Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Nano ; 18(20): 12760-12770, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38728257

RESUMEN

Phototransistors are light-sensitive devices featuring a high dynamic range, low-light detection, and mechanisms to adapt to different ambient light conditions. These features are of interest for bioinspired applications such as artificial and restored vision. In this work, we report on a graphene-based phototransistor exploiting the photogating effect that features picowatt- to microwatt-level photodetection, a dynamic range covering six orders of magnitude from 7 to 107 lux, and a responsivity of up to 4.7 × 103 A/W. The proposed device offers the highest dynamic range and lowest optical power detected compared to the state of the art in interfacial photogating and further operates air stably. These results have been achieved by a combination of multiple developments. For example, by optimizing the geometry of our devices with respect to the graphene channel aspect ratio and by introducing a semitransparent top-gate electrode, we report a factor 20-30 improvement in responsivity over unoptimized reference devices. Furthermore, we use a built-in dynamic range compression based on a partial logarithmic optical power dependence in combination with control of responsivity. These features enable adaptation to changing lighting conditions and support high dynamic range operation, similar to what is known in human visual perception. The enhanced performance of our devices therefore holds potential for bioinspired applications, such as retinal implants.

2.
ACS Photonics ; 11(7): 2691-2699, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39036065

RESUMEN

Cryogenic quantum applications have a demand for an ever-higher number of interconnects and bandwidth. Photonic links are foreseen to offer data transfer with high bandwidth, low heat load, and low noise to enable the next-generation scalable quantum computing systems. However, they require high-speed and energy-efficient modulators operating at cryogenic temperatures for electro-optic signal conversion. Here, plasmonic organic electro-optic modulators operating at 4 K are demonstrated with a >100 GHz bandwidth, drive voltages as low as 96 mV, and a significant reduction in plasmonic propagation losses by over 40% compared to room temperature. Up to 160 Gbit/s and 256 Gbit/s cryogenic electro-optic signal conversion are demonstrated by performing data experiments using a plasmonic Mach-Zehnder modulator at around 1528 nm and a plasmonic ring-resonator modulator at around 1285 nm, respectively. This work shows that plasmonic modulators are ideally suited for future high-speed, scalable, and energy-efficient photonic interconnects in cryogenic environments.

3.
ACS Photonics ; 10(9): 3366-3373, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37743947

RESUMEN

Highly efficient coupling of light from an optical fiber to silicon nitride (SiN) photonic integrated circuits (PICs) is experimentally demonstrated with simple and fabrication-tolerant grating couplers (GC). Fully etched amorphous silicon gratings are formed on top of foundry-produced SiN PICs in a back-end-of-the-line (BEOL) process, which is compatible with 248 nm deep UV lithography. Metallic back reflectors are introduced to enhance the coupling efficiency (CE) from -1.11 to -0.44 dB in simulation and from -2.2 to -1.4 dB in experiments for the TE polarization in the C-band. Furthermore, these gratings can be optimized to couple both TE and TM polarizations with a CE below -3 dB and polarization-dependent losses under 1 dB over a wavelength range of 40 nm in the O-band. This elegant approach offers a simple solution for the realization of compact and, at the same time, highly efficient coupling schemes in SiN PICs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA