Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 212
Filter
Add more filters

Publication year range
1.
Int J Mol Sci ; 25(5)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38474103

ABSTRACT

Maize ranks as the second most widely produced crop globally, yielding approximately 1.2 billion tons, with corn cob being its primary byproduct, constituting 18 kg per 100 kg of corn. Agricultural corn production generates bioactive polysaccharide-rich byproducts, including xylan (Xyl). In this study, we used the redox method to modify corn cob xylan with gallic acid, aiming to enhance its antioxidant and protective capacity against oxidative stress. The conjugation process resulted in a new molecule termed conjugated xylan-gallic acid (Xyl-GA), exhibiting notable improvements in various antioxidant parameters, including total antioxidant capacity (1.4-fold increase), reducing power (1.2-fold increase), hydroxyl radical scavenging (1.6-fold increase), and cupric chelation (27.5-fold increase) when compared with unmodified Xyl. At a concentration of 1 mg/mL, Xyl-GA demonstrated no cytotoxicity, significantly increased fibroblast cell viability (approximately 80%), and effectively mitigated intracellular ROS levels (reduced by 100%) following oxidative damage induced by H2O2. Furthermore, Xyl-GA exhibited non-toxicity toward zebrafish embryos, offered protection against H2O2-induced stress, and reduced the rate of cells undergoing apoptosis resulting from H2O2 exposure. In conclusion, our findings suggest that Xyl-GA possesses potential therapeutic value in addressing oxidative stress-related disturbances. Further investigations are warranted to elucidate the molecular structure of this novel compound and establish correlations with its pharmacological activities.


Subject(s)
Antioxidants , Gallic Acid , Animals , Antioxidants/pharmacology , Gallic Acid/pharmacology , Xylans/pharmacology , Zea mays/metabolism , Hydrogen Peroxide/pharmacology , Zebrafish/metabolism , Oxidative Stress
2.
Molecules ; 29(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38611816

ABSTRACT

In this study, the α-glucosidase (maltase-glucoamylase: MGAM) and α-amylase inhibitory properties elicited by xylooligosaccharides (XOSs) prepared from dulse xylan were analysed as a potential mechanism to control postprandial hyperglycaemia for type-2 diabetes prevention and treatment. Xylan was purified from red alga dulse powder and used for enzymatic hydrolysis using Sucrase X to produce XOSs. Fractionation of XOSs produced xylobiose (X2), ß-(1→3)-xylosyl xylobiose (DX3), xylotriose (X3), ß-(1→3)-xylosyl-xylotriose (DX4), and a dulse XOS mixture with n ≥ 4 xylose units (DXM). The different fractions exhibited moderate MGAM (IC50 = 11.41-23.44 mg/mL) and α-amylase (IC50 = 18.07-53.04 mg/mL) inhibitory activity, which was lower than that of acarbose. Kinetics studies revealed that XOSs bound to the active site of carbohydrate digestive enzymes, limiting access to the substrate by competitive inhibition. A molecular docking analysis of XOSs with MGAM and α-amylase clearly showed moderate strength of interactions, both hydrogen bonds and non-bonded contacts, at the active site of the enzymes. Overall, XOSs from dulse could prevent postprandial hyperglycaemia as functional food by a usual and continuous consumption.


Subject(s)
Edible Seaweeds , Glucuronates , Hyperglycemia , Rhodophyta , alpha-Amylases , Humans , alpha-Glucosidases , Hypoglycemic Agents/pharmacology , Xylans/pharmacology , Molecular Docking Simulation , Oligosaccharides/pharmacology
3.
J Anim Physiol Anim Nutr (Berl) ; 108(3): 596-610, 2024 May.
Article in English | MEDLINE | ID: mdl-38169048

ABSTRACT

Xylanases from glycoside hydrolase (GH) families 10 and 11 are common feed additives for broiler chicken diets due to their catalytic activity on the nonstarch polysaccharide xylan. This study investigated the potential of an optimized binary GH10 and GH11 xylanase cocktail to mitigate the antinutritional effects of xylan on the digestibility of locally sourced chicken feed. Immunofluorescence visualization of the activity of the xylanase cocktail on xylan in the yellow corn of the feed showed a substantial collapse in the morphology of cell walls. Secondly, the reduction in the viscosity of the digesta of the feed by the cocktail showed an effective degradation of the soluble fraction of xylan. Analysis of the xylan degradation products from broiler feeds by the xylanase cocktail showed that xylotriose and xylopentaose were the major xylooligosaccharides (XOS) produced. In vitro evaluation of the prebiotic potential of these XOS showed that they improved the growth of the beneficial bacteria Streptococcus thermophilus and Lactobacillus bulgaricus. The antibacterial activity of broths from XOS-supplemented probiotic cultures showed a suppressive effect on the growth of the extraintestinal infectious bacterium Klebsiella pneumoniae. Supplementing the xylanase cocktail in cereal animal feeds attenuated xylan's antinutritional effects by reducing digesta viscosity and releasing entrapped nutrients. Furthermore, the production of prebiotic XOS promoted the growth of beneficial bacteria while inhibiting the growth of pathogens. Based on these effects of the xylanase cocktail on the feed, improved growth performance and better feed conversion can potentially be achieved during poultry rearing.


Subject(s)
Animal Feed , Chickens , Digestion , Endo-1,4-beta Xylanases , Animal Feed/analysis , Animals , Digestion/drug effects , Digestion/physiology , Endo-1,4-beta Xylanases/pharmacology , Endo-1,4-beta Xylanases/administration & dosage , Animal Nutritional Physiological Phenomena , Diet/veterinary , Xylans/pharmacology , Xylans/chemistry , Probiotics/pharmacology
4.
Pharm Biol ; 62(1): 367-393, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38745507

ABSTRACT

CONTEXT: Rice bran arabinoxylan compound (RBAC) is a natural immunomodulator with anticancer properties. OBJECTIVE: This study critically evaluates the available evidence on the biological pathways of RBAC and its effects on cancer treatment. METHODS: This secondary analysis of a scoping review includes studies evaluating the mechanisms of RBAC on healthy or malignant cells, animal models, or humans for cancer prevention or treatment. Data from randomized controlled trials on survival and quality of life outcomes were subjectd to meta analysis. RESULTS: The evidence synthesis was based on 38 articles. RBAC exhibited antitumor properties by promoting apoptosis and restoring immune function in cancer patients to enhance inflammatory and cytotoxic responses to block tumorigenesis. RBAC works synergistically with chemotherapeutic agents by upregulating drug transport. In a clinical trial, combining RBAC with chemoembolization in treating liver cancer showed improved response, reduced recurrence rates, and prolonged survival. RBAC also augments the endogenous antioxidant system to prevent oxidative stress and protect against radiation side effects. In addition, RBAC has chemoprotective effects. Animals and humans have exhibited reduced toxicity and side effects from chemotherapy. Meta analysis indicates that RBAC treatment increases the survival odds by 4.02-times (95% CI: 1.67, 9.69) in the first year and 2.89-times (95% CI: 1.56, 5.35) in the second year. CONCLUSION: RBAC is a natural product with immense potential in cancer treatment. Additional research is needed to characterize, quantify, and standardize the active ingredients in RBAC responsible for the anticancer effects. More well-designed, large-scale clinical trials are required to substantiate the treatment efficacies further.


Subject(s)
Neoplasms , Oryza , Xylans , Xylans/pharmacology , Humans , Animals , Neoplasms/drug therapy , Biological Products/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/administration & dosage , Randomized Controlled Trials as Topic , Antineoplastic Agents/pharmacology
5.
Molecules ; 27(18)2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36144706

ABSTRACT

As a biocompatible biomaterial, bagasse xylan (BX) has been widely used in the biomedical field. The low biological activity of andrographolide (AD) restricts its development, so AD with certain anticancer activity is introduced. We use chemical modification methods such as grafting and esterification to improve the biological activity and make a novel anticancer nanomaterial. On the basis of the esterification of a mixture of BX and AD with folic acid (FA), a novel anticancer nanoderivative of bagasse xylan/andrographolide folate-g-dimethylaminoethyl methacrylate (DMAEMA)/diethylene glycol dimethacrylate (DEGDMA) nanoparticles (FA-BX/AD-g-DMAEMA/DEGDMA NPs) was synthesized by introducing DMAEMA and DEGDMA monomers through a graft copolymerization and nanoprecipitation method. The effects of reaction temperature, reaction time, the initiator concentration and the mass ratio of FA-BX/AD to mixed monomers on the grafting rate (GR) were investigated. The structure of the obtained product was characterized by FTIR, SEM, XRD and DTG. Further, molecular docking and MTT assays were performed to understand the possible docking sites with the target proteins and the anticancer activity of the product. The results showed that the GR of the obtained product was 79% under the conditions of the initiator concentration 55 mmol/L, m (FA-BX/AD):m (mixed monomer) = 1:2, reaction temperature 50 °C and reaction time 5 h. The inhibition rate of FA-BX/AD-g-DMAEMA/DEGDMA NPs on human lung cancer cells (NCI-H460) can reach 39.77 ± 5.62%, which is about 7.6 times higher than that of BX. Therefore, this material may have potential applications in the development of anticancer drug or carriers and functional materials.


Subject(s)
Antineoplastic Agents , Nanoparticles , Antineoplastic Agents/pharmacology , Biocompatible Materials/pharmacology , Cellulose , Diterpenes , Drug Carriers , Ethylene Glycols , Folic Acid/chemistry , Humans , Methacrylates/chemistry , Molecular Docking Simulation , Nanoparticles/chemistry , Xylans/pharmacology
6.
Int J Mol Sci ; 22(19)2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34638811

ABSTRACT

A breached nasal epithelial barrier plays an important role in driving allergic rhinitis (AR). Corticosteroids remain the standard of care (SoC) but come with side effects, thus alternative safe and effective treatments able to avoid inflammation and restore barrier integrity are needed. The aim of the present study is to evaluate the barrier-forming capacity of a xyloglucan-based nasal spray (XG) and compare its efficacy to several SoC treatments (corticosteroid spray, oral mast-cell stabilizer and oral antihistamine) in reducing allergic responses in addition to its effect when concomitantly administered with an antihistamine. An ovalbumin (OVA)-induced mouse AR model was used. XG shows a significant efficacy in reducing histological damage in AR mice; improves nasal rubbing and histamine-induced hyper-responsiveness. Total and OVA-specific IgE as well as pro-inflammatory cytokines are significantly reduced compared to OVA challenged-mice, with im-proved efficacy when used as an add-on treatment. However, XG reduces mucous secreting cells (PAS-positive) and mucin mRNA expression similar to the corticosteroid-treated mice. XG-spray maintains tight junction protein expression (ZO-1) and conversely decreases HDAC1 significantly; the latter being highly expressed in AR patients. Moreover, the concomitant treatment showed in all of the endpoints a similar efficacy to the corticosteroids. This innovative approach may represent a novel therapeutic strategy for nasal respiratory diseases like AR, reducing undesirable side effects and improving the quality of life in patients.


Subject(s)
Glucans/pharmacology , Nasal Mucosa/immunology , Nasal Sprays , Rhinitis, Allergic/prevention & control , Xylans/pharmacology , Animals , Disease Models, Animal , Drug Evaluation, Preclinical , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Male , Mice , Mice, Inbred BALB C , Rhinitis, Allergic/chemically induced , Rhinitis, Allergic/immunology , Zonula Occludens-1 Protein/immunology
7.
Skin Pharmacol Physiol ; 33(4): 231-236, 2020.
Article in English | MEDLINE | ID: mdl-32846412

ABSTRACT

OBJECTIVE: The skin acts as a mechanical and protective barrier against viral, fungal, and bacterial infections. Skin conditions such as atopic dermatitis and psoriasis are characterized by alterations of the skin barrier, often caused by injury and by bacterial infections. In the last years, non-pharmacological interventions have gained great importance in epidermis-related diseases. Xyloglucan (XG) is a polysaccharide that possesses a "mucin-like" molecular structure that confers mucoadhesive properties, allowing XG-containing formulations to act as a protective barrier for the management of different diseases. Moreover, there is also increasing interest in the use of proteins due to their film-forming features. This study aimed to evaluate the barrier-protective properties of a product containing XG and pea protein (PP) in an in vitro model, assessing its effects on the membrane permeability of keratinocytes infected by Staphylococcus aureus. METHODS: HaCaT keratinocytes were pretreated with XG and PP for 3 h and then infected with S. aureus cells (106 bacteria/well) at a multiplicity of infection of 10 for 1 h. The number of bacterial colonies and membrane integrity were measured, respectively. RESULTS: We observed that pretreatment with XG and PP in human HaCaT keratinocytes infected with S. aureus significantly increased trans-epithelial electrical resistance (a marker of skin barrier function) measurement, reduced lucifer yellow (a marker of membrane integrity) permeation across the monolayer, and released lactate dehydrogenase (a marker of tissue damage). Moreover, XG and PP pretreatment was able to reduce bacterial adherence, avoiding S. aureus infection. CONCLUSION: In summary, we demonstrated that the product containing XG and PP was able to maintain barrier permeability preserving its integrity, and therefore, it can be considered as an interesting approach for the management of epidermis-related diseases.


Subject(s)
Glucans/pharmacology , Keratinocytes/drug effects , Pea Proteins/pharmacology , Skin/drug effects , Staphylococcal Skin Infections/drug therapy , Staphylococcus aureus/drug effects , Xylans/pharmacology , Bacterial Adhesion/drug effects , HaCaT Cells , Humans , Keratinocytes/metabolism , Keratinocytes/microbiology , Permeability , Skin/metabolism , Skin/microbiology , Staphylococcal Skin Infections/metabolism , Staphylococcal Skin Infections/microbiology , Staphylococcus aureus/pathogenicity
8.
Drug Dev Ind Pharm ; 46(1): 122-134, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31860373

ABSTRACT

Objective: Development of stimuli-responsive intelligent drug delivery system (based on a polysaccharide, glucuronoxylan [GX]) with on-off switching properties under physiological conditions.Significance: As GX exhibits high swelling index and stimuli-responsive swelling/de-swelling properties, therefore, this material appeared highly useful to design pH, solvent and ionic stress-sensitive oral tablet formulations, which offered on-off switching properties. In this way, we could design intelligent/smart drug delivery systems for levosulpiride (LS) and theophylline (TF) with valuable pharmaceutical properties.Methods: GX-based tablet formulations were explored for stimuli-responsive, reversible swelling-deswelling behavior, dynamic swelling, and its kinetics. Tablet surface and channeling after swelling were observed using scanning electron microscopy (SEM). Drug release study was performed mimicking the physiological conditions like pH and transit time of gastrointestinal tract (GIT). Radiographic images of tablet path (in vivo) were recorded.Results: GX-based formulations exhibited high swelling in deionized water (DW), pH 6.8 and 7.4 while negligible swelling at pH 1.2. SEM images discovered the presence of microcracks and nanopores on the surface of tablets and showed channeling after swelling of tablets in DW. Sustained drug release was observed and found directly proportional to the concentration of GX in the formulations with negligible release at pH 1.2. In vivo radiographic evaluation indicated the retention of tablets in GIT for 7 h. Hemocompatibility studies showed the non-thrombogenic and non-hemolytic nature of GX.Conclusions: GX-based smart/stimuli-responsive formulations can control/sustain the release of drugs in GIT.


Subject(s)
Delayed-Action Preparations/administration & dosage , Drug Delivery Systems/methods , Polysaccharides/chemistry , Xylans/chemistry , Administration, Oral , Delayed-Action Preparations/chemistry , Drug Liberation , Kinetics , Polysaccharides/pharmacology , Tablets , Xylans/pharmacology
9.
Int J Food Sci Nutr ; 71(1): 74-83, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31170834

ABSTRACT

This study evaluated the effect of using arabinoxylans (AX) and gelled arabinoxylans (AxGel) as anti-obesogenic agents on the faecal microbiota of rats fed with a high-fat (HF) diet. Results revealed that the HF content in diet caused obesity in rats and alterations in the taxonomic and functional profiles of faecal microbiota. However, these effects were lessened when AX and AxGel were used as ingredients of the HF diet. Metabolisms of amino acids and energy, as well as genetic information processing, were negatively affected when the rats consumed the HF diet; however, this effect was not observed if AX and AxGel were included as part of the diet formulation. Results suggest that AX may act as a prebiotic agent. Therefore, AX and AxGel could be considered as hypothetical protectors of the intestinal microbiota against HF consumption.


Subject(s)
Anti-Obesity Agents/pharmacology , Diet, High-Fat/adverse effects , Gastrointestinal Microbiome/drug effects , Xylans/pharmacology , Animals , Bacteria/classification , Bacteria/genetics , Body Mass Index , Disease Models, Animal , Edible Grain , Feces/microbiology , Gastrointestinal Microbiome/genetics , Male , Mice, Obese , Obesity , Prebiotics , RNA, Ribosomal, 16S/genetics , Rats
10.
Int J Mol Sci ; 21(10)2020 May 19.
Article in English | MEDLINE | ID: mdl-32438777

ABSTRACT

Atopic dermatitis (AD) is a chronic inflammatory disease of the skin, characterized by dryness and more or less severe itching. The etiology of AD is complex and has not been fully clarified, involving genetic susceptibility, immunological abnormalities, epidermal barrier dysfunction, and environmental factors. Xyloglucan (XG) and pea protein (PP) are two compounds of natural origin characterized by the ability to create a physical barrier that protects mucosae membranes, reducing inflammation. The aim of the present study was to evaluate the potential beneficial effects of XG + PP in both a mouse model of AD and Staphylococcus aureus (S.aureus) infection- associated AD. Mice were topically treated with 200 µL of 0.5% oxazolone on the dorsal skin three times a week for AD induction. Mice received XG and PP by topical administration 1 h before oxazolone treatment. In S. aureus infection-associated AD, to induce a superficial superinfection of the skin, mice were also treated with 5 µL of 108 of a culture of S. aureus for 2 weeks; mice superinfected received XG and PP by topical administration 1 h before oxazolone + S. aureus. Four weeks later, the skin was removed for histological and biochemical analysis. Our results demonstrated the protective barrier effects of XG and PP characterized by a reduction in histological tissue changes, mastocyte degranulation, and tight junction permeability in the skin following oxazolone treatment. Moreover, XG + PP was able to preserve filaggrin expression, a hallmark of AD. Our data also support the effectiveness of XG + PP to reduce the damage by superinfection post AD induced by S. aureus. In conclusion, a future product containing XG and PP could be considered as a potentially interesting approach for the treatment of AD.


Subject(s)
Dermatitis, Atopic/drug therapy , Glucans/therapeutic use , Pea Proteins/therapeutic use , Xylans/therapeutic use , Animals , Cell Degranulation/drug effects , Cytokines/metabolism , Dermatitis, Atopic/complications , Dermatitis, Atopic/pathology , Disease Models, Animal , Erythema/complications , Erythema/drug therapy , Erythema/pathology , Female , Filaggrin Proteins , Glucans/pharmacology , Inflammation/pathology , Intermediate Filament Proteins , Mast Cells/physiology , Mice , Nitric Oxide Synthase Type II/metabolism , Occludin/metabolism , Oxazolone/pharmacology , Pea Proteins/pharmacology , Skin/pathology , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Staphylococcus aureus , Tight Junctions/metabolism , Xylans/pharmacology
11.
Biomacromolecules ; 20(11): 4180-4190, 2019 11 11.
Article in English | MEDLINE | ID: mdl-31518115

ABSTRACT

Bacterial cellulose (BC) consists of a complex three-dimensional organization of ultrafine fibers which provide unique material properties such as softness, biocompatibility, and water-retention ability, of key importance for biomedical applications. However, there is a poor understanding of the molecular features modulating the macroscopic properties of BC gels. We have examined chemically pure BC hydrogels and composites with arabinoxylan (BC-AX), xyloglucan (BC-XG), and high molecular weight mixed-linkage glucan (BC-MLG). Atomic force microscopy showed that MLG greatly reduced the mechanical stiffness of BC gels, while XG and AX did not exert a significant effect. A combination of advanced solid-state NMR methods allowed us to characterize the structure of BC ribbons at ultra-high resolution and to monitor local mobility and water interactions. This has enabled us to unravel the effect of AX, XG, and MLG on the short-range order, mobility, and hydration of BC fibers. Results show that BC-XG hydrogels present BC fibrils of increased surface area, which allows BC-XG gels to hold higher amounts of bound water. We report for the first time that the presence of high molecular weight MLG reduces the density of clusters of BC fibrils and dramatically increases water interactions with BC. Our data supports two key molecular features determining the reduced stiffness of BC-MLG hydrogels, that is, (i) the adsorption of MLG on the surface of BC fibrils precluding the formation of a dense network and (ii) the preorganization of bound water by MLG. Hence, we have produced and fully characterized BC-MLG hydrogels with novel properties which could be potentially employed as renewable materials for applications requiring high water retention capacity (e.g. personal hygiene products).


Subject(s)
Cellulose/chemistry , Glucans/chemistry , Hydrogels/pharmacology , Bacteria/enzymology , Cellulose/pharmacology , Glucans/pharmacology , Hydrogels/chemistry , Magnetic Resonance Spectroscopy , Mechanical Phenomena/drug effects , Microscopy, Atomic Force , Molecular Weight , Xylans/chemistry , Xylans/pharmacology
12.
J Nat Prod ; 82(3): 589-605, 2019 03 22.
Article in English | MEDLINE | ID: mdl-30873836

ABSTRACT

Cranberry ( Vaccinium macrocarpon) juice is traditionally used for the prevention of urinary tract infections. Human urine produced after cranberry juice consumption can prevent Escherichia coli adhesion, but the antiadhesive urinary metabolites responsible have not been conclusively identified. Adult female sows were therefore fed spray-dried cranberry powder (5 g/kg/day), and urine was collected via catheter. Urine fractions were tested for antiadhesion activity using a human red blood cell (A+) anti-hemagglutination assay with uropathogenic P-fimbriated E. coli. Components were isolated from fractions of interest using Sephadex LH-20 gel filtration chromatography followed by HPLC on normal and reversed-phase sorbents with evaporative light scattering detection. Active urine fractions were found to contain a complex series of oligosaccharides but not proanthocyanidins, and a single representative arabinoxyloglucan octasaccharide was isolated in sufficient quantity and purity for full structural characterization by chemical derivatization and NMR spectroscopic methods. Analogous cranberry material contained a similar complex series of arabinoxyloglucan oligosaccharides that exhibited antiadhesion properties in preliminary testing. These results indicate that oligosaccharides structurally related to those found in cranberry may contribute to the antiadhesion properties of urine after cranberry consumption.


Subject(s)
Bacterial Adhesion/drug effects , Glucans/pharmacology , Oligosaccharides/pharmacology , Urine , Uropathogenic Escherichia coli/drug effects , Vaccinium macrocarpon , Xylans/pharmacology , Animals , Glucans/chemistry , Oligosaccharides/chemistry , Swine , Uropathogenic Escherichia coli/physiology , Xylans/chemistry
13.
Lett Appl Microbiol ; 68(2): 142-148, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30444534

ABSTRACT

Arabinoxylans are part of dietary fibre and have received attention given their emergent prebiotic character. Four arabinoxylans extracts were obtained from Argentinian soft and hard wheat. In vitro assays were performed to describe the extent to which the extracts from whole wheat flour support selective growth of Bifidobacterium breve and probiotic Lactobacillus reuteri ATCC23272 in a defined media. The prebiotic effect was evaluated by three quantitative scores: relative growth, prebiotic activity score and prebiotic index. For prebiotic index equation the growth of Bacteroides and Clostridium strains was compared to that of bifidobacteria and lactic acid bacteria. All the arabinoxylans extracts supported the growth of Lactobacillus and Bifidobacterium, reaching higher prebiotic activity score values than inulin (0·37 and 0·36 for Lactobacillus and Bifidobacterium respectively). AX2 from soft wheat and AX4 from hard showed similar prebiotic index value to commercial inulin (2·64, 2·52 and 2·22 respectively), and AX3 extract presented higher prebiotic index value (4·09) than the positive control and other prebiotic index reported for arabinoxylans. These extracts could be used as prebiotic, synbiotic compositions or novel food prototypes to treat dysbiosis associated with many diseases. SIGNIFICANCE AND IMPACT OF THE STUDY: The present work demonstrates that AX extracts from Argentinian soft and hard wheat promote efficiently the growth of probiotic strain L. reuteri ATCC23272 and B. breve 286, validated with three different parameters that consider the growth of representative strains of Bacteria genera found in the gut. The evaluation of AX extracts as a food supplement in a murine model could confirm their ability to modulate the microbiome. Novel food prototypes including AX and probiotics could relieve local symptoms and may act as psychobiotics with a beneficial effect on microbiome-brain axis.


Subject(s)
Bifidobacterium breve/growth & development , Limosilactobacillus reuteri/growth & development , Plant Preparations/pharmacology , Triticum/chemistry , Xylans/pharmacology , Bacteroides/growth & development , Clostridium/growth & development , Dietary Fiber , Prebiotics/microbiology , Probiotics/metabolism , Synbiotics
14.
Medicina (Kaunas) ; 55(7)2019 Jul 07.
Article in English | MEDLINE | ID: mdl-31284672

ABSTRACT

Background and objectives: Arabinoxylans (AX) can gel and exhibit antioxidant capacity. Previous studies have demonstrated the potential application of AX microspheres as colon-targeted drug carriers. However, the cytotoxicity of AX gels has not been investigated so far. Therefore, the aim of the present study was to prepare AX-based particles (AXM) by coaxial electrospraying method and to investigate their antioxidant potential and cytotoxicity on human colon cells. Materials and Methods: The gelation of AX was studied by monitoring the storage (G') and loss (G'') moduli. The morphology of AXM was evaluated using optical and scanning electron microscopy (SEM). The in vitro antioxidant activity of AX before and after gelation was measured using the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+), 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) methods. In addition, the effect of AX and AXM on the proliferation of human colon cells (CCD 841 CoN) was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results: The final G' and G'' values for AX gels were 293 and 0.31 Pa, respectively. AXM presented spherical shape and rough surface with a three-dimensional and porous network. The swelling ratio and mesh size of AXM were 35 g water/g AX and 27 nm, respectively. Gelation decreased the antioxidant activity of AX by 61-64 %. AX and AXM did not affect proliferation or show any toxic effect on the normal human colon cell line CCD 841 CoN. Conclusion: The results indicate that AXM could be promising biocompatible materials with antioxidant activity.


Subject(s)
Cell Line/drug effects , Xylans/metabolism , Antioxidants/metabolism , Antioxidants/pharmacology , Cell Line/metabolism , Colon/drug effects , Colon/physiopathology , Cytotoxins/pharmacology , Cytotoxins/therapeutic use , Gels/metabolism , Gels/therapeutic use , Humans , Plant Extracts/metabolism , Plant Extracts/therapeutic use , Xylans/pharmacology
15.
Z Naturforsch C J Biosci ; 73(7-8): 319-323, 2018 Jul 26.
Article in English | MEDLINE | ID: mdl-29768253

ABSTRACT

The ability of the fungus Aureobasidium pullulans ATCC 42023 to produce pullulan from yeast extract-supplemented xylan hydrolysates of the prairie grass prairie cordgrass was examined relative to polysaccharide and cell biomass production, yield, and pullulan content of the polysaccharide. A pullulan concentration of 11.2 g L-1 and yield of 0.79 g g-1 was produced by ATCC 42023 when grown for 168 h at 30°C on the phosphate-buffered hydrolysate supplemented with yeast extract. The highest biomass level being 8.8 g L-1 was produced by ATCC 42023 after 168 h on a yeast extract-supplemented, hydrolysate-containing complete medium lacking sodium chloride. The highest pullulan content of the polysaccharide produced by ATCC 42023 after 168 h on the hydrolysate medium supplemented with yeast extract and ammonium sulfate was 70%. The findings indicate that a polysaccharide with a high pullulan content can be produced at a relatively high yield by the fungus grown on a yeast extract-supplemented xylan hydrolysate, suggesting that pullulan could be produced using a biomass-based process.


Subject(s)
Glucans/metabolism , Poaceae/chemistry , Saccharomycetales/growth & development , Sodium Chloride/pharmacology , Xylans/pharmacology , Biomass , Culture Media/chemistry , Culture Media/pharmacology , Hydrolysis , Plant Extracts/pharmacology , Saccharomycetales/metabolism
16.
Int J Mol Sci ; 19(7)2018 06 22.
Article in English | MEDLINE | ID: mdl-29932149

ABSTRACT

Acute infectious gastroenteritis (GE) and urinary tract infection (UTI) are common diseases and are normally perceived as mild and limiting illnesses. Xyloglucan is a natural plant polymer with protective barrier properties, also known as "mucosal protectors", which is the main ingredient of medical devices developed for the management of different diseases, such as gastrointestinal diseases, urinary tract infections, or respiratory allergic diseases. The aim of this study was to evaluate the protective effect of xyloglucan in association with gelose (also called agar) in an experimental model of bacterial GE and UTI in rats. Two kinds of infection were induced by oral administration of Salmonella enterica and Enterococcus hirae for three days. Two days before the bacterial administration, preventive oral treatment with xyloglucan + gelose (10 mg/kg + 5 mg/kg) was performed daily until the seventh day. Twenty-four hours after the last treatment, rats were sacrificed and urinary tracts and intestines for different analysis were collected. The results showed that xyloglucan plus gelose was able to reduce intestinal morphological changes (p < 0.05 for both), tight junctions (TJ) permeability (p < 0.001 for both), and neutrophil infiltration (p < 0.05 for both) induced by bacterial infections, highlighting its barrier proprieties. Moreover, the compound reduced the number of bacterial colonies in the urinary tract favoring elimination by feces. The results obtained in the present study suggest that the protective barrier properties of xyloglucan plus gelose allow the prevention of GE and UTI in models of infections in rats.


Subject(s)
Bacterial Infections/prevention & control , Gastroenteritis/prevention & control , Glucans/pharmacology , Host-Pathogen Interactions , Polysaccharides/pharmacology , Urinary Tract Infections/prevention & control , Xylans/pharmacology , Animals , Bacterial Infections/microbiology , Disease Models, Animal , Enterococcus hirae/drug effects , Enterococcus hirae/physiology , Gastroenteritis/microbiology , Host-Pathogen Interactions/drug effects , Humans , Intestines/drug effects , Intestines/microbiology , Intestines/pathology , Rats, Sprague-Dawley , Salmonella enterica/drug effects , Salmonella enterica/physiology , Time Factors , Urinary Tract Infections/microbiology
17.
Int J Mol Sci ; 19(3)2018 Feb 27.
Article in English | MEDLINE | ID: mdl-29495535

ABSTRACT

Disruption of the epithelial barrier function has been recently associated with a variety of diseases, mainly at intestinal level, but also affecting the respiratory epithelium and other mucosal barriers. Non-pharmacological approaches such as xyloglucan, with demonstrated protective barrier properties, are proposed as new alternatives for the management of a wide range of diseases, for which mucosal disruption and, particularly, tight junction alterations, is a common characteristic. Xyloglucan, a natural polysaccharide derived from tamarind seeds, possesses a "mucin-like" molecular structure that confers mucoadhesive properties, allowing xyloglucan formulations to act as a barrier capable of reducing bacterial adherence and invasion and to preserve tight junctions and paracellular flux, as observed in different in vitro and in vivo studies. In clinical trials, xyloglucan has been seen to reduce symptoms of gastroenteritis in adults and children, nasal disorders and dry eye syndrome. Similar mucosal protectors containing reticulated proteins have also been useful for the treatment of irritable bowel syndrome and urinary tract infections. The role of xyloglucan in other disorders with mucosal disruption, such as dermatological or other infectious diseases, deserves further research. In conclusion, xyloglucan, endowed with film-forming protective barrier properties, is a safe non-pharmacological alternative for the management of different diseases, such as gastrointestinal and nasal disorders.


Subject(s)
Glucans/pharmacology , Mucous Membrane/drug effects , Mucous Membrane/metabolism , Phytochemicals/pharmacology , Polymers/pharmacology , Protective Agents/pharmacology , Xylans/pharmacology , Animals , Clinical Studies as Topic , Disease Models, Animal , Disease Susceptibility , Epithelial Cells/drug effects , Epithelial Cells/immunology , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Gastroenteritis/drug therapy , Gastroenteritis/etiology , Gastroenteritis/metabolism , Gastroenteritis/pathology , Glucans/chemistry , Glucans/therapeutic use , Host-Pathogen Interactions , Humans , Mucins/metabolism , Mucous Membrane/cytology , Mucous Membrane/immunology , Phytochemicals/chemistry , Phytochemicals/therapeutic use , Polymers/chemistry , Polymers/therapeutic use , Protective Agents/chemistry , Protective Agents/therapeutic use , Urinary Tract Infections/drug therapy , Urinary Tract Infections/etiology , Urinary Tract Infections/metabolism , Xylans/chemistry , Xylans/therapeutic use
18.
Bull Exp Biol Med ; 164(2): 158-161, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29185171

ABSTRACT

Sulfated derivatives of xylan (isolated from Bétula pubéscens wood) with average molecular weight ~34 kDa, sulfur content of 11.3-17.5%, a degree of substitution of 0.74-1.64 are anticoagulants of direct type of action. Antithrombin and antifactor Xa activities in three tested xylan samples did not differ and reached 30.8-31.8 and 13.5-14.3 U/mg, respectively.


Subject(s)
Anticoagulants/pharmacology , Factor Xa/metabolism , Thrombin/antagonists & inhibitors , Xylans/pharmacology , Anticoagulants/chemistry , Anticoagulants/isolation & purification , Betula/chemistry , Blood Coagulation/drug effects , Blood Coagulation Tests , Humans , Molecular Weight , Plant Extracts/chemistry , Sulfates/chemistry , Thrombin/metabolism , Xylans/chemistry , Xylans/isolation & purification
19.
Cytotherapy ; 17(5): 601-12, 2015 May.
Article in English | MEDLINE | ID: mdl-25541298

ABSTRACT

BACKGROUND AIMS: Natural killer cell (NK) cytotoxic activity plays a major role in natural immunologic defences against malignancies. NK cells are emerging as a tool for adoptive cancer immunotherapies. Arabinoxylan rice bran (MGN-3/Biobran) has been described as a biological response modifier that can enhance the cytotoxic activity of NK cells. This study evaluated the effect of MGN-3/Biobran on NK cell activation, expansion and cytotoxicity against neuroblastoma cells. METHODS: NK cells were enriched with magnetic beads and stimulated with MGN-3/Biobran. NK cell activation was evaluated via analysis of their phenotype, and their expansion capability was tracked. The in vitro cytotoxic ability of the activated NK cells was tested against K562, Jurkat, A673, NB1691, A-204, RD and RH-30 cell lines and the in vivo cytotoxic ability against the NB1691 cell line. RESULTS: MGN-3/Biobran stimulation of NK cells induced a higher expression of the activation-associated receptors CD25 and CD69 than in unstimulated cells (P < 0.05). The expression of NKG2D, DNAM, NCRs and TLRs remained unchanged. Overnight MGN-3/Biobran stimulation increased NK cell cytotoxic activity against all cell lines tested in vitro and decelerated neuroblastoma growth in vivo. The mechanism is not mediated by lipopolysaccharide contamination in MGN-3/Biobran. Furthermore, the addition of MGN-3/Biobran promoted NK cell expansion and decreased T cells in vitro. CONCLUSIONS: Our data show that MGN-3/Biobran upregulates NK cell activation markers, stimulates NK cell cytotoxic activity against neuroblastoma in vitro and in vivo and selectively augments the expansion of NK cells. These results may be useful for future NK cell therapeutic strategies of the treatment of neuroblastoma.


Subject(s)
Cytotoxicity, Immunologic/drug effects , Killer Cells, Natural/cytology , Neuroblastoma/immunology , Oryza/chemistry , Xylans/pharmacology , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Cytokines/metabolism , Disease Models, Animal , Fluorescence , Humans , Immunophenotyping , Killer Cells, Natural/drug effects , Kinetics , Lipopolysaccharides/pharmacology , Lymphocyte Activation/drug effects , Mice, Inbred NOD , Mice, SCID , Neuroblastoma/pathology , Receptors, Natural Killer Cell/metabolism
20.
Biomacromolecules ; 16(7): 2157-67, 2015 Jul 13.
Article in English | MEDLINE | ID: mdl-26068019

ABSTRACT

Xyloglucan XG (molecular weight 462 kDa, 1,4-/1,4,6-(pGlc) linked backbone, side chains of 1-pXyl, 1,2-pXyl, 1-p-Gal) was isolated from the seeds of Tropaeolum majus. XG (100 µg/mL) induced terminal cellular differentiation of human keratinocytes, as demonstrated by immunofluorescence staining and Western blot using cytokeratin 10 and involucrin as marker proteins. Differentiation was also induced by XG-derived oligosaccharides (degree of polymerization 7-9). Quantitative real-time polymerase chain reaction (qPCR) revealed the induction of gene expression of typical differentiation markers (cytokeratin, filaggrin, involucrin, loricrin, transglutaminase) in a time-dependent manner. Whole human genome microarray indicated that most of upregulated genes were related to differentiation processes. Microarray findings on selected genes were subsequently confirmed by qPCR. For identification of the molecular target of xyloglucan PAGE of keratinocyte membrane preparations was performed, followed by blotting with fluorescein isothiocyanate-labeled XG. XG interacting proteins were characterized by MS. Peptide fragments of epidermal growth factor receptor (EGFR) and integrin ß4 were identified. Subsequent phospho-kinase array indicated that phosphorylation of EGFR and transcription factor cAMP response element-binding protein (CREB) was decreased in the XG-treated cells. Thus, the XG-induced differentiation of keratinocytes is proposed to be mediated by the inhibition of the phosphorylation of EGFR, leading to a dimished CREB activation, which is essential for the activation of cellular differentiation.


Subject(s)
Cyclic AMP Response Element-Binding Protein/metabolism , ErbB Receptors/metabolism , Glucans/pharmacology , Keratinocytes/drug effects , Tropaeolum/chemistry , Xylans/pharmacology , Cell Differentiation , Cells, Cultured , Filaggrin Proteins , Gene Expression Regulation/drug effects , Humans , Keratinocytes/cytology , Keratinocytes/metabolism , Phosphorylation/drug effects , Seeds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL