Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cell Syst ; 10(1): 25-38.e10, 2020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31668799

RESUMEN

Many traits are complex, depending non-additively on variant combinations. Even in model systems, such as the yeast S. cerevisiae, carrying out the high-order variant-combination testing needed to dissect complex traits remains a daunting challenge. Here, we describe "X-gene" genetic analysis (XGA), a strategy for engineering and profiling highly combinatorial gene perturbations. We demonstrate XGA on yeast ABC transporters by engineering 5,353 strains, each deleted for a random subset of 16 transporters, and profiling each strain's resistance to 16 compounds. XGA yielded 85,648 genotype-to-resistance observations, revealing high-order genetic interactions for 13 of the 16 transporters studied. Neural networks yielded intuitive functional models and guided exploration of fluconazole resistance, which was influenced non-additively by five genes. Together, our results showed that highly combinatorial genetic perturbation can functionally dissect complex traits, supporting pursuit of analogous strategies in human cells and other model systems.


Asunto(s)
Transporte Biológico/genética , Proteínas de Transporte de Membrana/genética , Humanos
2.
PLoS One ; 6(10): e26225, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22031825

RESUMEN

Pancreatic islet ß-cells produce large amounts of γ-aminobutyric acid (GABA), which is co-released with insulin. GABA inhibits glucagon secretion by hyperpolarizing α-cells via type-A GABA receptors (GABA(A)Rs). We and others recently reported that islet ß-cells also express GABA(A)Rs and that activation of GABA(A)Rs increases insulin release. Here we investigate the effects of insulin on the GABA-GABA(A)R system in the pancreatic INS-1 cells using perforated-patch recording. The results showed that GABA produces a rapid inward current and depolarizes INS-1 cells. However, pre-treatment of the cell with regular insulin (1 µM) suppressed the GABA-induced current (I(GABA)) by 43%. Zinc-free insulin also suppressed I(GABA) to the same extent of inhibition by regular insulin. The inhibition of I(GABA) occurs within 30 seconds after application of insulin. The insulin-induced inhibition of I(GABA) persisted in the presence of PI3-kinase inhibitor, but was abolished upon inhibition of ERK, indicating that insulin suppresses GABA(A)Rs through a mechanism that involves ERK activation. Radioimmunoassay revealed that the secretion of C-peptide was enhanced by GABA, which was blocked by pre-incubating the cells with picrotoxin (50 µM, p<0.01) and insulin (1 µM, p<0.01), respectively. Together, these data suggest that autocrine GABA, via activation of GABA(A)Rs, depolarizes the pancreatic ß-cells and enhances insulin secretion. On the other hand, insulin down-regulates GABA-GABA(A)R signaling presenting a feedback mechanism for fine-tuning ß-cell secretion.


Asunto(s)
Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Insulina/farmacología , Ácido gamma-Aminobutírico/farmacología , Animales , Péptido C/metabolismo , Línea Celular Tumoral , Ratas , Receptores de GABA-A/metabolismo , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA