may offer guidance and novel perspectives for further research in the area of the diabetic wound inflammatory microenvironment.


Subject(s)
Bibliometrics , Diabetes Complications , Wound Healing , Wounds and Injuries , Humans , Diabetes Complications/immunology , Inflammation/immunology , Wound Healing/immunology , Wounds and Injuries/immunology
16.
Immunology ; 162(4): 377-388, 2021 04.
Article in English | MEDLINE | ID: mdl-32986856

ABSTRACT

Traumatic injury initiates a large and complex immune response in the minutes after the initial insult, comprising of simultaneous pro- and anti-inflammatory responses. In patients that survive the initial injury, these immune responses are believed to contribute towards complications such as the development of sepsis and multiple organ dysfunction syndrome. These post-traumatic complications affect a significant proportion of patients and are a major contributing factor for poor outcomes and an increased burden on healthcare systems. Therefore, understanding the immune responses to trauma is crucial for improving patient outcomes through the development of novel therapeutics and refining resuscitation strategies. In order to do this, preclinical animal models must mimic human immune responses as much as possible, and as such, we need to understand the constraints of each species in the context of trauma. A number of species have been used in this field; however, these models are limited by their genetic background and their capacity for recapitulating human immune function. This review provides a brief overview of the immune response in critically injured human patients and discusses the most commonly used species for modelling trauma, focusing on how their immune response to serious injury and haemorrhage compares to that of humans.


Subject(s)
Disease Models, Animal , Hemorrhage/immunology , Multiple Organ Failure/immunology , Sepsis/immunology , Wounds and Injuries/immunology , Animals , Humans , Immunity , Multiple Organ Failure/etiology , Sepsis/etiology , Wounds and Injuries/complications
17.
Immunology ; 163(1): 105-111, 2021 05.
Article in English | MEDLINE | ID: mdl-33502012

ABSTRACT

Whether resident and recruited myeloid cells may impair or aid healing of acute skin wounds remains a debated question. To begin to address this, we examined the importance of CD11c+ myeloid cells in the early activation of skin wound repair. We find that an absence of CD11c+ cells delays wound closure and epidermal proliferation, likely due to defects in the activation of the IL-23-IL-22 axis that is required for wound healing.


Subject(s)
CD11 Antigens/deficiency , Dendritic Cells/immunology , Skin/immunology , Wound Healing , Wounds and Injuries/immunology , Animals , CD11 Antigens/genetics , Dendritic Cells/metabolism , Disease Models, Animal , Kinetics , Langerhans Cells/immunology , Langerhans Cells/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Skin/metabolism , Skin/pathology , Wounds and Injuries/genetics , Wounds and Injuries/metabolism , Wounds and Injuries/pathology
18.
Mol Med ; 27(1): 35, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33832430

ABSTRACT

BACKGROUND: Complement activation is a central mechanism in systemic inflammation and remote organ dysfunction following major trauma. Data on temporal changes of complement activation early after injury is largely missing. We aimed to describe in detail the kinetics of complement activation in individual trauma patients from admission to 10 days after injury, and the association with trauma characteristics and outcome. METHODS: In a prospective cohort of 136 trauma patients, plasma samples obtained with high time resolution (admission, 2, 4, 6, 8 h, and thereafter daily) were assessed for terminal complement complex (TCC). We studied individual TCC concentration curves and calculated a summary measure to obtain the accumulated TCC response 3 to 6 h after injury (TCC-AUC3-6). Correlation analyses and multivariable linear regression analyses were used to explore associations between individual patients' admission TCC, TCC-AUC3-6, daily TCC during the intensive care unit stay, trauma characteristics, and predefined outcome measures. RESULTS: TCC concentration curves showed great variability in temporal shapes between individuals. However, the highest values were generally seen within the first 6 h after injury, before they subsided and remained elevated throughout the intensive care unit stay. Both admission TCC and TCC-AUC3-6 correlated positively with New Injury Severity Score (Spearman's rho, p-value 0.31, 0.0003 and 0.21, 0.02) and negatively with admission Base Excess (- 0.21, 0.02 and - 0.30, 0.001). Multivariable analyses confirmed that deranged physiology was an important predictor of complement activation. For patients without major head injury, admission TCC and TCC-AUC3-6 were negatively associated with ventilator-free days. TCC-AUC3-6 outperformed admission TCC as a predictor of Sequential Organ Failure Assessment score at day 0 and 4. CONCLUSIONS: Complement activation 3 to 6 h after injury was a better predictor of prolonged mechanical ventilation and multiple organ dysfunction syndrome than admission TCC. Our data suggest that the greatest surge of complement activation is found within the first 6 h after injury, and we argue that this time period should be in focus in the design of future experimental studies and clinical trials using complement inhibitors.


Subject(s)
Complement Activation , Craniocerebral Trauma/immunology , Multiple Organ Failure/immunology , Respiration, Artificial , Wounds and Injuries/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Complement Membrane Attack Complex/immunology , Craniocerebral Trauma/mortality , Female , Hospitalization , Humans , Male , Middle Aged , Prospective Studies , Severity of Illness Index , Syndrome , Time Factors , Wounds and Injuries/mortality , Young Adult
20.
Cytokine ; 141: 155457, 2021 05.
Article in English | MEDLINE | ID: mdl-33581471

ABSTRACT

INTRODUCTION: Traumatic injury with hemorrhage (TH) induces an inflammatory response in the lung resulting in lung injury involving activation of immune cells including myeloid cells (i.e., monocytes, granulocytes and macrophages), in part through TLRs. TLRs, via the recognition of damage associated molecular patterns (DAMPs), are a key link between tissue injury and inflammation. Nonetheless, the role of TLRs in myeloid cell activation and TH-induced lung injury remains ill defined. METHODS: C57BL/6 male mice were subjected to TH or sham treatment (n = 4-6 /group). Lung tissues were collected two hrs. after injury. Single cells were isolated from the lungs by enzymatic digestion and myeloid cell TLR expression and activation (i.e., cytokine production) were assessed using flow cytometry techniques. RESULTS: The injury was associated with a profound change in the lung myeloid cell population. TH markedly increased lung CD11b+ monocyte numbers and Gr1+ granulocyte numbers as compared to sham mice. The number of cells expressing TLR2, TLR4, and TLR9 were increased 4-7 fold in the TH mice. Activation for elevated cytokine (TNFα, IL-10) production was observed in the lung monocyte population of the TH mice. CONCLUSIONS: Trauma-induced lung injury is associated with infiltration of the lungs with TLR expressing myeloid cells that are activated for elevated cytokine responses. This elevation in TLR expression may contribute to DAMP-mediated pulmonary complications of an inflammatory nature and warrants further investigation.


Subject(s)
Hemorrhage/immunology , Lung Injury/immunology , Lung/immunology , Myeloid Cells/immunology , Toll-Like Receptors/immunology , Wounds and Injuries/immunology , Animals , Hemorrhage/complications , Interleukin-10/immunology , Lung Injury/etiology , Male , Mice , Tumor Necrosis Factor-alpha/immunology , Wounds and Injuries/complications
SELECTION OF CITATIONS
SEARCH DETAIL