Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Nature ; 617(7961): 564-573, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36996872

RESUMEN

Since its first identification in Scotland, over 1,000 cases of unexplained paediatric hepatitis in children have been reported worldwide, including 278 cases in the UK1. Here we report an investigation of 38 cases, 66 age-matched immunocompetent controls and 21 immunocompromised comparator participants, using a combination of genomic, transcriptomic, proteomic and immunohistochemical methods. We detected high levels of adeno-associated virus 2 (AAV2) DNA in the liver, blood, plasma or stool from 27 of 28 cases. We found low levels of adenovirus (HAdV) and human herpesvirus 6B (HHV-6B) in 23 of 31 and 16 of 23, respectively, of the cases tested. By contrast, AAV2 was infrequently detected and at low titre in the blood or the liver from control children with HAdV, even when profoundly immunosuppressed. AAV2, HAdV and HHV-6 phylogeny excluded the emergence of novel strains in cases. Histological analyses of explanted livers showed enrichment for T cells and B lineage cells. Proteomic comparison of liver tissue from cases and healthy controls identified increased expression of HLA class 2, immunoglobulin variable regions and complement proteins. HAdV and AAV2 proteins were not detected in the livers. Instead, we identified AAV2 DNA complexes reflecting both HAdV-mediated and HHV-6B-mediated replication. We hypothesize that high levels of abnormal AAV2 replication products aided by HAdV and, in severe cases, HHV-6B may have triggered immune-mediated hepatic disease in genetically and immunologically predisposed children.


Asunto(s)
Infecciones por Adenovirus Humanos , Genómica , Hepatitis , Niño , Humanos , Enfermedad Aguda/epidemiología , Infecciones por Adenovirus Humanos/epidemiología , Infecciones por Adenovirus Humanos/inmunología , Infecciones por Adenovirus Humanos/virología , Linfocitos B/inmunología , Perfilación de la Expresión Génica , Hepatitis/epidemiología , Hepatitis/inmunología , Hepatitis/virología , Inmunohistoquímica , Hígado/inmunología , Hígado/virología , Proteómica , Linfocitos T/inmunología
2.
Development ; 147(24)2020 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-33158926

RESUMEN

Ocular coloboma is a congenital eye malformation, resulting from a failure in optic fissure closure (OFC) and causing visual impairment. There has been little study of the epithelial fusion process underlying closure in the human embryo and coloboma aetiology remains poorly understood. We performed RNAseq of cell populations isolated using laser capture microdissection to identify novel human OFC signature genes and probe the expression profile of known coloboma genes, along with a comparative murine analysis. Gene set enrichment patterns showed conservation between species. Expression of genes involved in epithelial-to-mesenchymal transition was transiently enriched in the human fissure margins during OFC at days 41-44. Electron microscopy and histological analyses showed that cells transiently delaminate at the point of closure, and produce cytoplasmic protrusions, before rearranging to form two continuous epithelial layers. Apoptosis was not observed in the human fissure margins. These analyses support a model of human OFC in which epithelial cells at the fissure margins undergo a transient epithelial-to-mesenchymal-like transition, facilitating cell rearrangement to form a complete optic cup.


Asunto(s)
Coloboma/genética , Anomalías del Ojo/genética , Ojo/ultraestructura , Disco Óptico/ultraestructura , Animales , Apoptosis/genética , Secuencia de Bases/genética , Coloboma/patología , Transición Epitelial-Mesenquimal/genética , Ojo/patología , Anomalías del Ojo/patología , Regulación del Desarrollo de la Expresión Génica , Humanos , Captura por Microdisección con Láser , Ratones , Microscopía Electrónica
3.
J Am Soc Nephrol ; 33(2): 305-325, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34607911

RESUMEN

BACKGROUND: Gitelman syndrome is the most frequent hereditary salt-losing tubulopathy characterized by hypokalemic alkalosis and hypomagnesemia. Gitelman syndrome is caused by biallelic pathogenic variants in SLC12A3, encoding the Na+-Cl- cotransporter (NCC) expressed in the distal convoluted tubule. Pathogenic variants of CLCNKB, HNF1B, FXYD2, or KCNJ10 may result in the same renal phenotype of Gitelman syndrome, as they can lead to reduced NCC activity. For approximately 10 percent of patients with a Gitelman syndrome phenotype, the genotype is unknown. METHODS: We identified mitochondrial DNA (mtDNA) variants in three families with Gitelman-like electrolyte abnormalities, then investigated 156 families for variants in MT-TI and MT-TF, which encode the transfer RNAs for phenylalanine and isoleucine. Mitochondrial respiratory chain function was assessed in patient fibroblasts. Mitochondrial dysfunction was induced in NCC-expressing HEK293 cells to assess the effect on thiazide-sensitive 22Na+ transport. RESULTS: Genetic investigations revealed four mtDNA variants in 13 families: m.591C>T (n=7), m.616T>C (n=1), m.643A>G (n=1) (all in MT-TF), and m.4291T>C (n=4, in MT-TI). Variants were near homoplasmic in affected individuals. All variants were classified as pathogenic, except for m.643A>G, which was classified as a variant of uncertain significance. Importantly, affected members of six families with an MT-TF variant additionally suffered from progressive chronic kidney disease. Dysfunction of oxidative phosphorylation complex IV and reduced maximal mitochondrial respiratory capacity were found in patient fibroblasts. In vitro pharmacological inhibition of complex IV, mimicking the effect of the mtDNA variants, inhibited NCC phosphorylation and NCC-mediated sodium uptake. CONCLUSION: Pathogenic mtDNA variants in MT-TF and MT-TI can cause a Gitelman-like syndrome. Genetic investigation of mtDNA should be considered in patients with unexplained Gitelman syndrome-like tubulopathies.


Asunto(s)
ADN Mitocondrial/genética , Síndrome de Gitelman/genética , Mutación , Adolescente , Adulto , Anciano , Secuencia de Bases , Niño , Preescolar , Femenino , Genotipo , Síndrome de Gitelman/metabolismo , Síndrome de Gitelman/patología , Células HEK293 , Humanos , Lactante , Riñón/metabolismo , Riñón/ultraestructura , Masculino , Persona de Mediana Edad , Mitocondrias/metabolismo , Modelos Biológicos , Conformación de Ácido Nucleico , Linaje , Fenotipo , Polimorfismo de Nucleótido Simple , ARN de Transferencia de Isoleucina/química , ARN de Transferencia de Isoleucina/genética , ARN de Transferencia de Fenilalanina/química , ARN de Transferencia de Fenilalanina/genética , Miembro 3 de la Familia de Transportadores de Soluto 12/genética , Adulto Joven
4.
Hum Mol Genet ; 27(11): 1927-1940, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29635513

RESUMEN

Mutations in SNX14 cause the autosomal recessive cerebellar ataxia 20 (SCAR20). Mutations generally result in loss of protein although several coding region deletions have also been reported. Patient-derived fibroblasts show disrupted autophagy, but the precise function of SNX14 is unknown. The yeast homolog, Mdm1, functions in endoplasmic reticulum (ER)-lysosome/vacuole inter-organelle tethering, but functional conservation in mammals is still required. Here, we show that loss of SNX14 alters but does not block autophagic flux. In addition, we find that SNX14 is an ER-associated protein that functions in neutral lipid homeostasis and inter-organelle crosstalk. SNX14 requires its N-terminal transmembrane helices for ER localization, while the Phox homology (PX) domain is dispensable for subcellular localization. Both SNX14-mutant fibroblasts and SNX14KO HEK293 cells accumulate aberrant cytoplasmic vacuoles, suggesting defects in endolysosomal homeostasis. However, ER-late endosome/lysosome contact sites are maintained in SNX14KO cells, indicating that it is not a prerequisite for ER-endolysosomal tethering. Further investigation of SNX14- deficiency indicates general defects in neutral lipid metabolism. SNX14KO cells display distinct perinuclear accumulation of filipin in LAMP1-positive lysosomal structures indicating cholesterol accumulation. Consistent with this, SNX14KO cells display a slight but detectable decrease in cholesterol ester levels, which is exacerbated with U18666A. Finally, SNX14 associates with ER-derived lipid droplets (LD) following oleate treatment, indicating a role in ER-LD crosstalk. We therefore identify an important role for SNX14 in neutral lipid homeostasis between the ER, lysosomes and LDs that may provide an early intervention target to alleviate the clinical symptoms of SCAR20.


Asunto(s)
Retículo Endoplásmico/genética , Metabolismo de los Lípidos/genética , Nexinas de Clasificación/genética , Ataxias Espinocerebelosas/genética , Autofagia/genética , Retículo Endoplásmico/metabolismo , Endosomas , Técnicas de Inactivación de Genes , Células HEK293 , Homeostasis/efectos de los fármacos , Humanos , Proteínas de Filamentos Intermediarios/genética , Gotas Lipídicas/metabolismo , Lisosomas/efectos de los fármacos , Lisosomas/genética , Mutación , Ácido Oléico/farmacología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Nexinas de Clasificación/deficiencia , Nexinas de Clasificación/metabolismo , Ataxias Espinocerebelosas/metabolismo , Ataxias Espinocerebelosas/fisiopatología
5.
Genet Med ; 22(1): 199-209, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31462754

RESUMEN

PURPOSE: Mitochondrial DNA (mtDNA) depletion syndrome (MDDS) encompasses a group of genetic disorders of mtDNA maintenance. Mutation of RRM2B is an uncommon cause of infantile-onset encephalomyopathic MDDS. Here we describe the natural history of this disease. METHODS: Multinational series of new genetically confirmed cases from six pediatric centers. RESULTS: Nine new cases of infantile-onset RRM2B deficiency, and 22 previously published cases comprised a total cohort of 31 patients. Infants presented at a mean of 1.95 months with truncal hypotonia, generalized weakness, and faltering growth. Seizures evolved in 39% at a mean of 3.1 months. Non-neurological manifestations included respiratory distress/failure (58%), renal tubulopathy (55%), sensorineural hearing loss (36%), gastrointestinal disturbance (32%), eye abnormalities (13%), and anemia (13%). Laboratory features included elevated lactate (blood, cerebrospinal fluid (CSF), urine, magnetic resonance (MR), spectroscopy), ragged-red and cytochrome c oxidase-deficient fibers, lipid myopathy, and multiple oxidative phosphorylation enzyme deficiencies in skeletal muscle. Eight new RRM2B variants were identified. Patients with biallelic truncating variants had the worst survival. Overall survival was 29% at 6 months and 16% at 1 year. CONCLUSIONS: Infantile-onset MDDS due to RRM2B deficiency is a severe disorder with characteristic clinical features and extremely poor prognosis. Presently management is supportive as there is no effective treatment. Novel treatments are urgently needed.


Asunto(s)
Proteínas de Ciclo Celular/genética , Seudoobstrucción Intestinal/genética , Distrofia Muscular Oculofaríngea/genética , Mutación Missense , Ribonucleótido Reductasas/genética , Proteínas de Ciclo Celular/química , Femenino , Humanos , Lactante , Recién Nacido , Seudoobstrucción Intestinal/mortalidad , Masculino , Modelos Moleculares , Distrofia Muscular Oculofaríngea/mortalidad , Oftalmoplejía/congénito , Pronóstico , Conformación Proteica , Ribonucleótido Reductasas/química , Análisis de Supervivencia
6.
Ann Neurol ; 84(5): 766-780, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30295347

RESUMEN

OBJECTIVE: Several small case series identified KCTD7 mutations in patients with a rare autosomal recessive disorder designated progressive myoclonic epilepsy (EPM3) and neuronal ceroid lipofuscinosis (CLN14). Despite the name KCTD (potassium channel tetramerization domain), KCTD protein family members lack predicted channel domains. We sought to translate insight gained from yeast studies to uncover disease mechanisms associated with deficiencies in KCTD7 of unknown function. METHODS: Novel KCTD7 variants in new and published patients were assessed for disease causality using genetic analyses, cell-based functional assays of patient fibroblasts and knockout yeast, and electron microscopy of patient samples. RESULTS: Patients with KCTD7 mutations can exhibit movement disorders or developmental regression before seizure onset, and are distinguished from similar disorders by an earlier age of onset. Although most published KCTD7 patient variants were excluded from a genome sequence database of normal human variations, most newly identified patient variants are present in this database, potentially challenging disease causality. However, genetic analysis and impaired biochemical interactions with cullin 3 support a causal role for patient KCTD7 variants, suggesting deleterious alleles of KCTD7 and other rare disease variants may be underestimated. Both patient-derived fibroblasts and yeast lacking Whi2 with sequence similarity to KCTD7 have impaired autophagy consistent with brain pathology. INTERPRETATION: Biallelic KCTD7 mutations define a neurodegenerative disorder with lipofuscin and lipid droplet accumulation but without defining features of neuronal ceroid lipofuscinosis or lysosomal storage disorders. KCTD7 deficiency appears to cause an underlying autophagy-lysosome defect conserved in yeast, thereby assigning a biological role for KCTD7. Ann Neurol 2018;84:774-788.


Asunto(s)
Autofagia/genética , Lisosomas/genética , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Canales de Potasio/deficiencia , Edad de Inicio , Preescolar , Femenino , Humanos , Lactante , Lisosomas/patología , Masculino , Mutación , Linaje , Canales de Potasio/genética , Proteínas de Saccharomyces cerevisiae/genética
7.
Am J Hum Genet ; 95(5): 611-21, 2014 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-25439728

RESUMEN

Intellectual disability and cerebellar atrophy occur together in a large number of genetic conditions and are frequently associated with microcephaly and/or epilepsy. Here we report the identification of causal mutations in Sorting Nexin 14 (SNX14) found in seven affected individuals from three unrelated consanguineous families who presented with recessively inherited moderate-severe intellectual disability, cerebellar ataxia, early-onset cerebellar atrophy, sensorineural hearing loss, and the distinctive association of progressively coarsening facial features, relative macrocephaly, and the absence of seizures. We used homozygosity mapping and whole-exome sequencing to identify a homozygous nonsense mutation and an in-frame multiexon deletion in two families. A homozygous splice site mutation was identified by Sanger sequencing of SNX14 in a third family, selected purely by phenotypic similarity. This discovery confirms that these characteristic features represent a distinct and recognizable syndrome. SNX14 encodes a cellular protein containing Phox (PX) and regulator of G protein signaling (RGS) domains. Weighted gene coexpression network analysis predicts that SNX14 is highly coexpressed with genes involved in cellular protein metabolism and vesicle-mediated transport. All three mutations either directly affected the PX domain or diminished SNX14 levels, implicating a loss of normal cellular function. This manifested as increased cytoplasmic vacuolation as observed in cultured fibroblasts. Our findings indicate an essential role for SNX14 in neural development and function, particularly in development and maturation of the cerebellum.


Asunto(s)
Ataxia Cerebelosa/genética , Discapacidad Intelectual/genética , Nexinas de Clasificación/genética , Secuencia de Bases , Ataxia Cerebelosa/patología , Mapeo Cromosómico , Codón sin Sentido/genética , Femenino , Fibroblastos/ultraestructura , Redes Reguladoras de Genes/genética , Genes Recesivos/genética , Humanos , Discapacidad Intelectual/patología , Masculino , Microscopía Electrónica , Datos de Secuencia Molecular , Linaje , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN
8.
J Inherit Metab Dis ; 40(3): 385-394, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28255779

RESUMEN

Mutations in SLC25A22 are known to cause neonatal epileptic encephalopathy and migrating partial seizures in infancy. Using whole exome sequencing we identified four novel SLC25A22 mutations in six children from three families. Five patients presented clinical features similar to those in the literature including hypotonia, refractory neonatal-onset seizures and developmental delay. However, the sixth patients presented atypically with isolated developmental delay, developing late-onset (absence) seizures only at 7 years of age. Abnormal metabolite levels have not been documented in the nine patients described previously. One patient in our series was referred to the metabolic clinic because of persistent hyperprolinaemia and another three had raised plasma proline when tested. Analysis of the post-prandial plasma amino acid response in one patient showed abnormally high concentrations of several amino acids. This suggested that, in the fed state, when amino acids are the preferred fuel for the liver, trans-deamination of amino acids requires transportation of glutamate into liver mitochondria by SLC25A22 for deamination by glutamate dehydrogenase; SLC25A22 is an important mitochondrial glutamate transporter in liver as well as in brain. Electron microscopy of patient fibroblasts demonstrated widespread vacuolation containing neutral and phospho-lipids as demonstrated by Oil Red O and Sudan Black tinctorial staining; this might be explained by impaired activity of the proline/pyrroline-5-carboxylate (P5C) shuttle if SLC25A22 transports pyrroline-5-carboxylate/glutamate-γ-semialdehyde as well as glutamate.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/genética , Discapacidades del Desarrollo/genética , Fibroblastos/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Mutación/genética , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Niño , Preescolar , Femenino , Ácido Glutámico/metabolismo , Humanos , Lactante , Recién Nacido , Masculino , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias Hepáticas/genética , Mitocondrias Hepáticas/metabolismo , Hipotonía Muscular/genética , Hipotonía Muscular/metabolismo , Prolina/metabolismo , Convulsiones/genética , Convulsiones/metabolismo
9.
Brain ; 139(11): 2844-2854, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27604308

RESUMEN

Neurometabolic disorders are markedly heterogeneous, both clinically and genetically, and are characterized by variable neurological dysfunction accompanied by suggestive neuroimaging or biochemical abnormalities. Despite early specialist input, delays in diagnosis and appropriate treatment initiation are common. Next-generation sequencing approaches still have limitations but are already enabling earlier and more efficient diagnoses in these patients. We designed a gene panel targeting 614 genes causing inborn errors of metabolism and tested its diagnostic efficacy in a paediatric cohort of 30 undiagnosed patients presenting with variable neurometabolic phenotypes. Genetic defects that could, at least partially, explain observed phenotypes were identified in 53% of cases. Where biochemical abnormalities pointing towards a particular gene defect were present, our panel identified diagnoses in 89% of patients. Phenotypes attributable to defects in more than one gene were seen in 13% of cases. The ability of in silico tools, including structure-guided prediction programmes to characterize novel missense variants were also interrogated. Our study expands the genetic, clinical and biochemical phenotypes of well-characterized (POMGNT1, TPP1) and recently identified disorders (PGAP2, ACSF3, SERAC1, AFG3L2, DPYS). Overall, our panel was accurate and efficient, demonstrating good potential for applying similar approaches to clinically and biochemically diverse neurometabolic disease cohorts.


Asunto(s)
Encefalopatías Metabólicas/genética , Predisposición Genética a la Enfermedad , Errores Innatos del Metabolismo/genética , Adolescente , Encefalopatías Metabólicas/diagnóstico por imagen , Niño , Preescolar , Estudios de Cohortes , Femenino , Pruebas Genéticas , Genotipo , Humanos , Imagenología Tridimensional , Lactante , Imagen por Resonancia Magnética , Masculino , Errores Innatos del Metabolismo/diagnóstico por imagen , Fenotipo , Tripeptidil Peptidasa 1 , Adulto Joven
10.
J Neurosci Res ; 94(4): 339-47, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26762174

RESUMEN

Neuronal ceroid lipofuscinoses (NCLs) are a group of incurable lysosomal storage disorders characterized by neurodegeneration and accumulation of lipopigments mainly within the neurons. We studied two littermate Chihuahua dogs presenting with progressive signs of blindness, ataxia, pacing, and cognitive impairment from 1 year of age. Because of worsening of clinical signs, both dogs were euthanized at about 2 years of age. Postmortem examination revealed marked accumulation of autofluorescent intracellular inclusions within the brain, characteristic of NCL. Whole-genome sequencing was performed on one of the affected dogs. After sequence alignment and variant calling against the canine reference genome, variants were identified in the coding region or splicing regions of four previously known NCL genes (CLN6, ARSG, CLN2 [=TPP1], and CLN7 [=MFSD8]). Subsequent segregation analysis within the family (two affected dogs, both parents, and three relatives) identified MFSD8:p.Phe282Leufs13*, which had previously been identified in one Chinese crested dog with no available ancestries, as the causal mutation. Because of the similarities of the clinical signs and histopathological changes with the human form of the disease, we propose that the Chihuahua dog could be a good animal model of CLN7 disease.


Asunto(s)
Modelos Animales de Enfermedad , Proteínas de Transporte de Membrana/genética , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/veterinaria , Animales , Perros , Femenino , Masculino , Lipofuscinosis Ceroideas Neuronales/patología , Reacción en Cadena de la Polimerasa , Tripeptidil Peptidasa 1
11.
Brain ; 138(Pt 10): 2834-46, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26122121

RESUMEN

Defects of mitochondrial dynamics are emerging causes of neurological disease. In two children presenting with severe neurological deterioration following viral infection we identified a novel homozygous STAT2 mutation, c.1836 C>A (p.Cys612Ter), using whole exome sequencing. In muscle and fibroblasts from these patients, and a third unrelated STAT2-deficient patient, we observed extremely elongated mitochondria. Western blot analysis revealed absence of the STAT2 protein and that the mitochondrial fission protein DRP1 (encoded by DNM1L) is inactive, as shown by its phosphorylation state. All three patients harboured decreased levels of DRP1 phosphorylated at serine residue 616 (P-DRP1(S616)), a post-translational modification known to activate DRP1, and increased levels of DRP1 phosphorylated at serine 637 (P-DRP1(S637)), associated with the inactive state of the DRP1 GTPase. Knockdown of STAT2 in SHSY5Y cells recapitulated the fission defect, with elongated mitochondria and decreased P-DRP1(S616) levels. Furthermore the mitochondrial fission defect in patient fibroblasts was rescued following lentiviral transduction with wild-type STAT2 in all three patients, with normalization of mitochondrial length and increased P-DRP1(S616) levels. Taken together, these findings implicate STAT2 as a novel regulator of DRP1 phosphorylation at serine 616, and thus of mitochondrial fission, and suggest that there are interactions between immunity and mitochondria. This is the first study to link the innate immune system to mitochondrial dynamics and morphology. We hypothesize that variability in JAK-STAT signalling may contribute to the phenotypic heterogeneity of mitochondrial disease, and may explain why some patients with underlying mitochondrial disease decompensate after seemingly trivial viral infections. Modulating JAK-STAT activity may represent a novel therapeutic avenue for mitochondrial diseases, which remain largely untreatable. This may also be relevant for more common neurodegenerative diseases, including Alzheimer's, Huntington's and Parkinson's diseases, in which abnormalities of mitochondrial morphology have been implicated in disease pathogenesis.


Asunto(s)
Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Dinámicas Mitocondriales/fisiología , Factor de Transcripción STAT2/deficiencia , Transducción de Señal/genética , Apoptosis/genética , Preescolar , Dinaminas , Electroencefalografía , Salud de la Familia , Femenino , Citometría de Flujo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Células HEK293 , Humanos , Lactante , Masculino , Microscopía Electrónica , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Músculo Esquelético/patología , Músculo Esquelético/ultraestructura , Neuroblastoma/patología , Fosforilación , Procesamiento Proteico-Postraduccional , ARN Nuclear Pequeño/farmacología , Factor de Transcripción STAT2/genética , Transfección
12.
Clin Infect Dis ; 60(6): 881-8, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25572899

RESUMEN

BACKGROUND: An 18-month-old boy developed encephalopathy, for which extensive investigation failed to identify an etiology, 6 weeks after stem cell transplant. To exclude a potential infectious cause, we performed high-throughput RNA sequencing on brain biopsy. METHODS: RNA-Seq was performed on an Illumina Miseq, generating 20 million paired-end reads. Nonhost data were checked for similarity to known organisms using BLASTx. The full viral genome was sequenced by primer walking. RESULTS: We identified an astrovirus, HAstV-VA1/HMO-C-UK1(a), which was highly divergent from human astrovirus (HAstV 1-8) genotypes, but closely related to VA1/HMO-C astroviruses, including one recovered from a case of fatal encephalitis in an immunosuppressed child. The virus was detected in stool and serum, with highest levels in brain and cerebrospinal fluid (CSF). Immunohistochemistry of the brain biopsy showed positive neuronal staining. A survey of 680 stool and 349 CSF samples identified a related virus in the stool of another immunosuppressed child. CONCLUSIONS: The discovery of HAstV-VA1/HMO-C-UK1(a) as the cause of encephalitis in this case provides further evidence that VA1/HMO-C viruses, unlike HAstV 1-8, are neuropathic, particularly in immunocompromised patients, and should be considered in the differential diagnosis of encephalopathy. With a turnaround from sample receipt to result of <1 week, we confirm that RNA-Seq presents a valuable diagnostic tool in unexplained encephalitis.


Asunto(s)
Infecciones por Astroviridae/virología , Encéfalo/patología , Encefalitis Viral/diagnóstico , Encefalitis Viral/patología , Huésped Inmunocomprometido , Mamastrovirus/patogenicidad , Infecciones por Astroviridae/diagnóstico , Infecciones por Astroviridae/patología , Secuencia de Bases , Biopsia , Encéfalo/ultraestructura , Encefalitis Viral/virología , Heces/virología , Genoma Viral , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Masculino , Mamastrovirus/genética , Mamastrovirus/aislamiento & purificación , Filogenia , Prevalencia , ARN Viral/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Análisis de Secuencia de ARN , Trasplante de Células Madre
13.
Biochim Biophys Acta ; 1832(11): 1807-26, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23200925

RESUMEN

In childhood the neuronal ceroid lipofuscinoses (NCL) are the most frequent lysosomal diseases and the most frequent neurodegenerative diseases but, in adulthood, they represent a small fraction among the neurodegenerative diseases. Their morphology is marked by: (i) loss of neurons, foremost in the cerebral and cerebellar cortices resulting in cerebral and cerebellar atrophy; (ii) an almost ubiquitous accumulation of lipopigments in nerve cells, but also in extracerebral tissues. Loss of cortical neurons is selective, indiscriminate depletion in early childhood forms occurring only at an advanced stage, whereas loss of neurons in subcortical grey-matter regions has not been quantitatively documented. Among the fourteen different forms of NCL described to date, CLN1 and CLN10 are marked by granular lipopigments, CLN2 by curvilinear profiles (CVPs), CLN3 by fingerprint profiles (FPPs), and other forms by a combination of these features. Among extracerebral tissues, lymphocytes, skin, rectum, skeletal muscle and, occasionally, conjunctiva are possible guiding targets for diagnostic identification, the precise type of NCL then requiring molecular analysis within the clinical and morphological context. Autosomal-recessive adult NCL has been linked molecularly to different childhood forms, i.e. CLN1, CLN5, and CLN6, whilst autosomal-dominant adult NCL, now designated as CLN4, is caused by a newly identified separate gene, DNAJC5. This article is part of a Special Issue entitled: The Neuronal Ceroid Lipofuscinoses or Batten Disease.


Asunto(s)
Lipofuscinosis Ceroideas Neuronales/patología , Adulto , Humanos , Lipofuscinosis Ceroideas Neuronales/clasificación , Lipofuscinosis Ceroideas Neuronales/genética , Tripeptidil Peptidasa 1
14.
J Neurochem ; 129(3): 426-33, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24383952

RESUMEN

The Ketogenic diet (KD) is an effective treatment with regards to treating pharmaco-resistant epilepsy. However, there are difficulties around compliance and tolerability. Consequently, there is a need for refined/simpler formulations that could replicate the efficacy of the KD. One of the proposed hypotheses is that the KD increases cellular mitochondrial content which results in elevation of the seizure threshold. Here, we have focussed on the medium-chain triglyceride form of the diet and the observation that plasma octanoic acid (C8) and decanoic acid (C10) levels are elevated in patients on the medium-chain triglyceride KD. Using a neuronal cell line (SH-SY5Y), we demonstrated that 250-µM C10, but not C8, caused, over a 6-day period, a marked increase in the mitochondrial enzyme, citrate synthase along with complex I activity and catalase activity. Increased mitochondrial number was also indicated by electron microscopy. C10 is a reported peroxisome proliferator activator receptor γ agonist, and the use of a peroxisome proliferator activator receptor γ antagonist was shown to prevent the C10-mediated increase in mitochondrial content and catalase. C10 may mimic the mitochondrial proliferation associated with the KD and raises the possibility that formulations based on this fatty acid could replace a more complex diet. We propose that decanoic acid (C10) results in increased mitochondrial number. Our data suggest that this may occur via the activation of the PPARγ receptor and its target genes involved in mitochondrial biogenesis. This finding could be of significant benefit to epilepsy patients who are currently on a strict ketogenic diet. Evidence that C10 on its own can modulate mitochondrial number raises the possibility that a simplified and less stringent C10-based diet could be developed.


Asunto(s)
Citrato (si)-Sintasa/metabolismo , Ácidos Decanoicos/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/enzimología , Neuronas/efectos de los fármacos , Línea Celular , Dieta Cetogénica , Complejo I de Transporte de Electrón/metabolismo , Activación Enzimática , Humanos , Neuronas/enzimología
16.
BMC Clin Pathol ; 14: 13, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24679140

RESUMEN

BACKGROUND: Neuroblastoma is the most common solid tumour of infancy and is responsible for 15% of childhood cancer deaths. Presence of amplified MYCN in neuroblastoma is associated with poor prognosis and rapid tumour progression. The aim of this study was to examine and compare the ultrastructural features of high-risk MYCN amplified neuroblastomas, with lower-risk non-MYCN amplified tumours. METHODS: This was a retrospective study evaluating archival diagnostic tissue samples, in which Fluorescence in-situ hybridisation (FISH) had been used at diagnosis to establish MYCN status. 22 (11 MYCN amplified tumours and 11 non-MYCN amplified) tumours of similar light microscopic appearance (poorly differentiated neuroblastoma) were then selected for ultrastructural examination. RESULTS: There is a relationship between ultrastructural features in neuroblastoma and MYCN status, although with marked overlap between groups. MYCN amplified tumours generally exhibited a 'less differentiated' ultrastructural phenotype, with significantly smaller neurotubules (NT) in the cell body (p < 0.002). Non-MYCN amplified tumours show increased features of neuronal differentiation, with fewer neurosecretory granules (NSG) and NT in the cytoplasm. CONCLUSIONS: MYCN amplification is associated with a less differentiated ultrastructural phenotype, and lack of MYCN amplification with relative ultrastructural neuronal differentiation.

17.
Mol Genet Genomic Med ; 12(8): e2505, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39108195

RESUMEN

BACKGROUND: Biallelic variants in the major facilitator superfamily domain containing 8 gene (MFSD8) are associated with distinct clinical presentations that range from typical late-infantile neuronal ceroid lipofuscinosis type 7 (CLN7 disease) to isolated adult-onset retinal dystrophy. Classic late-infantile CLN7 disease is a severe, rare neurological disorder with an age of onset typically between 2 and 6 years, presenting with seizures and/or cognitive regression. Its clinical course is progressive, leading to premature death, and often includes visual loss due to severe retinal dystrophy. In rare cases, pathogenic variants in MFSD8 can be associated with isolated non-syndromic macular dystrophy with variable age at onset, in which the disease process predominantly or exclusively affects the cones of the macula and where there are no neurological or neuropsychiatric manifestations. METHODS: Here we present longitudinal studies on four adult-onset patients who were biallelic for four MFSD8 variants. RESULTS: Two unrelated patients who presented with adult-onset ataxia and had macular dystrophy on examination were homozygous for a novel variant in MFSD8 NM_152778.4: c.935T>C p.(Ile312Thr). Two other patients presented in adulthood with visual symptoms, and one of these developed mild to moderate cerebellar ataxia years after the onset of visual symptoms. CONCLUSIONS: Our observations expand the knowledge on biallelic pathogenic MFSD8 variants and confirm that these are associated with a spectrum of more heterogeneous clinical phenotypes. In MFSD8-related disease, adult-onset recessive ataxia can be the presenting manifestation or may occur in combination with retinal dystrophy.


Asunto(s)
Degeneración Macular , Humanos , Adulto , Masculino , Femenino , Degeneración Macular/genética , Degeneración Macular/patología , Edad de Inicio , Ataxia/genética , Ataxia/patología , Alelos , Persona de Mediana Edad , Mutación , Proteínas de Transporte de Membrana/genética , Fenotipo
18.
Acta Neuropathol ; 126(2): 207-18, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23728790

RESUMEN

Focal cortical dysplasia (FCD) is a localized malformation of cortical development and is the commonest cause of severe childhood epilepsy in surgical practice. Children with FCD are severely disabled by their epilepsy, presenting with frequent seizures early in life. The commonest form of FCD in children is characterized by the presence of an abnormal population of cells, known as balloon cells. Similar pathological changes are seen in the cortical malformations that characterize patients with tuberous sclerosis complex (TSC). However, the cellular and molecular mechanisms that underlie the malformations of FCD and TSC are not well understood. We provide evidence for a defect in autophagy in FCD and TSC. We have found that balloon cells contain vacuoles that include components of the autophagy pathway. Specifically, we show that balloon cells contain prominent lysosomes by electron microscopy, immunohistochemistry for LAMP1 and LAMP2, LysoTracker labelling and enzyme histochemistry for acid phosphatase. Furthermore, we found that balloon cells contain components of the ATG pathway and that there is cytoplasmic accumulation of the regulator of autophagy, DOR. Most importantly we found that there is abnormal accumulation of the autophagy cargo protein, p62. We show that this defect in autophagy can be, in part, reversed in vitro by inhibition of the mammalian target of rapamycin (mTOR) suggesting that abnormal activation of mTOR may contribute directly to a defect in autophagy in FCD and TSC.


Asunto(s)
Autofagia/fisiología , Encefalopatías/patología , Lisosomas/patología , Malformaciones del Desarrollo Cortical/patología , Serina-Treonina Quinasas TOR/fisiología , Esclerosis Tuberosa/patología , Fosfatasa Ácida/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Encéfalo/anomalías , Encéfalo/metabolismo , Encéfalo/patología , Encefalopatías/metabolismo , Células Cultivadas , Niño , Citoplasma/metabolismo , Citoplasma/patología , Epilepsia , Humanos , Inmunohistoquímica , Proteína 2 de la Membrana Asociada a los Lisosomas , Proteínas de Membrana de los Lisosomas/metabolismo , Lisosomas/ultraestructura , Malformaciones del Desarrollo Cortical/metabolismo , Malformaciones del Desarrollo Cortical de Grupo I , Proteína Sequestosoma-1 , Serina-Treonina Quinasas TOR/metabolismo , Bancos de Tejidos , Esclerosis Tuberosa/metabolismo
19.
Childs Nerv Syst ; 29(5): 839-47, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23239254

RESUMEN

INTRODUCTION: Rosette-forming glioneuronal tumour of the fourth ventricle is a rarely described entity. While usually having an indolent course and hence classified as a WHO grade 1 tumour, the precise characteristics and risk of recurrence of this tumour are still unknown. In addition, the preferred treatment modality remains unclear. DISCUSSION: We present a case of an 8-year old with an early recurrence of 9 months after undergoing a sub-total resection of her tumour. Following further resection, there was no tumour present on the 3-month follow-up. In order to better characterise this tumour entity, we performed a review of the available literature on the subject. We found that it mainly affected young adults and had a female predominance. While initially these tumours were described in the fourth ventricle, the current literature suggests that they may be found in a larger variety of sites within the brain and spinal cord. There are several reports of recurrence occurring between 9 months and 10 years following surgery. There is as yet no feature of the tumour that appears to predict the risk of recurrence. CONCLUSION: This phenomenon warrants further examination to discover if there is a sub-section of tumours that is likely to recur, and until this is established, all patients should be followed up at regular intervals.


Asunto(s)
Neoplasias del Ventrículo Cerebral/patología , Cuarto Ventrículo/patología , Glioma/patología , Recurrencia Local de Neoplasia/patología , Neuroma/patología , Neoplasias del Ventrículo Cerebral/diagnóstico , Neoplasias del Ventrículo Cerebral/cirugía , Niño , Diagnóstico Diferencial , Femenino , Estudios de Seguimiento , Cuarto Ventrículo/cirugía , Glioma/diagnóstico , Glioma/cirugía , Humanos , Recurrencia Local de Neoplasia/diagnóstico , Recurrencia Local de Neoplasia/cirugía , Neuroma/diagnóstico , Neuroma/cirugía , Procedimientos Neuroquirúrgicos/métodos , Formación de Roseta , Resultado del Tratamiento
20.
Am Ann Deaf ; 168(4): 213-225, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38588098

RESUMEN

In 1972, Glenn Anderson collaborated with New York University colleague Frank Bowe to publish an American Annals of the Deaf article titled "Racism Within the Deaf Community" (Anderson & Bowe, 1972). It was written, in part, due to the influence of the Civil Rights Movement of the 1960s, which affected both the Black Deaf and Black hearing communities, as well as in response to Anderson's experiences with a Deaf club in Detroit. Given that 52 years have passed since the article was published, this updated version, coauthored with Gallaudet University colleague Lindsay Dunn, addresses the following issues, among others: racial inequity in the educational and employment attainment of Black Deaf persons, their personal experiences with institutional and systemic racism, and their perspectives on what must be done to progress toward dismantling institutional and systemic racism in the Deaf community today and tomorrow.


Asunto(s)
Racismo , Humanos , Estados Unidos , Cultura Sorda , Escolaridad , Empleo , New York
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA