Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proteins ; 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38288638

RESUMEN

We have shown recently that the notion of poking pairwise interactions along a chain provides a unifying framework for understanding the formation of both secondary and the tertiary protein structure based on symmetry and geometry. α-helices and ß-sheets are found to be special geometries that have systematic poking contacts in a repetitive manner with the contacts being local along the α-helix and non-local along a pair of adjacent strands within a ß-sheet. Pairwise poking interactions also govern tertiary structure formation, but they are weaker and there are no special geometrical constraints as in secondary structure formation. Here we demonstrate that protein turns, the most prevalent non-repetitive structural element in proteins, are instances of local (as in α-helices) and isolated (non-repetitive) poking pairwise contacts for which the geometrical constraints are partially relaxed. This simple and purely geometrical definition of protein turns (also sometimes known as reverse turns, ß-turns, ß-bends, hairpin bends, 310 bends, kinks, widgets, etc.) provides a simple framework for unifying them. We present the results of a systematic analysis and identify their structural classes as well as their respective amino acid preferences.

2.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33380456

RESUMEN

We analyze about 200 naturally occurring networks with distinct dynamical origins to formally test whether the commonly assumed hypothesis of an underlying scale-free structure is generally viable. This has recently been questioned on the basis of statistical testing of the validity of power law distributions of network degrees. Specifically, we analyze by finite size scaling analysis the datasets of real networks to check whether the purported departures from power law behavior are due to the finiteness of sample size. We find that a large number of the networks follows a finite size scaling hypothesis without any self-tuning. This is the case of biological protein interaction networks, technological computer and hyperlink networks, and informational networks in general. Marked deviations appear in other cases, especially involving infrastructure and transportation but also in social networks. We conclude that underlying scale invariance properties of many naturally occurring networks are extant features often clouded by finite size effects due to the nature of the sample data.

3.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34039710

RESUMEN

Shaping global water and carbon cycles, plants lift water from roots to leaves through xylem conduits. The importance of xylem water conduction makes it crucial to understand how natural selection deploys conduit diameters within and across plants. Wider conduits transport more water but are likely more vulnerable to conduction-blocking gas embolisms and cost more for a plant to build, a tension necessarily shaping xylem conduit diameters along plant stems. We build on this expectation to present the Widened Pipe Model (WPM) of plant hydraulic evolution, testing it against a global dataset. The WPM predicts that xylem conduits should be narrowest at the stem tips, widening quickly before plateauing toward the stem base. This universal profile emerges from Pareto modeling of a trade-off between just two competing vectors of natural selection: one favoring rapid widening of conduits tip to base, minimizing hydraulic resistance, and another favoring slow widening of conduits, minimizing carbon cost and embolism risk. Our data spanning terrestrial plant orders, life forms, habitats, and sizes conform closely to WPM predictions. The WPM highlights carbon economy as a powerful vector of natural selection shaping plant function. It further implies that factors that cause resistance in plant conductive systems, such as conduit pit membrane resistance, should scale in exact harmony with tip-to-base conduit widening. Furthermore, the WPM implies that alterations in the environments of individual plants should lead to changes in plant height, for example, shedding terminal branches and resprouting at lower height under drier climates, thus achieving narrower and potentially more embolism-resistant conduits.


Asunto(s)
Evolución Biológica , Modelos Biológicos , Fenómenos Fisiológicos de las Plantas , Agua/fisiología , Xilema/anatomía & histología
4.
Proteins ; 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37565735

RESUMEN

We present a model, based on symmetry and geometry, for proteins. Using elementary ideas from mathematics and physics, we derive the geometries of discrete helices and sheets. We postulate a compatible solvent-mediated emergent pairwise attraction that assembles these building blocks, while respecting their individual symmetries. Instead of seeking to mimic the complexity of proteins, we look for a simple abstraction of reality that yet captures the essence of proteins. We employ analytic calculations and detailed Monte Carlo simulations to explore some consequences of our theory. The predictions of our approach are in accord with experimental data. Our framework provides a rationalization for understanding the common characteristics of proteins. Our results show that the free energy landscape of a globular protein is pre-sculpted at the backbone level, sequences and functionalities evolve in the fixed backdrop of the folds determined by geometry and symmetry, and that protein structures are unique in being simultaneously characterized by stability, diversity, and sensitivity.

5.
Proteins ; 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37605446

RESUMEN

Recently, we presented a framework for understanding protein structure based on the idea that simple constructs of holding hands or touching of objects can be used to rationalize the common characteristics of globular proteins. We developed a consistent approach for understanding the formation of the two key common building blocks of helices and sheets as well as the compatible assembly of secondary structures into the tertiary structure through the notion of poking pairwise interactions. Here we benchmark our predictions with a detailed analysis of structural data of over 4000 proteins from the Protein Data Bank. We also present the results of detailed computer simulations of a simplified model demonstrating a pre-sculpted free energy landscape, determined by geometry and symmetry, comprising numerous minima corresponding to putative native state structures. We explore the consequences of our model. Our results suggest that symmetry and geometry are a powerful guide to capture the simplicity underlying protein complexity.

6.
Proteins ; 87(3): 176-184, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30371948

RESUMEN

A phase of matter is a familiar notion for inanimate physical matter. The nature of a phase of matter transcends the microscopic material properties. For example, materials in the liquid phase have certain common properties independent of the chemistry of the constituents: liquids take the shape of the container; they flow; and they can be poured-alcohol, oil, and water as well as a Lennard-Jones computer model exhibit similar behavior when poised in the liquid phase. Here, we identify a hitherto unstudied "phase" of matter, the elixir phase, in a simple model of a polymeric chain whose backbone has the correct local cylindrical symmetry induced by the tangent to the chain. The elixir phase appears on breaking the cylindrical symmetry by adding side spheres along the negative normal direction, as in proteins. This phase, nestled between other phases, has multiple ground states made up of building blocks of helices and almost planar sheets akin to protein native folds. We discuss the similarities of this "phase" of a finite size system to the liquid crystal and spin glass phases. Our findings are relevant for understanding proteins; the creation of novel bioinspired nanomachines; and also may have implications for life elsewhere in the cosmos.


Asunto(s)
Simulación por Computador , Pliegue de Proteína , Proteínas/química , Método de Montecarlo , Estructura Secundaria de Proteína , Agua/química
7.
Soft Matter ; 15(28): 5596-5613, 2019 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-31259346

RESUMEN

We discuss the relation between the emergence of new phases with broken symmetry within the framework of simple models of biopolymers. We start with a classic model for a chain molecule of spherical beads tethered together, with the steric constraint that non-consecutive beads cannot overlap, and with a pairwise attractive square well potential accounting for the hydrophobic effect and promoting compaction. We then discuss the consequences of the successive breaking of spurious symmetries. First, we allow the partial interpenetration of consecutive beads. In addition to the standard high temperature coil phase and the low temperature collapsed phase, this results in a new class of marginally compact ground states comprising conformations reminiscent of α-helices and ß-sheets, the building blocks of the native states of globular proteins. We then discuss the effect of a further symmetry breaking of the cylindrical symmetry on attaching a side-sphere to the backbone beads along the negative normal of the chain, to mimic the presence of side chains in real proteins. This leads to the emergence of a novel phase within the previously obtained marginally compact phase, with the appearance of more complex secondary structure assemblies. The potential importance of this new phase in the de novo design of self-assembled peptides is highlighted.


Asunto(s)
Modelos Moleculares , Péptidos/química , Pliegue de Proteína , Temperatura
8.
Nature ; 500(7463): 449-52, 2013 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-23969462

RESUMEN

Mutualistic networks are formed when the interactions between two classes of species are mutually beneficial. They are important examples of cooperation shaped by evolution. Mutualism between animals and plants has a key role in the organization of ecological communities. Such networks in ecology have generally evolved a nested architecture independent of species composition and latitude; specialist species, with only few mutualistic links, tend to interact with a proper subset of the many mutualistic partners of any of the generalist species. Despite sustained efforts to explain observed network structure on the basis of community-level stability or persistence, such correlative studies have reached minimal consensus. Here we show that nested interaction networks could emerge as a consequence of an optimization principle aimed at maximizing the species abundance in mutualistic communities. Using analytical and numerical approaches, we show that because of the mutualistic interactions, an increase in abundance of a given species results in a corresponding increase in the total number of individuals in the community, and also an increase in the nestedness of the interaction matrix. Indeed, the species abundances and the nestedness of the interaction matrix are correlated by a factor that depends on the strength of the mutualistic interactions. Nestedness and the observed spontaneous emergence of generalist and specialist species occur for several dynamical implementations of the variational principle under stationary conditions. Optimized networks, although remaining stable, tend to be less resilient than their counterparts with randomly assigned interactions. In particular, we show analytically that the abundance of the rarest species is linked directly to the resilience of the community. Our work provides a unifying framework for studying the emergent structural and dynamical properties of ecological mutualistic networks.


Asunto(s)
Evolución Biológica , Ecosistema , Modelos Biológicos , Simbiosis , Algoritmos , Animales , Biota , Fenómenos Fisiológicos de las Plantas , Especificidad de la Especie
9.
J Chem Phys ; 151(17): 174901, 2019 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-31703491

RESUMEN

Chain molecules play important roles in industry and in living cells. Our focus here is on distinct ways of modeling the stiffness inherent in a chain molecule. We consider three types of stiffnesses-one yielding an energy penalty for local bends (energetic stiffness) and the other two forbidding certain classes of chain conformations (entropic stiffness). Using detailed Wang-Landau microcanonical Monte Carlo simulations, we study the interplay between the nature of the stiffness and the ground state conformation of a self-attracting chain. We find a wide range of ground state conformations, including a coil, a globule, a toroid, rods, helices, and zig-zag strands resembling ß-sheets, as well as knotted conformations allowing us to bridge conventional polymer phases and biomolecular phases. An analytical mapping is derived between the persistence lengths stemming from energetic and entropic stiffness. Our study shows unambiguously that different stiffnesses play different physical roles and have very distinct effects on the nature of the ground state of the conformation of a chain, even if they lead to identical persistence lengths.


Asunto(s)
Polímeros/química , Algoritmos , Conformación Molecular , Método de Montecarlo
10.
Proc Natl Acad Sci U S A ; 111(9): 3332-7, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-24550479

RESUMEN

Despite the vast diversity of sizes and shapes of living organisms, life's organization across scales exhibits remarkable commonalities, most notably through the approximate validity of Kleiber's law, the power law scaling of metabolic rates with the mass of an organism. Here, we present a derivation of Kleiber's law that is independent of the specificity of the myriads of organism species. Specifically, we account for the distinct geometries of trees and mammals as well as deviations from the pure power law behavior of Kleiber's law, and predict the possibility of life forms with geometries intermediate between trees and mammals. We also make several predictions in excellent accord with empirical data. Our theory relates the separate evolutionary histories of plants and animals through the fundamental physics underlying their distinct overall forms and physiologies.


Asunto(s)
Adaptación Biológica/fisiología , Evolución Biológica , Constitución Corporal/fisiología , Mamíferos/anatomía & histología , Modelos Biológicos , Árboles/anatomía & histología , Animales , Mamíferos/fisiología , Metabolismo/fisiología , Especificidad de la Especie , Árboles/fisiología
11.
Proc Natl Acad Sci U S A ; 111(7): 2417-24, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24550264

RESUMEN

Moving from the exact result that drainage network configurations minimizing total energy dissipation are stationary solutions of the general equation describing landscape evolution, we review the static properties and the dynamic origins of the scale-invariant structure of optimal river patterns. Optimal channel networks (OCNs) are feasible optimal configurations of a spanning network mimicking landscape evolution and network selection through imperfect searches for dynamically accessible states. OCNs are spanning loopless configurations, however, only under precise physical requirements that arise under the constraints imposed by river dynamics--every spanning tree is exactly a local minimum of total energy dissipation. It is remarkable that dynamically accessible configurations, the local optima, stabilize into diverse metastable forms that are nevertheless characterized by universal statistical features. Such universal features explain very well the statistics of, and the linkages among, the scaling features measured for fluvial landforms across a broad range of scales regardless of geology, exposed lithology, vegetation, or climate, and differ significantly from those of the ground state, known exactly. Results are provided on the emergence of criticality through adaptative evolution and on the yet-unexplored range of applications of the OCN concept.


Asunto(s)
Ambiente , Fenómenos Geológicos , Hidrodinámica , Modelos Teóricos , Ríos
12.
Proc Natl Acad Sci U S A ; 111(28): 10095-100, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24982145

RESUMEN

Empirical evidence suggesting that living systems might operate in the vicinity of critical points, at the borderline between order and disorder, has proliferated in recent years, with examples ranging from spontaneous brain activity to flock dynamics. However, a well-founded theory for understanding how and why interacting living systems could dynamically tune themselves to be poised in the vicinity of a critical point is lacking. Here we use tools from statistical mechanics and information theory to show that complex adaptive or evolutionary systems can be much more efficient in coping with diverse heterogeneous environmental conditions when operating at criticality. Analytical as well as computational evolutionary and adaptive models vividly illustrate that a community of such systems dynamically self-tunes close to a critical state as the complexity of the environment increases while they remain noncritical for simple and predictable environments. A more robust convergence to criticality emerges in coevolutionary and coadaptive setups in which individuals aim to represent other agents in the community with fidelity, thereby creating a collective critical ensemble and providing the best possible tradeoff between accuracy and flexibility. Our approach provides a parsimonious and general mechanism for the emergence of critical-like behavior in living systems needing to cope with complex environments or trying to efficiently coordinate themselves as an ensemble.


Asunto(s)
Encéfalo/fisiología , Modelos Neurológicos , Animales , Humanos
13.
Proc Natl Acad Sci U S A ; 109(26): 10564-9, 2012 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-22679281

RESUMEN

Typically one expects that the intervals between consecutive occurrences of a particular behavior will have a characteristic time scale around which most observations are centered. Surprisingly, the timing of many diverse behaviors from human communication to animal foraging form complex self-similar temporal patterns reproduced on multiple time scales. We present a general framework for understanding how such scale invariance may arise in nonequilibrium systems, including those that regulate mammalian behaviors. We then demonstrate that the predictions of this framework are in agreement with detailed analysis of spontaneous mouse behavior observed in a simple unchanging environment. Neural systems operate on a broad range of time scales, from milliseconds to hours. We analytically show that such a separation between time scales could lead to scale-invariant dynamics without any fine tuning of parameters or other model-specific constraints. Our analyses reveal that the specifics of the distribution of resources or competition among several tasks are not essential for the expression of scale-free dynamics. Rather, we show that scale invariance observed in the dynamics of behavior can arise from the dynamics intrinsic to the brain.


Asunto(s)
Conducta , Animales , Oscuridad , Luz , Ratones
14.
PLoS Comput Biol ; 9(9): e1003215, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24039568

RESUMEN

Cell heterogeneity and the inherent complexity due to the interplay of multiple molecular processes within the cell pose difficult challenges for current single-cell biology. We introduce an approach that identifies a disease phenotype from multiparameter single-cell measurements, which is based on the concept of "supercell statistics", a single-cell-based averaging procedure followed by a machine learning classification scheme. We are able to assess the optimal tradeoff between the number of single cells averaged and the number of measurements needed to capture phenotypic differences between healthy and diseased patients, as well as between different diseases that are difficult to diagnose otherwise. We apply our approach to two kinds of single-cell datasets, addressing the diagnosis of a premature aging disorder using images of cell nuclei, as well as the phenotypes of two non-infectious uveitides (the ocular manifestations of Behçet's disease and sarcoidosis) based on multicolor flow cytometry. In the former case, one nuclear shape measurement taken over a group of 30 cells is sufficient to classify samples as healthy or diseased, in agreement with usual laboratory practice. In the latter, our method is able to identify a minimal set of 5 markers that accurately predict Behçet's disease and sarcoidosis. This is the first time that a quantitative phenotypic distinction between these two diseases has been achieved. To obtain this clear phenotypic signature, about one hundred CD8(+) T cells need to be measured. Although the molecular markers identified have been reported to be important players in autoimmune disorders, this is the first report pointing out that CD8(+) T cells can be used to distinguish two systemic inflammatory diseases. Beyond these specific cases, the approach proposed here is applicable to datasets generated by other kinds of state-of-the-art and forthcoming single-cell technologies, such as multidimensional mass cytometry, single-cell gene expression, and single-cell full genome sequencing techniques.


Asunto(s)
Diagnóstico , Inteligencia Artificial , Humanos
15.
J Chem Phys ; 140(6): 064902, 2014 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-24527935

RESUMEN

The competition between toroidal and rod-like conformations as possible ground states for DNA condensation is studied as a function of the stiffness, the length of the DNA, and the form of the long-range interactions between neighboring molecules, using analytical theory supported by Monte Carlo simulations. Both conformations considered are characterized by a local nematic order with hexagonal packing symmetry of neighboring DNA molecules, but differ in global configuration of the chain and the distribution of its curvature as it wraps around to form a condensate. The long-range interactions driving the DNA condensation are assumed to be of the form pertaining to the attractive depletion potential as well as the attractive counterion induced soft potential. In the stiffness-length plane we find a transition between rod-like to toroid condensate for increasing stiffness at a fixed chain length L. Strikingly, the transition line is found to have a L(1/3) dependence irrespective of the details of the long-range interactions between neighboring molecules. When realistic DNA parameters are used, our description reproduces rather well some of the experimental features observed in DNA condensates.


Asunto(s)
ADN/química , Polímeros/química , Modelos Moleculares , Conformación Molecular , Método de Montecarlo , Conformación de Ácido Nucleico , Docilidad
16.
Proc Natl Acad Sci U S A ; 108 Suppl 3: 15617-23, 2011 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-21555568

RESUMEN

We review a concept of the most primitive, fundamental function of the vertebrate CNS, generalized arousal (GA). Three independent lines of evidence indicate the existence of GA: statistical, genetic, and mechanistic. Here we ask, is this concept amenable to quantitative analysis? Answering in the affirmative, four quantitative approaches have proven useful: (i) factor analysis, (ii) information theory, (iii) deterministic chaos, and (iv) application of a Gaussian equation. It strikes us that, to date, not just one but at least four different quantitative approaches seem necessary for describing different aspects of scientific work on GA.


Asunto(s)
Nivel de Alerta/fisiología , Encéfalo/fisiología , Vertebrados/fisiología , Animales , Humanos , Hambre/fisiología , Teoría de la Información , Dinámicas no Lineales
17.
Biomolecules ; 14(7)2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-39062519

RESUMEN

The molecular machines of life, proteins, are made up of twenty kinds of amino acids, each with distinctive side chains. We present a geometrical analysis of the protrusion statistics of side chains in more than 4000 high-resolution protein structures. We employ a coarse-grained representation of the protein backbone viewed as a linear chain of Cα atoms and consider just the heavy atoms of the side chains. We study the large variety of behaviors of the amino acids based on both rudimentary structural chemistry as well as geometry. Our geometrical analysis uses a backbone Frenet coordinate system for the common study of all amino acids. Our analysis underscores the richness of the repertoire of amino acids that is available to nature to design protein sequences that fit within the putative native state folds.


Asunto(s)
Aminoácidos , Proteínas , Aminoácidos/química , Proteínas/química , Conformación Proteica , Modelos Moleculares , Pliegue de Proteína
18.
Polymers (Basel) ; 16(4)2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38399880

RESUMEN

Linear chain molecules play a central role in polymer physics with innumerable industrial applications. They are also ubiquitous constituents of living cells. Here, we highlight the similarities and differences between two distinct ways of viewing a linear chain. We do this, on the one hand, through the lens of simulations for a standard polymer chain of tethered spheres at low and high temperatures and, on the other hand, through published experimental data on an important class of biopolymers, proteins. We present detailed analyses of their local and non-local structures as well as the maps of their closest contacts. We seek to reconcile the startlingly different behaviors of the two types of chains based on symmetry considerations.

19.
Proc Biol Sci ; 280(1751): 20122375, 2013 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-23193128

RESUMEN

Tree-size distribution is one of the most investigated subjects in plant population biology. The forestry literature reports that tree-size distribution trajectories vary across different stands and/or species, whereas the metabolic scaling theory suggests that the tree number scales universally as -2 power of diameter. Here, we propose a simple functional scaling model in which these two opposing results are reconciled. Basic principles related to crown shape, energy optimization and the finite-size scaling approach were used to define a set of relationships based on a single parameter that allows us to predict the slope of the tree-size distributions in a steady-state condition. We tested the model predictions on four temperate mountain forests. Plots (4 ha each, fully mapped) were selected with different degrees of human disturbance (semi-natural stands versus formerly managed). Results showed that the size distribution range successfully fitted by the model is related to the degree of forest disturbance: in semi-natural forests the range is wide, whereas in formerly managed forests, the agreement with the model is confined to a very restricted range. We argue that simple allometric relationships, at an individual level, shape the structure of the whole forest community.


Asunto(s)
Biota , Demografía , Modelos Biológicos , Árboles/crecimiento & desarrollo , Biometría , Agricultura Forestal , Italia , Rumanía
20.
Nature ; 450(7166): 45-9, 2007 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-17972874

RESUMEN

A formidable many-body problem in ecology is to understand the complex of factors controlling patterns of relative species abundance (RSA) in communities of interacting species. Unlike many problems in physics, the nature of the interactions in ecological communities is not completely known. Although most contemporary theories in ecology start with the basic premise that species interact, here we show that a theory in which all interspecific interactions are turned off leads to analytical results that are in agreement with RSA data from tropical forests and coral reefs. The assumption of non-interacting species leads to a sampling theory for the RSA that yields a simple approximation at large scales to the exact theory. Our results show that one can make significant theoretical progress in ecology by assuming that the effective interactions among species are weak in the stationary states in species-rich communities such as tropical forests and coral reefs.


Asunto(s)
Antozoos/fisiología , Biodiversidad , Lluvia , Árboles/fisiología , Clima Tropical , Migración Animal , Animales , Geografía , Modelos Biológicos , Densidad de Población
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA