Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
PLoS Biol ; 17(1): e2006926, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30608919

RESUMEN

Many viruses interface with the autophagy pathway, a highly conserved process for recycling cellular components. For three viral infections in which autophagy constituents are proviral (poliovirus, dengue, and Zika), we developed a panel of knockouts (KOs) of autophagy-related genes to test which components of the canonical pathway are utilized. We discovered that each virus uses a distinct set of initiation components; however, all three viruses utilize autophagy-related gene 9 (ATG9), a lipid scavenging protein, and LC3 (light-chain 3), which is involved in membrane curvature. These results show that viruses use noncanonical routes for membrane sculpting and LC3 recruitment. By measuring viral RNA abundance, we also found that poliovirus utilizes these autophagy components for intracellular growth, while dengue and Zika virus only use autophagy components for post-RNA replication processes. Comparing how RNA viruses manipulate the autophagy pathway reveals new noncanonical autophagy routes, explains the exacerbation of disease by starvation, and uncovers common targets for antiviral drugs.


Asunto(s)
Autofagia/genética , Virus ARN/genética , Virus ARN/fisiología , Proteínas Relacionadas con la Autofagia/metabolismo , Línea Celular , Dengue/virología , Virus del Dengue/genética , Virus del Dengue/fisiología , Células HeLa , Humanos , Poliomielitis/virología , Poliovirus/genética , Poliovirus/fisiología , Virus ARN/metabolismo , ARN Viral , Virosis/genética , Replicación Viral , Virus Zika/genética , Virus Zika/fisiología , Infección por el Virus Zika/virología
2.
PLoS Pathog ; 11(11): e1005260, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26584434

RESUMEN

Short interspersed nuclear elements (SINEs) are highly abundant, RNA polymerase III-transcribed noncoding retrotransposons that are silenced in somatic cells but activated during certain stresses including viral infection. How these induced SINE RNAs impact the host-pathogen interaction is unknown. Here we reveal that during murine gammaherpesvirus 68 (MHV68) infection, rapidly induced SINE RNAs activate the antiviral NF-κB signaling pathway through both mitochondrial antiviral-signaling protein (MAVS)-dependent and independent mechanisms. However, SINE RNA-based signaling is hijacked by the virus to enhance viral gene expression and replication. B2 RNA expression stimulates IKKß-dependent phosphorylation of the major viral lytic cycle transactivator protein RTA, thereby enhancing its activity and increasing progeny virion production. Collectively, these findings suggest that SINE RNAs participate in the innate pathogen response mechanism, but that herpesviruses have evolved to co-opt retrotransposon activation for viral benefit.


Asunto(s)
Regulación Viral de la Expresión Génica/genética , ARN no Traducido/genética , ARN Viral/genética , Retroelementos , Rhadinovirus/genética , Activación Viral/genética , Animales , Línea Celular , Expresión Génica/genética , Interacciones Huésped-Patógeno , Quinasa I-kappa B/metabolismo , Ratones , FN-kappa B/genética , FN-kappa B/metabolismo , Transducción de Señal/genética , Latencia del Virus/genética , Replicación Viral/genética
3.
PLoS Pathog ; 10(1): e1003882, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24453974

RESUMEN

Lytic gammaherpesvirus infection restricts host gene expression by promoting widespread degradation of cytoplasmic mRNA through the activity of the viral endonuclease SOX. Though generally assumed to be selective for cellular transcripts, the extent to which SOX impacts viral mRNA stability has remained unknown. We addressed this issue using the model murine gammaherpesvirus MHV68 and, unexpectedly, found that all stages of viral gene expression are controlled through mRNA degradation. Using both comprehensive RNA expression profiling and half-life studies we reveal that the levels of the majority of viral mRNAs but not noncoding RNAs are tempered by MHV68 SOX (muSOX) activity. The targeting of viral mRNA by muSOX is functionally significant, as it impacts intracellular viral protein abundance and progeny virion composition. In the absence of muSOX-imposed gene expression control the viral particles display increased cell surface binding and entry as well as enhanced immediate early gene expression. These phenotypes culminate in a viral replication defect in multiple cell types as well as in vivo, highlighting the importance of maintaining the appropriate balance of viral RNA during gammaherpesviral infection. This is the first example of a virus that fails to broadly discriminate between cellular and viral transcripts during host shutoff and instead uses the targeting of viral messages to fine-tune overall gene expression.


Asunto(s)
Regulación Viral de la Expresión Génica/fisiología , Estabilidad del ARN , ARN Mensajero/metabolismo , Rhadinovirus/fisiología , Virión/metabolismo , Replicación Viral/fisiología , Animales , Chlorocebus aethiops , Infecciones por Herpesviridae/genética , Infecciones por Herpesviridae/metabolismo , Ratones , Células 3T3 NIH , ARN Mensajero/genética , Células Vero , Virión/genética
4.
Autophagy ; 14(5): 898-912, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29465287

RESUMEN

Macroautophagy/autophagy is a conserved catabolic process that promotes survival during stress. Autophagic dysfunction is associated with pathologies such as cancer and neurodegenerative diseases. Thus, autophagy must be strictly modulated at multiple levels (transcriptional, post-transcriptional, translational and post-translational) to prevent deregulation. Relatively little is known about the post-transcriptional control of autophagy. Here we report that the exoribonuclease Xrn1/XRN1 functions as a negative autophagy factor in the yeast Saccharomyces cerevisiae and in mammalian cells. In yeast, chromosomal deletion of XRN1 enhances autophagy and the frequency of autophagosome formation. Loss of Xrn1 results in the upregulation of autophagy-related (ATG) transcripts under nutrient-replete conditions, and this effect is dependent on the ribonuclease activity of Xrn1. Xrn1 expression is regulated by the yeast transcription factor Ash1 in rich conditions. In mammalian cells, siRNA depletion of XRN1 enhances autophagy and the replication of 2 picornaviruses. This work provides insight into the role of the RNA decay factor Xrn1/XRN1 as a post-transcriptional regulator of autophagy.


Asunto(s)
Autofagia , Exorribonucleasas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Transcripción Genética , Autofagosomas/metabolismo , Autofagosomas/ultraestructura , Células HeLa , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/ultraestructura
5.
Virology ; 479-480: 600-8, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25721579

RESUMEN

Viral replication significantly alters the gene expression landscape of infected cells. Many of these changes are driven by viral manipulation of host transcription or translation machinery. Several mammalian viruses encode factors that broadly dampen gene expression by directly targeting messenger RNA (mRNA). Here, we highlight how these factors promote mRNA degradation to globally regulate both host and viral gene expression. Although these viral factors are not homologous and use distinct mechanisms to target mRNA, many of them display striking parallels in their strategies for executing RNA degradation and invoke key features of cellular RNA quality control pathways. In some cases, there is a lack of selectivity for degradation of host versus viral mRNA, indicating that the purposes of virus-induced mRNA degradation extend beyond redirecting cellular resources towards viral gene expression. In addition, several antiviral pathways use RNA degradation as a viral restriction mechanism, and we will summarize new findings related to how these host-encoded ribonucleases target and destroy viral RNA.


Asunto(s)
Interacciones Huésped-Patógeno , Estabilidad del ARN , Fenómenos Fisiológicos de los Virus , Replicación Viral , Virus/inmunología , ARN Mensajero/metabolismo , ARN Viral/metabolismo
6.
Cell Host Microbe ; 18(2): 243-53, 2015 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-26211836

RESUMEN

Gamma-herpesviruses encode a cytoplasmic mRNA-targeting endonuclease, SOX, that cleaves most cellular mRNAs. Cleaved fragments are subsequently degraded by the cellular 5'-3' mRNA exonuclease Xrn1, thereby suppressing cellular gene expression and facilitating viral evasion of host defenses. We reveal that mammalian cells respond to this widespread cytoplasmic mRNA decay by altering RNA Polymerase II (RNAPII) transcription in the nucleus. Measuring RNAPII recruitment to promoters and nascent mRNA synthesis revealed that the majority of affected genes are transcriptionally repressed in SOX-expressing cells. The transcriptional feedback does not occur in response to the initial viral endonuclease-induced cleavage, but instead to degradation of the cleaved fragments by cellular exonucleases. In particular, Xrn1 catalytic activity is required for transcriptional repression. Notably, viral mRNA transcription escapes decay-induced repression, and this escape requires Xrn1. Collectively, these results indicate that mRNA decay rates impact transcription and that gamma-herpesviruses use this feedback mechanism to facilitate viral gene expression.


Asunto(s)
Retroalimentación , Gammaherpesvirinae/enzimología , Interacciones Huésped-Patógeno , Estabilidad del ARN , Ribonucleasas/metabolismo , Transcripción Genética , Línea Celular , Exorribonucleasas/metabolismo , Perfilación de la Expresión Génica , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Datos de Secuencia Molecular , ARN Polimerasa II/antagonistas & inhibidores , Análisis de Secuencia de ADN
7.
Curr Biol ; 24(1): 98-103, 2014 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-24361066

RESUMEN

Many intracellular bacterial pathogens undergo actin-based motility to promote cell-cell spread during infection [1]. For each pathogen, motility was assumed to be driven by a single actin polymerization pathway. Curiously, spotted fever group Rickettsia differ from other pathogens in possessing two actin-polymerizing proteins. RickA, an activator of the host Arp2/3 complex, was initially proposed to drive motility [2, 3]. Sca2, a mimic of host formins [4, 5], was later shown to be required for motility [6]. Whether and how their activities are coordinated has remained unclear. Here, we show that each protein directs an independent mode of Rickettsia parkeri motility at different times during infection. Early after invasion, motility is slow and meandering, generating short, curved actin tails that are enriched with Arp2/3 complex and cofilin. Early motility requires RickA and Arp2/3 complex and is correlated with transient RickA localization to the bacterial pole. Later in infection, motility is faster and directionally persistent, resulting in long, straight actin tails. Late motility is independent of Arp2/3 complex and RickA and requires Sca2, which accumulates at the bacterial pole. Both motility pathways facilitate cell-to-cell spread. The ability to exploit two actin assembly pathways may allow Rickettsia to establish an intracellular niche and spread between diverse cells throughout a prolonged infection.


Asunto(s)
Actinas/metabolismo , Rickettsia/metabolismo , Animales , Ataxinas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Chlorocebus aethiops , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Rickettsia/citología , Células Vero
8.
PLoS One ; 8(3): e60156, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23527308

RESUMEN

Primary open angle glaucoma (POAG) is a leading cause of blindness worldwide. The molecular signaling involved in the pathogenesis of POAG remains unknown. Here, we report that mice lacking the α1 subunit of the nitric oxide receptor soluble guanylate cyclase represent a novel and translatable animal model of POAG, characterized by thinning of the retinal nerve fiber layer and loss of optic nerve axons in the context of an open iridocorneal angle. The optic neuropathy associated with soluble guanylate cyclase α1-deficiency was accompanied by modestly increased intraocular pressure and retinal vascular dysfunction. Moreover, data from a candidate gene association study suggests that a variant in the locus containing the genes encoding for the α1 and ß1 subunits of soluble guanylate cyclase is associated with POAG in patients presenting with initial paracentral vision loss, a disease subtype thought to be associated with vascular dysregulation. These findings provide new insights into the pathogenesis and genetics of POAG and suggest new therapeutic strategies for POAG.


Asunto(s)
Modelos Animales de Enfermedad , Glaucoma de Ángulo Abierto/enzimología , Glaucoma de Ángulo Abierto/fisiopatología , Guanilato Ciclasa/deficiencia , Nervio Óptico/patología , Receptores Citoplasmáticos y Nucleares/deficiencia , Neuronas Retinianas/patología , Análisis de Varianza , Animales , Femenino , Guanilato Ciclasa/genética , Inmunohistoquímica , Presión Intraocular/fisiología , Ratones , Ratones Noqueados , Ratones Mutantes , Oftalmoscopía , Fenilendiaminas , Receptores Citoplasmáticos y Nucleares/genética , Guanilil Ciclasa Soluble , Tomografía de Coherencia Óptica
9.
PLoS One ; 6(3): e17659, 2011 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-21479271

RESUMEN

Glaucoma, the most frequent optic neuropathy, is a leading cause of blindness worldwide. Death of retinal ganglion cells (RGCs) occurs in all forms of glaucoma and accounts for the loss of vision, however the molecular mechanisms that cause RGC loss remain unclear. The pro-apoptotic molecule, Fas ligand, is a transmembrane protein that can be cleaved from the cell surface by metalloproteinases to release a soluble protein with antagonistic activity. Previous studies documented that constitutive ocular expression of FasL maintained immune privilege and prevented neoangeogenesis. We now show that FasL also plays a major role in retinal neurotoxicity. Importantly, in both TNFα triggered RGC death and a spontaneous model of glaucoma, gene-targeted mice that express only full-length FasL exhibit accelerated RGC death. By contrast, FasL-deficiency, or administration of soluble FasL, protected RGCs from cell death. These data identify membrane-bound FasL as a critical effector molecule and potential therapeutic target in glaucoma.


Asunto(s)
Membrana Celular/metabolismo , Proteína Ligando Fas/metabolismo , Glaucoma/metabolismo , Glaucoma/patología , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología , Animales , Muerte Celular , Membrana Celular/efectos de los fármacos , Citoprotección/efectos de los fármacos , Modelos Animales de Enfermedad , Proteína Ligando Fas/farmacología , Glaucoma/complicaciones , Inyecciones , Ratones , Ratones Mutantes , Microglía/efectos de los fármacos , Microglía/metabolismo , Microglía/patología , Fibras Nerviosas/efectos de los fármacos , Fibras Nerviosas/metabolismo , Fibras Nerviosas/patología , Unión Proteica/efectos de los fármacos , Degeneración Retiniana/complicaciones , Degeneración Retiniana/patología , Células Ganglionares de la Retina/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Solubilidad/efectos de los fármacos , Factor de Necrosis Tumoral alfa/administración & dosificación , Factor de Necrosis Tumoral alfa/farmacología , Receptor fas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA