Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.451
Filter
Add more filters

Publication year range
1.
Nat Immunol ; 22(11): 1391-1402, 2021 11.
Article in English | MEDLINE | ID: mdl-34686865

ABSTRACT

Epithelial cells have an ability termed 'cell competition', which is an immune surveillance-like function that extrudes precancerous cells from the epithelial layer, leading to apoptosis and clearance. However, it remains unclear how epithelial cells recognize and extrude transformed cells. Here, we discovered that a PirB family protein, leukocyte immunoglobulin-like receptor B3 (LILRB3), which is expressed on non-transformed epithelial cells, recognizes major histocompatibility complex class I (MHC class I) that is highly expressed on transformed cells. MHC class I interaction with LILRB3 expressed on normal epithelial cells triggers an SHP2-ROCK2 pathway that generates a mechanical force to extrude transformed cells. Removal of transformed cells occurs independently of natural killer (NK) cell or CD8+ cytotoxic T cell-mediated activity. This is a new mechanism in that the immunological ligand-receptor system generates a mechanical force in non-immune epithelial cells to extrude precancerous cells in the same epithelial layer.


Subject(s)
Antigens, CD/metabolism , Apoptosis , Cell Competition , Epithelial Cells/metabolism , Histocompatibility Antigens Class I/metabolism , Lung Neoplasms/metabolism , Precancerous Conditions/metabolism , Receptors, Immunologic/metabolism , Animals , Antigens, CD/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Dogs , Epithelial Cells/immunology , Epithelial Cells/pathology , HaCaT Cells , Humans , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Madin Darby Canine Kidney Cells , Mechanotransduction, Cellular , Mice , Mice, Inbred BALB C , Mice, Nude , Precancerous Conditions/genetics , Precancerous Conditions/immunology , Precancerous Conditions/pathology , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , RAW 264.7 Cells , Receptors, Immunologic/genetics , Stress, Mechanical , rho-Associated Kinases/metabolism
2.
Cell ; 165(2): 343-56, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-26997483

ABSTRACT

Control of plasma glucose level is essential to organismal survival. Sustained inflammation has been implicated in control of glucose homeostasis in cases of infection, obesity, and type 2 diabetes; however, the precise role of inflammation in these complex disease states remains poorly understood. Here, we find that sustained inflammation results in elevated plasma glucose due to increased hepatic glucose production. We find that sustained inflammation suppresses CYP7A1, leading to accumulation of intermediate metabolites at the branch point of the mevalonate pathway. This results in prenylation of RHOC, which is concomitantly induced by inflammatory cytokines. Subsequent activation of RHO-associated protein kinase results in elevated plasma glucose. These findings uncover an unexpected mechanism by which sustained inflammation alters glucose homeostasis.


Subject(s)
Biosynthetic Pathways , Hepatitis/metabolism , Hyperglycemia/metabolism , Mevalonic Acid/metabolism , Animals , Blood Glucose/metabolism , Chemical and Drug Induced Liver Injury/metabolism , Cholesterol 7-alpha-Hydroxylase/metabolism , Fasting/blood , Lipopolysaccharides , Mice , Mice, Obese , Protein Prenylation , Transcription, Genetic , Triglycerides/blood , ras Proteins/metabolism , rho-Associated Kinases/metabolism , rhoC GTP-Binding Protein
3.
Nature ; 601(7893): 452-459, 2022 01.
Article in English | MEDLINE | ID: mdl-34912117

ABSTRACT

Structure-based virtual ligand screening is emerging as a key paradigm for early drug discovery owing to the availability of high-resolution target structures1-4 and ultra-large libraries of virtual compounds5,6. However, to keep pace with the rapid growth of virtual libraries, such as readily available for synthesis (REAL) combinatorial libraries7, new approaches to compound screening are needed8,9. Here we introduce a modular synthon-based approach-V-SYNTHES-to perform hierarchical structure-based screening of a REAL Space library of more than 11 billion compounds. V-SYNTHES first identifies the best scaffold-synthon combinations as seeds suitable for further growth, and then iteratively elaborates these seeds to select complete molecules with the best docking scores. This hierarchical combinatorial approach enables the rapid detection of the best-scoring compounds in the gigascale chemical space while performing docking of only a small fraction (<0.1%) of the library compounds. Chemical synthesis and experimental testing of novel cannabinoid antagonists predicted by V-SYNTHES demonstrated a 33% hit rate, including 14 submicromolar ligands, substantially improving over a standard virtual screening of the Enamine REAL diversity subset, which required approximately 100 times more computational resources. Synthesis of selected analogues of the best hits further improved potencies and affinities (best inhibitory constant (Ki) = 0.9 nM) and CB2/CB1 selectivity (50-200-fold). V-SYNTHES was also tested on a kinase target, ROCK1, further supporting its use for lead discovery. The approach is easily scalable for the rapid growth of combinatorial libraries and potentially adaptable to any docking algorithm.


Subject(s)
Algorithms , Combinatorial Chemistry Techniques , Drug Discovery , Libraries, Digital , Ligands , Molecular Docking Simulation , rho-Associated Kinases
4.
Cell ; 151(7): 1513-27, 2012 Dec 21.
Article in English | MEDLINE | ID: mdl-23260139

ABSTRACT

Cell migration toward areas of higher extracellular matrix (ECM) rigidity via a process called "durotaxis" is thought to contribute to development, immune response, and cancer metastasis. To understand how cells sample ECM rigidity to guide durotaxis, we characterized cell-generated forces on the nanoscale within single mature integrin-based focal adhesions (FAs). We found that individual FAs act autonomously, exhibiting either stable or dynamically fluctuating ("tugging") traction. We show that a FAK/phosphopaxillin/vinculin pathway is essential for high FA traction and to enable tugging FA traction over a broad range of ECM rigidities. We show that tugging FA traction is dispensable for FA maturation, chemotaxis, and haptotaxis but is critical to direct cell migration toward rigid ECM. We conclude that individual FAs dynamically sample rigidity by applying fluctuating pulling forces to the ECM to act as sensors to guide durotaxis, and that FAK/phosphopaxillin/vinculin signaling defines the rigidity range over which this dynamic sensing process operates.


Subject(s)
Cell Movement , Extracellular Matrix/chemistry , Focal Adhesions/chemistry , Animals , Biomechanical Phenomena , Embryo, Mammalian/cytology , Extracellular Matrix/metabolism , Focal Adhesion Kinase 2/metabolism , Mice , Microscopy/methods , Signal Transduction , Time-Lapse Imaging , rho-Associated Kinases/metabolism
5.
Cell ; 150(3): 575-89, 2012 Aug 03.
Article in English | MEDLINE | ID: mdl-22863010

ABSTRACT

The mechanism by which cells decide to skip mitosis to become polyploid is largely undefined. Here we used a high-content image-based screen to identify small-molecule probes that induce polyploidization of megakaryocytic leukemia cells and serve as perturbagens to help understand this process. Our study implicates five networks of kinases that regulate the switch to polyploidy. Moreover, we find that dimethylfasudil (diMF, H-1152P) selectively increased polyploidization, mature cell-surface marker expression, and apoptosis of malignant megakaryocytes. An integrated target identification approach employing proteomic and shRNA screening revealed that a major target of diMF is Aurora kinase A (AURKA). We further find that MLN8237 (Alisertib), a selective inhibitor of AURKA, induced polyploidization and expression of mature megakaryocyte markers in acute megakaryocytic leukemia (AMKL) blasts and displayed potent anti-AMKL activity in vivo. Our findings provide a rationale to support clinical trials of MLN8237 and other inducers of polyploidization and differentiation in AMKL.


Subject(s)
Azepines/pharmacology , Drug Discovery , Leukemia, Megakaryoblastic, Acute/drug therapy , Megakaryocytes/metabolism , Polyploidy , Pyrimidines/pharmacology , Small Molecule Libraries , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives , 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/pharmacology , Animals , Aurora Kinase A , Aurora Kinases , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Humans , Leukemia, Megakaryoblastic, Acute/genetics , Megakaryocytes/cytology , Megakaryocytes/pathology , Mice , Mice, Inbred C57BL , Protein Interaction Maps , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , rho-Associated Kinases/metabolism
6.
J Cell Sci ; 137(12)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38832512

ABSTRACT

As cells migrate through biological tissues, they must frequently squeeze through micron-sized constrictions in the form of interstitial pores between extracellular matrix fibers and/or other cells. Although it is now well recognized that such confined migration is limited by the nucleus, which is the largest and stiffest organelle, it remains incompletely understood how cells apply sufficient force to move their nucleus through small constrictions. Here, we report a mechanism by which contraction of the cell rear cortex pushes the nucleus forward to mediate nuclear transit through constrictions. Laser ablation of the rear cortex reveals that pushing forces behind the nucleus are the result of increased intracellular pressure in the rear compartment of the cell. The pushing forces behind the nucleus depend on accumulation of actomyosin in the rear cortex and require Rho kinase (ROCK) activity. Collectively, our results suggest a mechanism by which cells generate elevated intracellular pressure in the posterior compartment to facilitate nuclear transit through three-dimensional (3D) constrictions. This mechanism might supplement or even substitute for other mechanisms supporting nuclear transit, ensuring robust cell migrations in confined 3D environments.


Subject(s)
Cell Movement , Cell Nucleus , Cell Nucleus/metabolism , Cell Movement/physiology , Humans , Actomyosin/metabolism , rho-Associated Kinases/metabolism , Animals , Pressure , Mice
7.
Proc Natl Acad Sci U S A ; 120(3): e2209184120, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36626553

ABSTRACT

Monocytes play a key role in innate immunity by eliminating pathogens, releasing high levels of cytokines, and differentiating into several cell types, including macrophages and dendritic cells. Similar to other phagocytes, monocytes produce superoxide anions through the NADPH oxidase complex, which is composed of two membrane proteins (p22phox and gp91phox/NOX2) and four cytosolic proteins (p47phox, p67phox, p40phox and Rac1). The pathways involved in NADPH oxidase activation in monocytes are less known than those in neutrophils. Here, we show that p22phox is associated with Rho-associated coiled-coil kinase 2 (ROCK2) in human monocytes but not neutrophils. This interaction occurs between the cytosolic region of p22phox (amino acids 132 to 195) and the coiled-coil region of ROCK2 (amino acids 400 to 967). Interestingly, ROCK2 does not phosphorylate p22phox, p40phox, p67phox, or gp91phox in vitro but phosphorylates p47phox on Ser304, Ser315, Ser320 and Ser328. Furthermore, KD025, a selective inhibitor of ROCK2, inhibited reactive oxygen species (ROS) production and p47phox phosphorylation in monocytes. Specific inhibition of ROCK2 expression in THP1-monocytic cell line by siRNA inhibited ROS production. These data show that ROCK2 interacts with p22phox and phosphorylates p47phox, and suggest that p22phox could be a shuttle for ROCK2 to allow p47phox phosphorylation and NADPH oxidase activation in human monocytes.


Subject(s)
Monocytes , NADPH Oxidases , rho-Associated Kinases , Humans , Amino Acids , Monocytes/metabolism , NADPH Oxidases/metabolism , Phosphoproteins/metabolism , Reactive Oxygen Species , rho-Associated Kinases/metabolism
8.
Proc Natl Acad Sci U S A ; 120(41): e2308941120, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37782785

ABSTRACT

Impaired lymphatic drainage and lymphedema are major morbidities whose mechanisms have remained obscure. To study lymphatic drainage and its impairment, we engineered a microfluidic culture model of lymphatic vessels draining interstitial fluid. This lymphatic drainage-on-chip revealed that inflammatory cytokines that are known to disrupt blood vessel junctions instead tightened lymphatic cell-cell junctions and impeded lymphatic drainage. This opposing response was further demonstrated when inhibition of rho-associated protein kinase (ROCK) was found to normalize fluid drainage under cytokine challenge by simultaneously loosening lymphatic junctions and tightening blood vessel junctions. Studies also revealed a previously undescribed shift in ROCK isoforms in lymphatic endothelial cells, wherein a ROCK2/junctional adhesion molecule-A (JAM-A) complex emerges that is responsible for the cytokine-induced lymphatic junction zippering. To validate these in vitro findings, we further demonstrated in a genetic mouse model that lymphatic-specific knockout of ROCK2 reversed lymphedema in vivo. These studies provide a unique platform to generate interstitial fluid pressure and measure the drainage of interstitial fluid into lymphatics and reveal a previously unappreciated ROCK2-mediated mechanism in regulating lymphatic drainage.


Subject(s)
Junctional Adhesion Molecule A , Lymphatic Vessels , Lymphedema , rho-Associated Kinases , Animals , Mice , Biomimetics , Cytokines/metabolism , Endothelial Cells/metabolism , Intercellular Junctions , Junctional Adhesion Molecule A/metabolism , Lymphatic Vessels/metabolism , Lymphedema/genetics , Lymphedema/metabolism , rho-Associated Kinases/metabolism
9.
Proc Natl Acad Sci U S A ; 120(11): e2220272120, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36881624

ABSTRACT

T cells are present in early stages of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and play a major role in disease outcome and long-lasting immunity. Nasal administration of a fully human anti-CD3 monoclonal antibody (Foralumab) reduced lung inflammation as well as serum IL-6 and C-reactive protein in moderate cases of COVID-19. Using serum proteomics and RNA-sequencing, we investigated the immune changes in patients treated with nasal Foralumab. In a randomized trial, mild to moderate COVID-19 outpatients received nasal Foralumab (100 µg/d) given for 10 consecutive days and were compared to patients that did not receive Foralumab. We found that naïve-like T cells were increased in Foralumab-treated subjects and NGK7+ effector T cells were reduced. CCL5, IL32, CST7, GZMH, GZMB, GZMA, PRF1, and CCL4 gene expression were downregulated in T cells and CASP1 was downregulated in T cells, monocytes, and B cells in subjects treated with Foralumab. In addition to the downregulation of effector features, an increase in TGFB1 gene expression in cell types with known effector function was observed in Foralumab-treated subjects. We also found increased expression of GTP-binding gene GIMAP7 in subjects treated with Foralumab. Rho/ROCK1, a downstream pathway of GTPases signaling was downregulated in Foralumab-treated individuals. TGFB1, GIMAP7, and NKG7 transcriptomic changes observed in Foralumab-treated COVID-19 subjects were also observed in healthy volunteers, MS subjects, and mice treated with nasal anti-CD3. Our findings demonstrate that nasal Foralumab modulates the inflammatory response in COVID-19 and provides a novel avenue to treat the disease.


Subject(s)
Antibodies, Monoclonal , COVID-19 , Animals , Humans , Mice , Administration, Intranasal , Antibodies, Monoclonal/therapeutic use , GTP-Binding Proteins , Membrane Proteins , rho-Associated Kinases , SARS-CoV-2 , T-Lymphocytes , Transforming Growth Factor beta1/genetics
10.
PLoS Genet ; 19(12): e1011089, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38150455

ABSTRACT

Axon regeneration requires actomyosin interaction, which generates contractile force and pulls the regenerating axon forward. In Caenorhabditis elegans, TLN-1/talin promotes axon regeneration through multiple down-stream events. One is the activation of the PAT-3/integrin-RHO-1/RhoA GTPase-LET-502/ROCK (Rho-associated coiled-coil kinase)-regulatory non-muscle myosin light-chain (MLC) phosphorylation signaling pathway, which is dependent on the MLC scaffolding protein ALP-1/ALP-Enigma. The other is mediated by the F-actin-binding protein DEB-1/vinculin and is independent of the MLC phosphorylation pathway. In this study, we identified the svh-7/rtkn-1 gene, encoding a homolog of the RhoA-binding protein Rhotekin, as a regulator of axon regeneration in motor neurons. However, we found that RTKN-1 does not function in the RhoA-ROCK-MLC phosphorylation pathway in the regulation of axon regeneration. We show that RTKN-1 interacts with ALP-1 and the vinculin-binding protein SORB-1/vinexin, and that SORB-1 acts with DEB-1 to promote axon regeneration. Thus, RTKN-1 links the DEB-1-SORB-1 complex to ALP-1 and physically connects phosphorylated MLC on ALP-1 to the actin cytoskeleton. These results suggest that TLN-1 signaling pathways coordinate MLC phosphorylation and recruitment of phosphorylated MLC to the actin cytoskeleton during axon regeneration.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Talin/metabolism , Axons/metabolism , Vinculin , Nerve Regeneration/genetics , Phosphorylation , rho-Associated Kinases/metabolism , rho GTP-Binding Proteins/genetics , rho GTP-Binding Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism
11.
J Cell Sci ; 136(17)2023 09 01.
Article in English | MEDLINE | ID: mdl-37698512

ABSTRACT

Conditional reprogramming is a cell culture technique that effectively immortalizes epithelial cells with normal genotypes by renewing epidermal stem cells. Y-27632, a compound that promotes conditional reprogramming through an unknown mechanism, was developed to inhibit the two Rho-associated kinase (ROCK) isoforms. We used human foreskin keratinocytes (HFKs) to study the role of Y-27632 in conditional reprogramming and learn how ROCKs control epidermal stem cell renewal. In conditional reprogramming, Y-27632 increased HFK adherence to culture dishes, progression through S, G2 and M phases of the cell cycle, and epidermal stem cell marker levels. Although this correlated with ROCK inhibition by Y-27632, we generated CRISPR-Cas9-mediated HFK ROCK knockouts to test the direct role of ROCK inhibition. Knockout of single ROCK isoforms was insufficient to disrupt ROCK activity or promote HFK propagation without Y-27632. Although ROCK activity was reduced, HFKs with double knockout of ROCK1 and ROCK2 still required Y-27632 to propagate. Y-27632 was the most effective among the ROCK inhibitors we tested at promoting HFK proliferation and epidermal stem cell marker expression. Thus, the ability of Y-27632 to promote an epidermal stem cell state in conditional reprogramming not only depends upon ROCK inhibition but also acts via as-yet-unidentified mechanisms. Epidermal stem cell renewal might in part be regulated by ROCKs, but also involves additional pathways.


Subject(s)
Epidermal Cells , Stem Cells , Humans , Epidermis , Keratinocytes , rho-Associated Kinases
12.
FASEB J ; 38(1): e23343, 2024 01.
Article in English | MEDLINE | ID: mdl-38071602

ABSTRACT

Caveolin-1 (CAV1), the main structural component of caveolae, is phosphorylated at tyrosine-14 (pCAV1), regulates signal transduction, mechanotransduction, and mitochondrial function, and plays contrasting roles in cancer progression. We report that CRISPR/Cas9 knockout (KO) of CAV1 increases mitochondrial oxidative phosphorylation, increases mitochondrial potential, and reduces ROS in MDA-MB-231 triple-negative breast cancer cells. Supporting a role for pCAV1, these effects are reversed upon expression of CAV1 phosphomimetic CAV1 Y14D but not non-phosphorylatable CAV1 Y14F. pCAV1 is a known effector of Rho-associated kinase (ROCK) signaling and ROCK1/2 signaling mediates CAV1 promotion of increased mitochondrial potential and decreased ROS production in MDA-MB-231 cells. CAV1/ROCK control of mitochondrial potential and ROS is caveolae-independent as similar results were observed in PC3 prostate cancer cells lacking caveolae. Increased mitochondrial health and reduced ROS in CAV1 KO MDA-MB-231 cells were reversed by knockdown of the autophagy protein ATG5, mitophagy regulator PINK1 or the mitochondrial fission protein Drp1 and therefore due to mitophagy. Use of the mitoKeima mitophagy probe confirmed that CAV1 signaling through ROCK inhibited basal mitophagic flux. Activation of AMPK, a major mitochondrial homeostasis protein inhibited by ROCK, is inhibited by CAV1-ROCK signaling and mediates the increased mitochondrial potential, decreased ROS, and decreased basal mitophagy flux observed in wild-type MDA-MB-231 cells. CAV1 regulation of mitochondrial health and ROS in cancer cells therefore occurs via ROCK-dependent inhibition of AMPK. This study therefore links pCAV1 signaling activity at the plasma membrane with its regulation of mitochondrial activity and cancer cell metabolism through control of mitophagy.


Subject(s)
Caveolin 1 , Prostatic Neoplasms , Male , Humans , Caveolin 1/genetics , Caveolin 1/metabolism , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Reactive Oxygen Species/metabolism , Mechanotransduction, Cellular , Mitochondria/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Mitochondrial Proteins/metabolism , rho-Associated Kinases/genetics , rho-Associated Kinases/metabolism
13.
Mol Cell Proteomics ; 22(11): 100660, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37820923

ABSTRACT

Epithelial ovarian cancer (EOC) is a high-risk cancer presenting with heterogeneous tumors. The high incidence of EOC metastasis from primary tumors to nearby tissues and organs is a major driver of EOC lethality. We used cellular models of spheroid formation and readherence to investigate cellular signaling dynamics in each step toward EOC metastasis. In our system, adherent cells model primary tumors, spheroid formation represents the initiation of metastatic spread, and readherent spheroid cells represent secondary tumors. Proteomic and phosphoproteomic analyses show that spheroid cells are hypoxic and show markers for cell cycle arrest. Aurora kinase B abundance and downstream substrate phosphorylation are significantly reduced in spheroids and readherent cells, explaining their cell cycle arrest phenotype. The proteome of readherent cells is most similar to spheroids, yet greater changes in the phosphoproteome show that spheroid cells stimulate Rho-associated kinase 1 (ROCK1)-mediated signaling, which controls cytoskeletal organization. In spheroids, we found significant phosphorylation of ROCK1 substrates that were reduced in both adherent and readherent cells. Application of the ROCK1-specific inhibitor Y-27632 to spheroids increased the rate of readherence and altered spheroid density. The data suggest ROCK1 inhibition increases EOC metastatic potential. We identified novel pathways controlled by Aurora kinase B and ROCK1 as major drivers of metastatic behavior in EOC cells. Our data show that phosphoproteomic reprogramming precedes proteomic changes that characterize spheroid readherence in EOC metastasis.


Subject(s)
Ovarian Neoplasms , Humans , Female , Carcinoma, Ovarian Epithelial , Ovarian Neoplasms/metabolism , Aurora Kinase B , Proteomics , Spheroids, Cellular/metabolism , Cell Line, Tumor , Neoplasm Metastasis , rho-Associated Kinases
14.
Mol Cell Proteomics ; 22(12): 100667, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37852321

ABSTRACT

Ischemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM) are the two primary etiologies of end-stage heart failure. However, there remains a dearth of comprehensive understanding the global perspective and the dynamics of the proteome and phosphoproteome in ICM and DCM, which hinders the profound comprehension of pivotal biological characteristics as well as differences in signal transduction activation mechanisms between these two major types of heart failure. We conducted high-throughput quantification proteomics and phosphoproteomics analysis of clinical heart tissues with ICM or DCM, which provided us the system-wide molecular insights into pathogenesis of clinical heart failure in both ICM and DCM. Both protein and phosphorylation expression levels exhibit distinct separation between heart failure and normal control heart tissues, highlighting the prominent characteristics of ICM and DCM. By integrating with omics results, Western blots, phosphosite-specific mutation, chemical intervention, and immunofluorescence validation, we found a significant activation of the PRKACA-GSK3ß signaling pathway in ICM. This signaling pathway influenced remolding of the microtubule network and regulated the critical actin filaments in cardiac construction. Additionally, DCM exhibited significantly elevated mitochondria energy supply injury compared to ICM, which induced the ROCK1-vimentin signaling pathway activation and promoted mitophagy. Our study not only delineated the major distinguishing features between ICM and DCM but also revealed the crucial discrepancy in the mechanisms between ICM and DCM. This study facilitates a more profound comprehension of pathophysiologic heterogeneity between ICM and DCM and provides a novel perspective to assist in the discovery of potential therapeutic targets for different types of heart failure.


Subject(s)
Cardiomyopathy, Dilated , Heart Failure , Myocardial Ischemia , Humans , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/pathology , Proteomics , Mitophagy , Myocardial Ischemia/genetics , Myocardial Ischemia/pathology , Heart Failure/metabolism , Heart Failure/pathology , Cytoskeleton/metabolism , Microtubules/metabolism , rho-Associated Kinases
15.
PLoS Genet ; 18(6): e1010236, 2022 06.
Article in English | MEDLINE | ID: mdl-35737725

ABSTRACT

Congenital heart disease (CHD) is a common group of birth defects with a strong genetic contribution to their etiology, but historically the diagnostic yield from exome studies of isolated CHD has been low. Pleiotropy, variable expressivity, and the difficulty of accurately phenotyping newborns contribute to this problem. We hypothesized that performing exome sequencing on selected individuals in families with multiple members affected by left-sided CHD, then filtering variants by population frequency, in silico predictive algorithms, and phenotypic annotations from publicly available databases would increase this yield and generate a list of candidate disease-causing variants that would show a high validation rate. In eight of the nineteen families in our study (42%), we established a well-known gene/phenotype link for a candidate variant or performed confirmation of a candidate variant's effect on protein function, including variants in genes not previously described or firmly established as disease genes in the body of CHD literature: BMP10, CASZ1, ROCK1 and SMYD1. Two plausible variants in different genes were found to segregate in the same family in two instances suggesting oligogenic inheritance. These results highlight the need for functional validation and demonstrate that in the era of next-generation sequencing, multiplex families with isolated CHD can still bring high yield to the discovery of novel disease genes.


Subject(s)
Exome , Heart Defects, Congenital , Bone Morphogenetic Proteins/genetics , DNA-Binding Proteins/genetics , Exome/genetics , Gene Frequency , Genetic Association Studies , Heart Defects, Congenital/genetics , Humans , Infant, Newborn , Pedigree , Transcription Factors/genetics , Exome Sequencing , rho-Associated Kinases/genetics
16.
Med Res Rev ; 44(1): 406-421, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37265266

ABSTRACT

Rho-associated coiled-coil kinases (ROCKs) are key downstream effectors of small GTPases. ROCK plays a central role in diverse cellular events with accumulating evidence supporting the concept that ROCK is important in tumor development and progression. Numerous ROCK inhibitors have been investigated for their therapeutic potential in the treatment of cancers. In this article, we review recent research progress on ROCK inhibitors, especially those with potential for the treatment of cancers, reported in the literature from 2015 to 2021. Most ROCK inhibitors show potent in vitro and in vivo antitumor activities and have potential in the treatment of cancers.


Subject(s)
Neoplasms , rho-Associated Kinases , Humans , Neoplasms/drug therapy
17.
Am J Physiol Cell Physiol ; 326(1): C27-C39, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37661919

ABSTRACT

The follicle is the basic structural and functional unit of the ovary in female mammals. The excessive depletion of follicles will lead to diminished ovarian reserve or even premature ovarian failure, resulting in diminished ovarian oogenesis and endocrine function. Excessive follicular depletion is mainly due to loss of primordial follicles. Our analysis of published human ovarian single-cell sequencing results by others revealed a significant increase in rho-associated protein kinase 1 (ROCK1) expression during primordial follicle development. However, the role of ROCK1 in primordial follicle development and maintenance is not clear. This study revealed a gradual increase in ROCK1 expression during primordial follicle activation. Inhibition of ROCK1 resulted in reduced primordial follicle activation, decreased follicular reserve, and delayed development of growing follicles. This effect may be achieved through the HIPPO pathway. The present study indicates that ROCK1 is a key molecule for primordial follicular reserve and follicular development.NEW & NOTEWORTHY ROCK1, one of the Rho GTPases, plays an important role in primordial follicle reserve and follicular development. ROCK1 was primarily expressed in the cytoplasm of oocytes and granulosa cell in mice. Inhibition of ROCK1 significantly reduced the primordial follicle reserve and delayed growing follicle development. ROCK1 regulates primordial follicular reserve and follicle development through the HIPPO signaling pathway. These findings shed new lights on the physiology of sustaining female reproduction.


Subject(s)
Oocytes , Ovarian Follicle , Animals , Female , Humans , Mice , Granulosa Cells/metabolism , Mammals , Oogenesis , Ovarian Follicle/metabolism , Ovary/metabolism , rho-Associated Kinases/genetics , rho-Associated Kinases/metabolism
18.
J Cell Mol Med ; 28(8): e18153, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38568071

ABSTRACT

The small GTPase RhoA and the downstream Rho kinase (ROCK) regulate several cell functions and pathological processes in the vascular system that contribute to the age-dependent risk of cardiovascular disease, including endothelial dysfunction, excessive permeability, inflammation, impaired angiogenesis, abnormal vasoconstriction, decreased nitric oxide production and apoptosis. Frailty is a loss of physiological reserve and adaptive capacity with advanced age and is accompanied by a pro-inflammatory and pro-oxidative state that promotes vascular dysfunction and thrombosis. This review summarises the role of the RhoA/Rho kinase signalling pathway in endothelial dysfunction, the acquisition of the pro-thrombotic state and vascular ageing. We also discuss the possible role of RhoA/Rho kinase signalling as a promising therapeutic target for the prevention and treatment of age-related cardiovascular disease.


Subject(s)
Cardiovascular Diseases , Thrombosis , Vascular Diseases , Humans , rho-Associated Kinases/genetics , Endothelial Cells
19.
J Biol Chem ; 299(4): 103033, 2023 04.
Article in English | MEDLINE | ID: mdl-36806680

ABSTRACT

N-acetyl-d-glucosamine (GlcNAc) is a major component of bacterial cell walls. Many organisms recycle GlcNAc from the cell wall or metabolize environmental GlcNAc. The first step in GlcNAc metabolism is phosphorylation to GlcNAc-6-phosphate. In bacteria, the ROK family kinase N-acetylglucosamine kinase (NagK) performs this activity. Although ROK kinases have been studied extensively, no ternary complex showing the two substrates has yet been observed. Here, we solved the structure of NagK from the human pathogen Plesiomonas shigelloides in complex with GlcNAc and the ATP analog AMP-PNP. Surprisingly, PsNagK showed distinct conformational changes associated with the binding of each substrate. Consistent with this, the enzyme showed a sequential random enzyme mechanism. This indicates that the enzyme acts as a coordinated unit responding to each interaction. Our molecular dynamics modeling of catalytic ion binding confirmed the location of the essential catalytic metal. Additionally, site-directed mutagenesis confirmed the catalytic base and that the metal-coordinating residue is essential. Together, this study provides the most comprehensive insight into the activity of a ROK kinase.


Subject(s)
Phosphotransferases (Alcohol Group Acceptor) , Plesiomonas , Humans , Acetylglucosamine/metabolism , Glucosamine , Metals , Phosphotransferases (Alcohol Group Acceptor)/metabolism , rho-Associated Kinases , Plesiomonas/enzymology
20.
Glia ; 72(3): 643-659, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38031824

ABSTRACT

Long-term modifications of astrocyte function and morphology are well known to occur in epilepsy. They are implicated in the development and manifestation of the disease, but the relevant mechanisms and their pathophysiological role are not firmly established. For instance, it is unclear how quickly the onset of epileptic activity triggers astrocyte morphology changes and what the relevant molecular signals are. We therefore used two-photon excitation fluorescence microscopy to monitor astrocyte morphology in parallel to the induction of epileptiform activity. We uncovered astrocyte morphology changes within 10-20 min under various experimental conditions in acute hippocampal slices. In vivo, induction of status epilepticus resulted in similarly altered astrocyte morphology within 30 min. Further analysis in vitro revealed a persistent volume reduction of peripheral astrocyte processes triggered by induction of epileptiform activity. In addition, an impaired diffusion within astrocytes and within the astrocyte network was observed, which most likely is a direct consequence of the astrocyte remodeling. These astrocyte morphology changes were prevented by inhibition of the Rho GTPase RhoA and of the Rho-associated kinase (ROCK). Selective deletion of ROCK1 but not ROCK2 from astrocytes also prevented the morphology change after induction of epileptiform activity and reduced epileptiform activity. Together these observations reveal that epileptic activity triggers a rapid ROCK1-dependent astrocyte morphology change, which is mechanistically linked to the strength of epileptiform activity. This suggests that astrocytic ROCK1 signaling is a maladaptive response of astrocytes to the onset of epileptic activity.


Subject(s)
Epilepsy , Status Epilepticus , Humans , Astrocytes , rho-Associated Kinases , Hippocampus
SELECTION OF CITATIONS
SEARCH DETAIL