Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Int J Mol Sci ; 23(17)2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36077386

ABSTRACT

Oxaliplatin (OHP) is a platinum-based agent that can cause peripheral neuropathy, an adverse effect in which the dorsal root ganglion (DRG) neurons are targeted. Zonisamide has exhibited neuroprotective activities toward adult rat DRG neurons in vitro and therefore, we aimed to assess its potential efficacy against OHP-induced neurotoxicity. Pretreatment with zonisamide (100 µM) alleviated the DRG neuronal death caused by OHP (75 µM) and the protective effects were attenuated by a co-incubation with 25 µM of the mitogen-activated protein kinase (MAPK; MEK/ERK) inhibitor, U0126, or the phosphatidyl inositol-3'-phosphate-kinase (PI3K) inhibitor, LY294002. Pretreatment with zonisamide also suppressed the OHP-induced p38 MAPK phosphorylation in lined DRG neurons, ND7/23, while the OHP-induced DRG neuronal death was alleviated by pretreatment with the p38 MAPK inhibitor, SB239063 (25 µM). Although zonisamide failed to protect the immortalized rat Schwann cells IFRS1 from OHP-induced cell death, it prevented neurite degeneration and demyelination-like changes, as well as the reduction of the serine/threonine-specific protein kinase (AKT) phosphorylation in DRG neuron-IFRS1 co-cultures exposed to OHP. Zonisamide's neuroprotection against the OHP-induced peripheral sensory neuropathy is possibly mediated by a stimulation of the MEK/ERK and PI3K/AKT signaling pathways and suppression of the p38 MAPK pathway in DRG neurons. Future studies will allow us to solidify zonisamide as a promising remedy against the neurotoxic adverse effects of OHP.


Subject(s)
Ganglia, Spinal , Peripheral Nervous System Diseases , Animals , Cells, Cultured , Coculture Techniques , Ganglia, Spinal/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism , Neurons/metabolism , Oxaliplatin/adverse effects , Peripheral Nervous System Diseases/chemically induced , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats , Schwann Cells/metabolism , Zonisamide/adverse effects , Zonisamide/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
2.
Metabolomics ; 14(5): 70, 2018 05 09.
Article in English | MEDLINE | ID: mdl-30830352

ABSTRACT

INTRODUCTION: Zonisamide is a new-generation anticonvulsant antiepileptic drug metabolized primarily in the liver, with subsequent elimination via the renal route. OBJECTIVES: Our objective was to evaluate the utility of pharmacometabolomics in the detection of zonisamide metabolites that could be related to its disposition and therefore, to its efficacy and toxicity. METHODS: This study was nested to a bioequivalence clinical trial with 28 healthy volunteers. Each participant received a single dose of zonisamide on two separate occasions (period 1 and period 2), with a washout period between them. Blood samples of zonisamide were obtained from all patients at baseline for each period, before volunteers were administered any medication, for metabolomics analysis. RESULTS: After a Lasso regression was applied, age, height, branched-chain amino acids, steroids, triacylglycerols, diacyl glycerophosphoethanolamine, glycerophospholipids susceptible to methylation, phosphatidylcholines with 20:4 FA (arachidonic acid) and cholesterol ester and lysophosphatidylcholine were obtained in both periods. CONCLUSION: To our knowledge, this is the only research study to date that has attempted to link basal metabolomic status with pharmacokinetic parameters of zonisamide.


Subject(s)
Metabolomics/methods , Zonisamide/metabolism , Zonisamide/pharmacokinetics , Adult , Anticonvulsants/blood , Anticonvulsants/metabolism , Area Under Curve , Female , Healthy Volunteers , Humans , Isoxazoles/blood , Male , Pharmacological Phenomena/physiology , Therapeutic Equivalency , Young Adult
3.
Naunyn Schmiedebergs Arch Pharmacol ; 396(11): 3253-3267, 2023 11.
Article in English | MEDLINE | ID: mdl-37231170

ABSTRACT

Due to the role of astrocytes and microglia in the pathophysiology of epilepsy and limited studies of antiseizure medication (ASM) effects on glial cells, we studied tiagabine (TGB) and zonisamide (ZNS) in an astrocyte-microglia co-culture model of inflammation. Different concentrations of ZNS (10, 20, 40, 100 µg/ml) or TGB (1, 10, 20, 50 µg/ml) were added to primary rat astrocytes co-cultures with 5-10% (M5, physiological conditions) or 30-40% (M30, pathological inflammatory conditions) microglia for 24 h, aiming to study glial viability, microglial activation, connexin 43 (Cx43) expression and gap-junctional coupling. ZNS led to the reduction of glial viability by only 100 µg/ml under physiological conditions. By contrast, TGB revealed toxic effects with a significant, concentration-dependent reduction of glial viability under physiological and pathological conditions. After the incubation of M30 co-cultures with 20 µg/ml TGB, the microglial activation was significantly decreased and resting microglia slightly increased, suggesting possible anti-inflammatory features of TGB under inflammatory conditions. Otherwise, ZNS caused no significant changes of microglial phenotypes. The gap-junctional coupling was significantly decreased after the incubation of M5 co-cultures with 20 and 50 µg/ml TGB, which can be related to its anti-epileptic activity under noninflammatory conditions. A significant decrease of Cx43 expression and cell-cell coupling was found after the incubation of M30 co-cultures with 10 µg/ml ZNS, suggesting additional anti-seizure effects of ZNS with the disruption of glial gap-junctional communication under inflammatory conditions. TGB and ZNS differentially regulated the glial properties. Developing novel ASMs targeting glial cells may have future potential as an "add-on" therapy to classical ASMs targeting neurons.


Subject(s)
Astrocytes , Microglia , Rats , Animals , Coculture Techniques , Tiagabine/metabolism , Tiagabine/pharmacology , Connexin 43/metabolism , Zonisamide/pharmacology , Zonisamide/metabolism , Cell Communication , Neuroglia/metabolism , Inflammation/pathology
4.
Drug Metab Pharmacokinet ; 38: 100357, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33866277

ABSTRACT

Starting from established CYP3A4 Template (DMPK. 2019, and 2020), CYP3A5 and CYP3A7 Templates have been constructed to be reliable tools for verification of their distinct catalytic properties. A distinct occupancy was observed on CYP3A4-selective ligands, but not on the non-selective ligands, in simulation experiments. These ligands often invade into Bay-1 region during the migration from Entrance to Site of oxidation in simulation experiments. These results offered an idea of the distinct localization of Bay-1 residue on CYP3A5 Template, in which the Bay-1 residue stayed closely to Template border. The idea also accounted for the higher oxidation rates of CYP3A5, than of CYP3A4, of noscapine and schisantherin E through their enhanced sitting-stabilization. Typical CYP3A7 substrates such as zonisamide and retinoic acids took their placements without occupying a left side region of Template for their metabolisms. In turn, the occupancies of the left-side region were inevitably observed among poor ligands of CYP3A7. Altered extent of IJK-Interaction or localization of a specific residue at the left-side would thus explain distinct catalytic properties of CYP3A7 on Template. These data suggest the alteration of each one of Template region, from CYP3A4 Template, led to the distinct catalytic properties of CYP3A5 and CYP3A7 forms.


Subject(s)
Cytochrome P-450 CYP3A/metabolism , Catalysis , Humans , Ligands , Oxidation-Reduction , Tretinoin/metabolism , Zonisamide/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL