Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Development ; 149(11)2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35575098

RESUMEN

Boundary domains delimit and organize organ growth throughout plant development almost relentlessly, building plant architecture and morphogenesis. Boundary domains display reduced growth and orchestrate development of adjacent tissues in a non-cell-autonomous manner. How these two functions are achieved remains elusive despite the identification of several boundary-specific genes. Here, we show using morphometrics at the organ and cellular levels that leaf boundary domain development requires SPINDLY (SPY), an O-fucosyltransferase, to act as cell growth repressor. Furthermore, we show that SPY acts redundantly with the CUP-SHAPED COTYLEDON transcription factors (CUC2 and CUC3), which are major determinants of boundaries development. Accordingly, at the molecular level CUC2 and SPY repress a common set of genes involved in cell wall loosening, providing a molecular framework for the growth repression associated with boundary domains. Atomic force microscopy confirmed that young leaf boundary domain cells have stiffer cell walls than marginal outgrowth. This differential cell wall stiffness was reduced in spy mutant plants. Taken together, our data reveal a concealed CUC2 cell wall-associated gene network linking tissue patterning with cell growth and mechanics.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pared Celular/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Redes Reguladoras de Genes , Mutación , Hojas de la Planta/genética , Hojas de la Planta/metabolismo
2.
Plant Cell ; 34(12): 4738-4759, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36029254

RESUMEN

Stem cells play important roles in animal and plant biology, as they sustain morphogenesis and tissue replenishment following aging or injury. In plants, stem cells are embedded in multicellular structures called meristems. The formation of new meristems is essential for the plastic expansion of the highly branched shoot and root systems. In particular, axillary meristems (AMs) that produce lateral shoots arise from the division of boundary domain cells at the leaf base. The CUP-SHAPED COTYLEDON (CUC) genes are major determinants of the boundary domain and are required for AM initiation. However, how AMs get structured and how stem cells become established de novo remain elusive. Here, we show that two NGATHA-LIKE (NGAL) transcription factors, DEVELOPMENT-RELATED PcG TARGET IN THE APEX4 (DPA4)/NGAL3 and SUPPRESSOR OF DA1-1 7 (SOD7)/NGAL2, redundantly repress CUC expression in initiating AMs of Arabidopsis thaliana. Ectopic boundary fate leads to abnormal growth and organization of the AM and prevents de novo stem cell establishment. Floral meristems of the dpa4 sod7 double mutant show a similar delay in de novo stem cell establishment. Altogether, while boundary fate is required for the initiation of AMs, our work reveals how it is later repressed to allow proper meristem establishment and de novo stem cell niche formation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Meristema/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Arabidopsis/metabolismo , Células Madre/metabolismo , Brotes de la Planta/genética , Factores de Transcripción/metabolismo
3.
J Exp Bot ; 73(18): 6150-6169, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-35689803

RESUMEN

Floral organ abscission is a separation process in which sepals, petals, and stamens detach from the plant at abscission zones. Here, we investigated the collective role of three amino-acid-loop-extension (TALE) homeobox genes ARABIDOPSIS THALIANA HOMEOBOX GENE1 (ATH1), KNAT6 (for KNOTTED LIKE from Arabidopsis thaliana) and KNAT2, which form a module that patterns boundaries under the regulation of BLADE-ON-PETIOLE 1 and 2 (BOP1/2) co-activators. These TALE homeodomain transcription factors were shown to maintain boundaries in the flower, functioning as a unit to coordinate the growth, patterning, and activity of abscission zones. Together with BOP1 and BOP2, ATH1 and its partners KNAT6 and KNAT2 collectively contribute to the differentiation of lignified and separation layers of the abscission zone. The genetic interactions of BOP1/2 and ATH1 with INFLORESCENCE DEFICIENT IN ABSCISSION (IDA) were also explored. We showed that BOP1/2 co-activators and ATH1 converge with the IDA signalling pathway to promote KNAT6 and KNAT2 expression in the abscission zone and cell separation. ATH1 acts as a central regulator in floral organ abscission as it controls the expression of other TALE genes in abscission zone cells.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/metabolismo , Aminoácidos/metabolismo , Inflorescencia/genética , Flores , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo
4.
PLoS Genet ; 15(1): e1007913, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30677017

RESUMEN

Boundary domains play important roles during morphogenesis in plants and animals, but how they contribute to patterning and growth coordination in plants is not understood. The CUC genes determine the boundary domains in the aerial part of the plants and, in particular, they have a conserved role in regulating leaf complexity across Angiosperms. Here, we used tooth formation at the Arabidopsis leaf margin controlled by the CUC2 transcription factor to untangle intertwined events during boundary-controlled morphogenesis in plants. Combining conditional restoration of CUC2 function with morphometrics as well as quantification of gene expression and hormone signaling, we first established that tooth morphogenesis involves a patterning phase and a growth phase. These phases can be separated, as patterning requires CUC2 while growth can occur independently of CUC2. Next, we show that CUC2 acts as a trigger to promote growth through the activation of three functional relays. In particular, we show that KLUH acts downstream of CUC2 to modulate auxin response and that expressing KLUH can compensate for deficient CUC2 expression during tooth growth. Together, we reveal a genetic and molecular network that allows coordination of patterning and growth by CUC2-defined boundaries during morphogenesis at the leaf margin.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Sistema Enzimático del Citocromo P-450/genética , Morfogénesis/genética , Arabidopsis/crecimiento & desarrollo , Flores/genética , Regulación del Desarrollo de la Expresión Génica/genética , Regulación de la Expresión Génica de las Plantas/genética , Ácidos Indolacéticos/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Semillas/genética , Semillas/crecimiento & desarrollo
5.
Int J Mol Sci ; 23(22)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36430591

RESUMEN

LEAFY plant-specific transcription factors, which are key regulators of flower meristem identity and floral patterning, also contribute to meristem activity. Notably, in some legumes, LFY orthologs such as Medicago truncatula SINGLE LEAFLET (SGL1) are essential in maintaining an undifferentiated and proliferating fate required for leaflet formation. This function contrasts with most other species, in which leaf dissection depends on the reactivation of KNOTTED-like class I homeobox genes (KNOXI). KNOXI and SGL1 genes appear to induce leaf complexity through conserved downstream genes such as the meristematic and boundary CUP-SHAPED COTYLEDON genes. Here, we compare in M. truncatula the function of SGL1 with that of the Arabidopsis thaliana KNOXI gene, SHOOT MERISTEMLESS (AtSTM). Our data show that AtSTM can substitute for SGL1 to form complex leaves when ectopically expressed in M. truncatula. The shared function between AtSTM and SGL1 extended to the major contribution of SGL1 during floral development as ectopic AtSTM expression could promote floral organ identity gene expression in sgl1 flowers and restore sepal shape and petal formation. Together, our work reveals a function for AtSTM in floral organ identity and a higher level of interchangeability between meristematic and floral identity functions for the AtSTM and SGL1 transcription factors than previously thought.


Asunto(s)
Arabidopsis , Medicago truncatula , Medicago truncatula/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mutación , Hojas de la Planta/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Development ; 143(18): 3417-28, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27387872

RESUMEN

A major challenge in morphometrics is to analyse complex biological shapes formed by structures at different scales. Leaves exemplify this challenge as they combine differences in their overall shape with smaller shape variations at their margin, leading to lobes or teeth. Current methods based on contour or on landmark analysis are successful in quantifying either overall leaf shape or leaf margin dissection, but fail in combining the two. Here, we present a comprehensive strategy and its associated freely available platform for the quantitative, multiscale analysis of the morphology of leaves with different architectures. For this, biologically relevant landmarks are automatically extracted and hierarchised, and used to guide the reconstruction of accurate average contours that properly represent both global and local features. Using this method, we establish a quantitative framework of the developmental trajectory of Arabidopsis leaves of different ranks and retrace the origin of leaf heteroblasty. When applied to different mutant forms, our method can contribute to a better understanding of gene function, as we show here for the role of CUC2 during Arabidopsis leaf serration. Finally, we illustrate the wider applicability of our tool by analysing hand morphometrics.


Asunto(s)
Hojas de la Planta/anatomía & histología , Programas Informáticos , Arabidopsis/anatomía & histología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Microscopía Fluorescente , Hojas de la Planta/metabolismo
7.
J Exp Bot ; 68(21-22): 5801-5811, 2017 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-29186469

RESUMEN

The CUP-SHAPED COTYLEDON (CUC) transcription factors control plant boundary formation, thus allowing the emergence of novel growth axes. While the developmental roles of the CUC genes in different organs and across species are well characterized, upstream and downstream events that contribute to their function are still poorly understood. To identify new players in this network, we performed a suppressor screen of CUC2g-m4, a line overexpressing CUC2 that has highly serrated leaves. We identified a mutation that simplifies leaf shape and affects MURUS1 (MUR1), which is responsible for GDP-L-fucose production. Using detailed morphometric analysis, we show that GDP-L-fucose has an essential role in leaf shape acquisition by sustaining differential growth at the leaf margins. Accordingly, reduced CUC2 expression levels are observed in mur1 leaves. Furthermore, genetic analyses reveal a conserved role for GDP-L-fucose in different developmental contexts where it contributes to organ separation in the same pathway as CUC2. Taken together, our results reveal that GDP-L-fucose is necessary for proper establishment of boundary domains in various developmental contexts.


Asunto(s)
Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Guanosina Difosfato Fucosa/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación del Desarrollo de la Expresión Génica , Guanosina Difosfato Fucosa/genética , Mutación , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
Plant Cell ; 23(1): 54-68, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21258003

RESUMEN

CUP-SHAPED COTYLEDON2 (CUC2) and the interacting microRNA miR164 regulate leaf margin dissection. Here, we further investigate the evolution and the specific roles of the CUC1 to CUC3 genes during Arabidopsis thaliana leaf serration. We show that CUC2 is essential for dissecting the leaves of a wide range of lobed/serrated Arabidopsis lines. Inactivation of CUC3 leads to a partial suppression of the serrations, indicating a role for this gene in leaf shaping. Morphometric analysis of leaf development and genetic analysis provide evidence for different temporal contributions of CUC2 and CUC3. Chimeric constructs mixing CUC regulatory sequences with different coding sequences reveal both redundant and specific roles for the three CUC genes that could be traced back to changes in their expression pattern or protein activity. In particular, we show that CUC1 triggers the formation of leaflets when ectopically expressed instead of CUC2 in the developing leaves. These divergent fates of the CUC1 and CUC2 genes after their formation by the duplication of a common ancestor is consistent with the signature of positive selection detected on the ancestral branch to CUC1. Combining experimental observations with the retraced origin of the CUC genes in the Brassicales, we propose an evolutionary scenario for the CUC genes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Hojas de la Planta/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Mutación , Fenotipo , Filogenia , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Factores de Transcripción/genética , Transformación Genética
9.
Mol Biol Evol ; 28(4): 1439-54, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21135149

RESUMEN

In order to understand how the morphology of plant species has diversified over time, it is necessary to decipher how the underlying developmental programs have evolved. The regulatory network controlling shoot meristem activity is likely to have played an important role in morphological diversification and useful insights can be gained by comparing monocots and eudicots. These two distinct monophyletic groups of angiosperms diverged 130 Ma and are characterized by important differences in their morphology. Several studies of eudicot species have revealed a conserved role for NAM and CUC3 genes in meristem functioning and pattern formation through the definition of morphogenetic boundaries during development. In this study, we show that NAM- and CUC3-related genes are conserved in palms and grasses, their diversification having predated the radiation of monocots and eudicots. Moreover, the NAM-miR164 posttranscriptional regulatory module is also conserved in palm species. However, in contrast to the CUC3-related genes, which share a similar expression pattern between the two angiosperm groups, the expression domain of the NAM-miR164 module differs between monocot and eudicot species. In our studies of spatial expression patterns, we compared existing eudicot data with novel results from our work using two palm species (date palm and oil palm) and two members of the Poaceae (rice and millet). In addition to contrasting results obtained at the gene expression level, major differences were also observed between eudicot and monocot NAM-related genes in the occurrence of putative cis-regulatory elements in their promoter sequences. Overall, our results suggest that although NAM- and CUC3-related proteins are functionally equivalent between monocots and eudicots, evolutionary radiation has resulted in heterotopy through alterations in the expression domain of the NAM-miR164 regulatory module.


Asunto(s)
Evolución Biológica , Magnoliopsida/anatomía & histología , Magnoliopsida/genética , Meristema/genética , Meristema/metabolismo , MicroARNs/genética , Secuencia de Bases , Bases de Datos Genéticas , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Magnoliopsida/clasificación , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA